WO2014103318A1 - Method for forming protective film using plasma cvd method - Google Patents

Method for forming protective film using plasma cvd method Download PDF

Info

Publication number
WO2014103318A1
WO2014103318A1 PCT/JP2013/007623 JP2013007623W WO2014103318A1 WO 2014103318 A1 WO2014103318 A1 WO 2014103318A1 JP 2013007623 W JP2013007623 W JP 2013007623W WO 2014103318 A1 WO2014103318 A1 WO 2014103318A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming
protective film
base material
plasma
Prior art date
Application number
PCT/JP2013/007623
Other languages
French (fr)
Japanese (ja)
Inventor
玉垣 浩
潤二 芳賀
弘高 伊藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2014103318A1 publication Critical patent/WO2014103318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes

Definitions

  • the present invention relates to a method for forming a protective film by a plasma CVD method in which a CVD (Chemical Vapor Deposition) film is formed on a substrate.
  • the present invention relates to a method for forming a protective film having high production efficiency and high adhesion to a base material while maintaining stable film formation conditions.
  • a conventional plasma CVD apparatus employs a method in which a film is formed in a state where the base materials are arranged on a table and the base materials are rotated and revolved.
  • a plurality of (six in this case) rotation tables 4 that hold a substrate W (for example, see FIGS. 4A and 4B) that is a film formation target in a rotating state are provided as one rotation table. 5 is provided. That is, the plurality of rotation tables 4 are provided on a rotation table 5, and the rotation table 5 provided with the plurality of rotation tables 4 in the plasma CVD apparatus 1 is used as a rotation axis (rotation axis P) of the rotation table 4.
  • a rotation mechanism 8 that revolves around a revolution axis Q having parallel axes is provided.
  • Each of the plurality of rotation tables 4 is arranged to have an equal radius from the revolution axis Q of the rotary table 5 and at equal intervals around the revolution axis Q.
  • the table is rotated and AC power is supplied from the plasma generation power source 10, so that the substrate W and the second group of the rotation table 4 belonging to the first group 18 are supplied. Glow discharge is generated between the rotating table 4 and the base material W belonging to 19, and plasma necessary for film formation is generated between the base materials W.
  • the AC voltage supplied from the plasma generating power supply 10 is between 300 V and 3000 V (the peak value of the voltage between both electrodes) necessary for maintaining glow discharge. Further, the AC output power supplied from the plasma generation power source 10 is preferably about 0.05 to 5 W / cm 2 in terms of power per unit area.
  • the base material W of the rotation table 4 belonging to the first group 18 acts as a working electrode and a CVD film is formed on the base W side
  • the base of the rotation table 4 belonging to the second group 19 is formed.
  • the material W becomes a counter electrode (opposite electrode).
  • the base material W of the rotation table 4 belonging to the second group 19 becomes the working electrode
  • the base material W of the rotation table 4 belonging to the first group 18 is the counter electrode. It becomes.
  • a tree-like work set as shown in FIG. 4B was mounted on all the rotation axes. And this work set itself is handled as a simulated base material, and the actual base material W is handled as a holder WH on a tree-like work set on one of six axes work set (simulated base material). A base material (test piece) W for evaluation was mounted on the top.
  • acetylene is introduced as a process gas from the gas supply unit 9 at a flow rate of 700 sccm, and while maintaining a pressure of 2.5 Pa, the plasma generation power supply 10 is applied with 4 kW of power at a frequency of 70 to 80 kHz to grow it. Electric discharge was generated, and a film was formed on the surface of the simulated base material including the base material W. During the film forming process, arc discharge was sometimes observed, but the frequency was less than 5 times per minute, and the arc discharge was interrupted by the discharge interrupting mechanism of the plasma generation power source, and the time was about 100 msec. To return to normal discharge. Therefore, there was no abnormality in the film formation.
  • the film formation rate was about 5 ⁇ m / Hr, and the film thickness was about 3 ⁇ m by adjusting the film formation time.
  • a hard carbon film containing about 2 ⁇ m of hydrogen was formed on the surface of the substrate W thus formed.
  • the formed film a healthy glossy film was formed on the test piece (3), but partial peeling was observed on the test piece (1) and the test piece (2).
  • the film hardness of the formed film was measured using a nanoindenter. As a result, the film hardness was found to be 24 GPa.
  • membrane on a test piece (3) was evaluated using the scratch testing machine. As a result, the adhesion of the film was evaluated as 50N.
  • Comparative Example 3 The result of the above film formation test is referred to as Comparative Example 3.
  • Example 1 Comparing the film formation conditions of Example 1 and Comparative Example 1, it is found that when the same process conditions are set, the method of the present invention suppresses abnormal discharge and greatly improves the film formation stability. It was. This is because, in the method of the comparative example, since the glow discharge is excited by the intermittent DC voltage, the substrate is biased to a negative potential and is at a potential that attracts ions in the plasma. On the other hand, according to the film forming method of the present invention, the substrate has a negative potential with respect to the plasma and attracts ions in the plasma, and the substrate has a positive potential with respect to the plasma and the ions in the plasma repel and emit electrons. Experience the same period of attraction.
  • 5A and 5B show a change in potential during film formation in the method for forming a protective film according to the present invention in comparison with the prior art.
  • the frequency of the AC plasma generation power source 10 is preferably 1 kHz or higher, and more preferably 10 kHz or higher.
  • HMDSO is introduced as a process gas at a pressure of 2.5 Pa, and 2 kW of electric power is applied from the plasma generation power source 10 to generate glow discharge.
  • a group B base material W stainless steel plate
  • a glow discharge was generated, a film was formed on the surface of the base material W, and taken out to the atmosphere.
  • a glow discharge was generated between the vacuum chamber 22 by simultaneously applying 2 kW of power from the pulse DC power source to the group A base material W and the group B base material W in the film forming process. Except for the above, the same treatment was performed to form a film on the surface of the substrate W, and the substrate W was taken out to the atmosphere. A substantially similar film was formed on the surface of the base material W thus formed, but slight peeling was observed at the corners of the stainless steel plate. The characteristics of the film have water repellency as in the examples. Similarly, in the test in which the adhesive tape was removed by spraying water, the peeling of the film expanded from the above-mentioned peeling site.
  • the gas supplied into the vacuum chamber includes a hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, and ethylene.
  • the formed film is a hydrogen-containing carbon film called DLC or the like.
  • the gas supplied into the vacuum chamber includes a hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, and ethylene.
  • the formed film is a carbon film having conductivity.
  • Gas supplied into the vacuum chamber contains hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, ethylene, and silane, TMS, HMDSO, HMDSN, etc., and the formed film contains silicon.
  • the gas supplied into the vacuum chamber contains a hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, and ethylene as a main component, and a gas containing a metal (TMS, TTIP, etc.) as an additional component. Include as.
  • the formed film is a carbon film containing a metal element called Me: DLC.
  • the gas supplied into the vacuum chamber includes an organosilane-based gas containing Si as an essential element, such as TMS, HMDSO, and HMDSN.
  • the formed film is a protective film containing Si, C, and H as essential elements.
  • Preferred substrates include metals, conductive ceramics, plastics / glasses having a conductive film formed on the surface, and the like.
  • a silicon base material doped with an impurity element to provide conductivity is also a target. This is necessary to effectively transmit the voltage for creating the plasma across the substrate.
  • a protective film can be coated on, for example, cemented carbide, ceramics, tool steel, mold steel used for tools and molds, or automotive parts. In many cases, a carburized material, a nitrided material, a heat-treated material and the like whose hardness generally exceeds 10 GPa are used.
  • a thick coating is possible when applied to an object having a relatively low hardness.
  • a steel material and stainless steel that are not surface-hardened, a non-ferrous metal that does not have a very high hardness ( Titanium, aluminum, aluminum alloy, magnesium alloy), plastics with conductive surface treatment (for example, plating), and the like are more advantageous than the conventional method.
  • the embodiment disclosed as the first embodiment which has a self-revolving table and whose rotation axis is divided into a group A and a group B (FIG. 1). Furthermore, the form which has two or more pairs of this self-revolving table.
  • a form disclosed as the second embodiment in which a plurality of flat base materials or base material holders belong alternately to the A group and the B group (FIG. 2).
  • a plasma CVD apparatus 31 according to the third embodiment shown in FIGS. 7 and 8 has two pairs of rotary tables in a vacuum chamber 32.
  • a plasma CVD apparatus 41 according to the fourth embodiment shown in FIG. 9 has two pairs of rotary tables in a vacuum chamber 42.
  • a plurality (four in this case) of rotation tables 4 that hold the substrate W, which is a film formation target, in a state of rotation are provided on the rotation table 5. That is, the plurality of rotation tables 4 are arranged on the rotation table 5, and the rotation table 5 provided with the plurality of rotation tables 4 in the plasma CVD apparatus 21 is used as the rotation axis of the rotation table 4 (rotation axis P).
  • a rotation mechanism 8 that revolves around a revolution axis Q that is parallel to the axis is provided.
  • a plurality of (here, two) turntables 5 are arranged symmetrically with respect to the center line of the plasma CVD apparatus 1 in the vacuum chamber 22.
  • the vacuum exhaust means 3 is provided on this center line.
  • the number of turntables 5 is not particularly limited as long as it is arranged so as to be symmetric with respect to the center line of plasma CVD apparatus 1.
  • the number of the rotation tables 4 provided per one rotation table 5 is not particularly limited, but it is desirable that the rotation tables 5 are arranged so as to have the same number even if they are different.
  • each of the plurality of rotation tables 4 is arranged to have an equal radius from the revolution axis of the rotary table 5 and at equal intervals around the revolution axis Q.
  • the base material W of the rotation table 4 belonging to the first group 18 acts as a working electrode and a CVD film is formed on the base W side
  • the base of the rotation table 4 belonging to the second group 19 is formed.
  • the material W becomes a counter electrode (opposite electrode).
  • the base material W of the rotation table 4 belonging to the second group 19 becomes the working electrode
  • the base material W of the rotation table 4 belonging to the first group 18 is the counter electrode. It becomes.
  • the coating itself represented by metal-containing DLC is somewhat conductive.
  • the film is difficult to be deposited on the housing of the vacuum chamber 52, flakes are hardly scattered, and film defects are hardly generated.
  • a film with poor insulating properties may be formed in the chamber portion where plasma is weak. . In such a case, the effect of preventing plasma destabilization also appears.
  • the arc evaporation source 6 is installed in the vacuum chamber 52.
  • a CVD film containing an additive element can be formed by operating the arc evaporation source 6 while forming a film by plasma CVD. More preferably, as shown in FIG. 10, there is a region partitioned by a partition member in the vacuum chamber 52. An arc evaporation source 6 is installed in this region. As shown in FIG. 10, the arc evaporation source 6 has a rectangular flat plate shape.
  • the partition member that divides the partition has an opening. Through this opening, the substrate can be irradiated with metal vapor evaporated by arc discharge. It is possible to form a film in which a metal is mixed in a CVD film formed by glow discharge plasma.
  • the inside of the partition region communicates with the film forming region around the base material W of the vacuum chamber 52 through the opening, but the atmosphere is blocked except for that, and can be controlled to different gas atmospheres.
  • a gas other than the CVD film forming gas non-film forming gas
  • the partition region has a higher pressure than the film forming region, and the non-film forming gas is supplied to the partition region of the film forming gas.
  • the supply gas is preferably an inert gas (Ar, Ne, He, Kr, Xe, etc.).
  • a reactive gas may be a gas that does not form an insulating compound when combined with the evaporation material of the arc evaporation source 6, such as nitrogen gas.
  • the pressure at the time of film formation differs depending on the film type and the mounted evaporation source.
  • the partial pressure of the film forming gas in the atmosphere when a sputter evaporation source is installed, it is desirable to keep the partial pressure of the film forming gas in the atmosphere within a range where no CVD film is deposited on the sputter evaporation source.
  • the pressure of the film forming gas needs to be less than 0.5 Pa.
  • ion bombarding is performed by applying a negative voltage of 500 to 1000 V to the substrate while irradiating metal ions supplied from the arc evaporation source 6. It is also possible. This process is sometimes called metal ion bombardment.
  • the plasma CVD apparatus 51 described above has six rotation tables 4 arranged on the rotation table 5.
  • various patterns are conceivable for the number and arrangement of the rotating tables 4 on the rotating table 5.
  • a plasma CVD apparatus 61 according to a sixth embodiment of the present invention will be described.
  • the plasma CVD apparatus 61 according to the sixth embodiment differs from the plasma CVD apparatus 51 according to the fifth embodiment described above in the holding state of the substrate W on the turntable 5.
  • the same parts as those described above are not repeated here.
  • the plasma CVD apparatus 61 according to the sixth embodiment of the present invention is a film supply source in addition to the configuration of the plasma CVD apparatus 31 according to the third embodiment or the plasma CVD apparatus 41 according to the fourth embodiment.
  • a sputter evaporation source 6 is provided. That is, in this plasma CVD apparatus 61, the sputter evaporation source 6 is installed so that vapor can be supplied to both of the two rotary tables 5. With this configuration, the plasma CVD coating is formed by glow discharge generated between the two groups of substrates mounted on the two turntables 5. Decomposition of the film forming gas occurs exclusively around the base material and hardly adheres to the vacuum chamber 62. As a result, the sputter evaporation source 6 installed for supplying the additive element can be stably operated for a long time.
  • the one group becomes a negative potential and operates as a working electrode which plays a main role in generating discharge plasma
  • the other group becomes a positive potential and operates as a counter electrode.
  • the first state to be performed and the second state in which the first state and the positive / negative of the potential are switched are alternately and temporally repeated to generate discharge plasma between the two groups of base materials. can do.
  • the AC power is at least one of a sine waveform, a positive and negative alternating rectangular waveform, a waveform in which successive pulses of the same polarity appear alternately, and a waveform in which a rectangular wave pulse is superimposed on a sine waveform. It can be configured to be represented by two waveforms.
  • the frequency of the AC power can be configured to be within a range of 1 kHz to 1 MHz.
  • the frequency of the AC power can be configured to be within a range of 10 kHz to 400 kHz.
  • it may be configured to further include a step of irradiating the base material with vapor of evaporating material.
  • a protective film can be formed on the surface of the base material while rotating the base material.
  • a protective film can be formed on the surface of the base material by stopping the base material at a position where the one group and the other group face each other.
  • a protective film of the present invention By using the method for forming a protective film of the present invention, it is difficult for a CVD film to be deposited on portions other than the base material. Stable operation is possible without cleaning for a long time. In addition, production efficiency is high while maintaining stable film formation conditions. And a protective film with high adhesiveness to a base material can be formed.
  • the present invention is not limited to the above-described embodiments, and the shape, structure, material, combination, and the like of each member can be appropriately changed without changing the essence of the invention. Further, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. However, matters that can be easily assumed by those skilled in the art are employed.

Abstract

This method for forming a protective film using a plasma cvd method on the surfaces of a plurality of conductive substrates includes the following steps to be performed using a plasma CVD device (1) for implementing this method: a step for dividing the plurality of substrates into two groups, and mounting the substrates inside a vacuum chamber (2) in a state in which the first group and the other group and the chamber are electrically insulated; a step for creating a vacuum state in the interior of the vacuum chamber (2); and a step for forming a protective film on the surfaces of the substrates by supplying the interior of the vacuum chamber (2) with a processing gas containing a deposition gas, and generating a discharge plasma between the substrates by supplying AC power between the two groups of substrates.

Description

プラズマCVD法による保護膜の形成方法Method for forming protective film by plasma CVD method
 本発明は、基材にCVD(Chemical Vapaor Deposition)皮膜を形成するプラズマCVD法による保護膜の形成方法に関する。特に、本発明は、安定した成膜条件を維持しつつ生産効率が高く、基材への密着性が高い保護膜の形成方法に関する。 The present invention relates to a method for forming a protective film by a plasma CVD method in which a CVD (Chemical Vapor Deposition) film is formed on a substrate. In particular, the present invention relates to a method for forming a protective film having high production efficiency and high adhesion to a base material while maintaining stable film formation conditions.
 ピストンリングのような自動車のエンジン部品などには、良好な耐摩耗性、および耐熱性、耐焼付き性等の性能が求められる。そのた め、これら機械部品には、DLC(Diamond-Like-Carbon)のような耐摩耗性コーティングがプラズマCVD法を用いて施される。 Automotive engine parts such as piston rings are required to have good wear resistance, heat resistance, and seizure resistance. Therefore, wear resistance coating such as DLC (Diamond-Like-Carbon) is applied to these mechanical parts using a plasma CVD method.
 ところで、上述した基材にプラズマCVD法を施す際は、生産性を考えて真空チャンバ内に多数の基材を収容して一度に処理を行うのが好ましい。このように多数の基材を一度に処理する場合には、それぞれの基材に形成される皮膜の厚さや膜質を基材同士で均一にしなくてはならない。そのため、従来のプラズマCVD装置では、基材をテーブル上に並べて当該基材を自公転させた状態で成膜処理する方法が採用されている。 By the way, when performing the plasma CVD method on the above-described base material, it is preferable to perform processing at once by accommodating a large number of base materials in a vacuum chamber in consideration of productivity. Thus, when processing many base materials at once, the thickness and film quality of the film | membrane formed on each base material must be made uniform between base materials. Therefore, a conventional plasma CVD apparatus employs a method in which a film is formed in a state where the base materials are arranged on a table and the base materials are rotated and revolved.
 例えば、特許文献1は、プラズマ発生手段と、マルチカスプ磁界発生手段と、保持回転手段とを有する成膜装置を開示している。プラズマ発生手段は、成膜対象となる基材が配置された真空チャンバ内にプラズマを発生する。マルチカスプ磁界発生手段は、プラズマ発生手段によって発生させたプラズマを基材の周辺の閉込め空間に閉じ込めるマルチカスプ磁界を形成する。保持回転手段は、基材を保持すると共に閉込め空間の中心近傍を中心軸として回転する。この特許文献1の成膜装置では、すべての基材はこれらを載置するテーブルごと電源の一方の極に接続され、バイアス電圧を印加されており、電源の他方の極が接続された接地電位にある真空チャンバを対極として、グロー放電が発生され、プラズマが生成される。そして、このプラズマにより原料ガスが分解されて基材表面上に皮膜が形成される。 For example, Patent Document 1 discloses a film forming apparatus having plasma generating means, multicusp magnetic field generating means, and holding and rotating means. The plasma generating means generates plasma in a vacuum chamber in which a base material to be deposited is disposed. The multicusp magnetic field generating means forms a multicusp magnetic field for confining the plasma generated by the plasma generating means in a confined space around the substrate. The holding and rotating means holds the substrate and rotates around the center of the confinement space as a central axis. In the film forming apparatus of Patent Document 1, all base materials are connected to one pole of a power source together with a table on which they are placed, a bias voltage is applied, and a ground potential to which the other pole of the power source is connected. Glow discharge is generated with the vacuum chamber in the counter electrode as a counter electrode, and plasma is generated. The source gas is decomposed by this plasma, and a film is formed on the surface of the substrate.
 一方、特許文献2は、プラズマCVD法によって被処理物(基材)の表面に被膜を形成するプラズマCVD装置において、真空チャンバと、プラズマ発生手段と、反射手段と、原料ガス導入手段とを具備するプラズマCVD装置を開示している。真空チャンバの内部には、上記被処理物が配置される。プラズマ発生手段は、上記真空チャンバ内にプラズマを発生させる。反射手段は、上記真空槽内に上記プラズマ発生手段と対向するように設けられ、該プラズマ発生手段に向けて上記プラズマを反射させる。原料ガス導入手段は、上記真空チャンバ内に上記被膜の材料となる原料ガスを導入する。上記反射手段の上記プラズマを反射させる部分は、金属製ウールによって形成されている。この特許文献2記載のプラズマCVD装置でも、被処理物はDC(Direct Current)電源に接続されていてバイアス電圧を付加されている。プラズマガンを用いて真空チャンバの中央部に発生したプラズマにより、原料ガスが分解され、プラズマ周囲を取り囲む被処理物にバイアス電圧を印加しながら皮膜を形成する。 On the other hand, Patent Document 2 is a plasma CVD apparatus that forms a film on the surface of an object (base material) by plasma CVD, and includes a vacuum chamber, plasma generation means, reflection means, and source gas introduction means. A plasma CVD apparatus is disclosed. The object to be processed is arranged inside the vacuum chamber. The plasma generating means generates plasma in the vacuum chamber. The reflecting means is provided in the vacuum chamber so as to face the plasma generating means, and reflects the plasma toward the plasma generating means. The raw material gas introducing means introduces a raw material gas that becomes a material of the coating into the vacuum chamber. The portion of the reflecting means that reflects the plasma is formed of metal wool. In the plasma CVD apparatus described in Patent Document 2, the object to be processed is connected to a DC (Direct Current) power source and is applied with a bias voltage. The source gas is decomposed by the plasma generated in the center of the vacuum chamber using a plasma gun, and a film is formed while applying a bias voltage to the object to be processed surrounding the plasma.
 しかしながら、特許文献1および/または特許文献2に開示された装置により、DLCなどの硬質保護膜をコーティングする場合、成膜可能な膜厚に限界があったり、または、ある程度の厚さの保護膜を被覆すると保護膜の剥離が発生したりするおそれがある。あるいは、保護膜の密着性を確保するために中間層の形成が必要である。 However, when a hard protective film such as DLC is coated by the apparatus disclosed in Patent Document 1 and / or Patent Document 2, there is a limit to the film thickness that can be formed, or a protective film having a certain thickness. If the film is coated, the protective film may be peeled off. Alternatively, it is necessary to form an intermediate layer in order to ensure adhesion of the protective film.
特開2007-308758号公報JP 2007-308758 A 特開2006-169563号公報JP 2006-169563 A
 本発明の目的は、基材にCVD皮膜を形成するプラズマCVD法による保護膜の形成方法であって、基材以外の部分にCVD皮膜が堆積しにくく、長期にわたり清掃を行なわずに安定操業が可能で、かつ、安定した成膜条件を維持しつつ生産効率が高く、基材への密着性が高い保護膜を形成することができる方法を提供することである。 An object of the present invention is a method for forming a protective film by a plasma CVD method for forming a CVD film on a base material, which is difficult to deposit on a portion other than the base material, and can be stably operated without cleaning over a long period of time. An object of the present invention is to provide a method capable of forming a protective film that is capable of forming a protective film having high production efficiency and high adhesion to a substrate while maintaining stable film formation conditions.
 本発明の保護膜の形成方法は、複数の導電性の基材の表面にプラズマCVD法により保護膜を形成する方法であって、前記複数の基材を2つの群に分け、一方の群と他方の群およびチャンバとは電気的に絶縁された状態で前記基材を前記チャンバ内に搭載するステップと、前記チャンバ内を真空状態にするステップと、成膜ガスを含むプロセスガスを前記チャンバ内に供給すると共に、前記2つの群の基材間に交流電力を供給することにより前記基材間に放電プラズマを生成させて前記基材の表面に保護膜を形成するステップと、を含むことを特徴とする。 The method for forming a protective film of the present invention is a method of forming a protective film on the surface of a plurality of conductive base materials by plasma CVD, wherein the plurality of base materials are divided into two groups, Mounting the substrate in the chamber in a state of being electrically insulated from the other group and the chamber; bringing the inside of the chamber into a vacuum; and supplying a process gas including a film forming gas to the chamber And forming a protective film on the surface of the substrate by generating discharge plasma between the substrates by supplying AC power between the two groups of substrates. Features.
本発明の第1の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置の全体構成を示す斜視図である。1 is a perspective view showing an overall configuration of a plasma CVD apparatus that realizes a protective film forming method according to a first embodiment of the present invention. 図1に示すプラズマCVD装置の上面図である。It is a top view of the plasma CVD apparatus shown in FIG. 図1に示されるプラズマCVD装置におけるプラズマ発生電源の出力波形として正弦波状の波形を示す図である。It is a figure which shows a sinusoidal waveform as an output waveform of the plasma generation power supply in the plasma CVD apparatus shown by FIG. 図1に示されるプラズマCVD装置におけるプラズマ発生電源の出力波形としてパルス状の波形を示す図である。It is a figure which shows a pulse-shaped waveform as an output waveform of the plasma generation power supply in the plasma CVD apparatus shown by FIG. 図1に示されるプラズマCVD装置におけるプラズマ発生電源の出力波形として1つのパルスをさらに細かいパルスに分割した波形を示す図である。It is a figure which shows the waveform which divided | segmented one pulse into the finer pulse as an output waveform of the plasma generation power supply in the plasma CVD apparatus shown by FIG. 自転テーブルへの基材の設置例としてピストンリングの設置例を示す図である。It is a figure which shows the example of installation of a piston ring as an example of installation of the base material to a rotation table. 自転テーブルへの基材の設置例としてピストンピンなどの小型部材の設置例を示す図である。It is a figure which shows the example of installation of small members, such as a piston pin, as an example of installation of the base material to a rotation table. 図1に示されるプラズマCVD装置における交流電圧による成膜中の電位の変化を表す図である。It is a figure showing the change of the electric potential during the film-forming by the alternating voltage in the plasma CVD apparatus shown by FIG. 図1に示されるプラズマCVD装置における負の直流電位が間欠的に加わることによる成膜中の電位の変化を表す図である。It is a figure showing the change of the electric potential during film-forming by the negative DC electric potential in the plasma CVD apparatus shown by FIG. 1 being intermittently added. 本発明の第2の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the plasma CVD apparatus which implement | achieves the formation method of the protective film which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the plasma CVD apparatus which implement | achieves the formation method of the protective film which concerns on the 3rd Embodiment of this invention. 図7に示されるプラズマCVD装置の上面図である。It is a top view of the plasma CVD apparatus shown by FIG. 本発明の第4の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the plasma CVD apparatus which implement | achieves the formation method of the protective film which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置の作動状態を示す図である。It is a figure which shows the operating state of the plasma CVD apparatus which implement | achieves the formation method of the protective film which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置の作動状態を示す図である。It is a figure which shows the operating state of the plasma CVD apparatus which implement | achieves the formation method of the protective film which concerns on the 6th Embodiment of this invention.
 以下、本発明に係る保護膜の形成方法の実施形態を、図面に基づき詳しく説明する。なお、この保護膜が形成される対象は、基材(符号W(ワークの意味)を付す)であるとする。 Hereinafter, an embodiment of a method for forming a protective film according to the present invention will be described in detail with reference to the drawings. In addition, suppose that the object on which this protective film is formed is a base material (reference numeral W (meaning work)).
<第1の実施形態>
 本発明の第1の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置1の全体構成の斜視図が図1に示され、その上面図が図2に示される。
<First Embodiment>
FIG. 1 shows a perspective view of the overall configuration of a plasma CVD apparatus 1 that realizes the method for forming a protective film according to the first embodiment of the present invention, and FIG. 2 shows a top view thereof.
 真空チャンバ2は、その内部が外部に対して気密可能とされた筺体である。真空チャンバ2の側方にはこの真空チャンバ2内にある気体を外部に排気して真空チャンバ2内を低圧状態(真空状態)にする真空ポンプ3(真空排気手段)が設けられている。この真空ポンプ3により、真空チャンバ2内は真空状態まで減圧可能である。 The vacuum chamber 2 is a housing whose inside can be hermetically sealed from the outside. A vacuum pump 3 (vacuum evacuation means) is provided on the side of the vacuum chamber 2 to evacuate the gas in the vacuum chamber 2 to bring the inside of the vacuum chamber 2 into a low pressure state (vacuum state). By this vacuum pump 3, the inside of the vacuum chamber 2 can be depressurized to a vacuum state.
 一方、図2に示すように、真空チャンバ2内には、真空チャンバ2内に原料ガスを含むプロセスガスを供給するガス供給部9が設けられている。このガス供給部9は、CVD皮膜の形成に必要な原料ガスや、成膜をアシストするアシストガスを、ボンベ16から所定量だけ真空チャンバ2内に供給する構成を有する。 On the other hand, as shown in FIG. 2, in the vacuum chamber 2, a gas supply unit 9 for supplying a process gas including a source gas into the vacuum chamber 2 is provided. The gas supply unit 9 is configured to supply a predetermined amount of raw material gas necessary for forming the CVD film and assist gas for assisting film formation from the cylinder 16 into the vacuum chamber 2.
 プロセスガスとしては、具体的には、DLC(ダイヤモンドライクカーボン、非晶質カーボン膜)などのカーボン系のCVD皮膜を成膜する場合には、炭化水素(アセチレン、エチレン、メタン、エタン、ベンゼン、トルエンなど)を含む原料ガス、あるいは原料ガスに不活性ガス(アルゴン、ヘリウムなど)をアシストガスとして加えたものが用いられる。また、シリコン化合物のCVD皮膜(SiOx膜、SiOC膜、SiNx膜、SiCN膜)を成膜する場合には、シリコン系有機化合物(モノシラン、TMS(トリメチルシラン)、TEOS(テトラエトキシシラン)、HMDSO(ヘキサメチルジシロキサン)など)やシランなどシリコン含む原料ガスに、酸素、窒素、アンモニアなどの反応ガスを加え、さらに必要によってアルゴンなどの不活性ガスをアシストガスとして加えたものを用いることができる。なお、CVD皮膜としては、上述したもの以外にも、TiOx膜、AlOx膜、AlN膜などを成膜することができる。 Specifically, as a process gas, when forming a carbon-based CVD film such as DLC (diamond-like carbon, amorphous carbon film), hydrocarbons (acetylene, ethylene, methane, ethane, benzene, Source gas containing toluene or the like, or a gas obtained by adding an inert gas (such as argon or helium) as an assist gas to the source gas. When a silicon compound CVD film (SiOx film, SiOC film, SiNx film, SiCN film) is formed, a silicon-based organic compound (monosilane, TMS (trimethylsilane), TEOS (tetraethoxysilane), HMDSO ( Hexamethyldisiloxane, etc.) or a raw material gas containing silicon such as silane can be used by adding a reactive gas such as oxygen, nitrogen, ammonia or the like and further adding an inert gas such as argon as an assist gas if necessary. In addition to the above-described CVD film, a TiOx film, an AlOx film, an AlN film, or the like can be formed as the CVD film.
 また、主たる原料ガスに少量の添加原料ガスを混合させることも可能である。例えば、DLC皮膜の形成の際に、炭化水素を主たる原料ガスとして、シリコン系有機化合物ガスを少量添加することにより、DLC中にSiを含む皮膜を形成することができる。あるいは、DLC皮膜の形成の際に、炭化水素を主たる原料ガスとして、金属を含有する原料ガス(例として、TTIP(チタニウムイソプロポキサイド)やTDMAT(テトラジメチルアミノチタン))を少量添加することにより、DLC中に金属(例ではチタン)を含む皮膜を形成することができる。 It is also possible to mix a small amount of additive source gas with the main source gas. For example, when a DLC film is formed, a film containing Si in DLC can be formed by adding a small amount of a silicon-based organic compound gas using hydrocarbon as a main source gas. Alternatively, when a DLC film is formed, by adding a small amount of a raw material gas containing metal (for example, TTIP (titanium isopropoxide) or TDMAT (tetradimethylaminotitanium)) as a main raw material gas for hydrocarbons. A film containing a metal (titanium in the example) can be formed in DLC.
 なお、これらの原料ガス、反応ガス及びアシストガスは、使用するガスの種類を適宜組みあわせて用いることができる。 In addition, these source gas, reaction gas, and assist gas can be used combining suitably the kind of gas to be used.
 また、このプラズマCVD装置1に備えられたプラズマ発生電源10は、真空チャンバ2内に供給したプロセスガスにグロー放電を発生させて、プラズマを発生させるために用いられ、交流の電力を供給する。このプラズマ発生電源10が供給する交流の電力としては、正弦波の波形に従って電流や電圧が正負に変化する交流だけでなく、パルス状の波形に従って正負に入れ替わる矩形波の交流を用いても良い。また、この交流には、連続した同一極性のパルス群が交互に現れるものや、正弦波の交流に矩形波を重畳したものを用いることもできる。なお、実際のプラズマ発生中の電圧波形は、プラズマ生成の影響によって歪む場合がある。また、プラズマが発生すると交流電圧のゼロレベルがシフトし、各電極の電位を接地電位に対して測定すると、マイナス側電極に印加電圧の80-95%が、プラス側電極に印加電圧の5-20%が加わるのが多く観察される。プラズマ発生電源は上述の通り、1台の交流電源で構成されるのが良いが、これと同等の電位変動を2台の電源により実現することも可能であり、本発明の範囲に含まれる。 Further, the plasma generation power source 10 provided in the plasma CVD apparatus 1 is used for generating a glow discharge in the process gas supplied in the vacuum chamber 2 to generate plasma, and supplying AC power. As the AC power supplied from the plasma generating power source 10, not only an AC whose current and voltage change positively and negatively according to a sine wave waveform, but also a rectangular wave AC that switches between positive and negative according to a pulsed waveform may be used. In addition, for this alternating current, a continuous pulse group having the same polarity or an alternating sine wave alternating with a rectangular wave can be used. The voltage waveform during actual plasma generation may be distorted due to the influence of plasma generation. In addition, when plasma is generated, the zero level of the AC voltage shifts, and when the potential of each electrode is measured with respect to the ground potential, 80-95% of the applied voltage is applied to the negative electrode and 5% of the applied voltage is applied to the positive electrode. It is often observed that 20% is added. As described above, the plasma generating power source is preferably composed of one AC power source. However, it is also possible to realize a potential fluctuation equivalent to this by two power sources, and these are included in the scope of the present invention.
 プラズマ発生電源10から供給される交流は、その周波数が1kHz~1MHzの範囲内であるのが、好ましい。周波数が1kHz未満では皮膜のチャージアップが起り易く、1MHzを超える周波数の電力を自転および公転する基材Wに伝達する機構が難しいからである。さらに電源の入手性等を考慮すると、10kHz~400kHzの範囲とするのがなお好ましい。また、プラズマ発生電源10から供給される交流の電圧は、波高値でグロー放電の維持に必要な300~3000Vの範囲内であるが好ましい。さらに、プラズマ発生電源10から供給される交流の電力は、基材Wの表面積によって変動するが、単位面積あたりの電力で0.05~5W/cm程度の電力密度であるのが好ましい。 The alternating current supplied from the plasma generating power supply 10 preferably has a frequency in the range of 1 kHz to 1 MHz. This is because if the frequency is less than 1 kHz, the coating is likely to be charged up, and a mechanism for transmitting electric power having a frequency exceeding 1 MHz to the rotating and revolving substrate W is difficult. Furthermore, considering the availability of the power source, the range of 10 kHz to 400 kHz is more preferable. The AC voltage supplied from the plasma generating power supply 10 is preferably in the range of 300 to 3000 V required for maintaining glow discharge at a peak value. Further, the AC power supplied from the plasma generating power supply 10 varies depending on the surface area of the substrate W, but it is preferable that the power density per unit area is about 0.05 to 5 W / cm 2 .
 ここで、プラズマ発生電源10から供給される交流の電源波形としては、電源の両極間で測定した波形で、図3Aに示される正弦波状のものが使用できる。実際の運転時の波形はプラズマ生成の影響で歪んだ波形となる。プラズマ中の電子とイオンの移動度の差異が影響して、各極のチャンバに対する電位は、マイナス側が大きく、プラス側が小さくなる。同様に図3Bに示されるパルス状の電圧波形もプラズマ発生電源10から供給される交流の電源波形として使用できる。これも実際の運転時には歪んだ波形となる場合がある。 Here, as the AC power supply waveform supplied from the plasma generating power supply 10, a waveform measured between both poles of the power supply, and a sinusoidal waveform shown in FIG. 3A can be used. The waveform during actual operation is a waveform distorted by the influence of plasma generation. Due to the difference in mobility between electrons and ions in the plasma, the potential of each electrode with respect to the chamber is larger on the minus side and smaller on the plus side. Similarly, the pulsed voltage waveform shown in FIG. 3B can also be used as an AC power supply waveform supplied from the plasma generating power supply 10. This may also have a distorted waveform during actual operation.
 このようなパルス状の電源は、電圧の高さに加えてパルス幅やそのデューティーの設定も可能であり、プラズマの制御性と言う観点で優れている。さらに、図3Cに示されるように、ひとつのパルスをさらに細かいパルスに分割して供給する方式は、異常放電の抑制等で有効であるので、プラズマ発生電源10から供給される交流の電源波形として好ましい。 Such a pulsed power supply can set the pulse width and its duty in addition to the high voltage, and is excellent in terms of plasma controllability. Further, as shown in FIG. 3C, the method of supplying one pulse divided into finer pulses is effective in suppressing abnormal discharge or the like, and therefore, as an AC power supply waveform supplied from the plasma generating power supply 10. preferable.
 このような周波数、電圧、電力(電力密度)の交流電流を真空チャンバ2内に配備された一対の電極間に作用させれば、グロー放電が電極間に発生し、発生したグロー放電で真空チャンバ2内に供給されたプロセスガスが分解されてプラズマが発生する。そして、プラズマにより分解されたこれらのガス成分が電極表面に堆積することで、CVD皮膜の成膜が行われる。つまり、一対の電極のいずれかに基材を用いれば、基材の表面にCVD皮膜を成膜することが可能となる。 When an alternating current of such frequency, voltage, and power (power density) is applied between a pair of electrodes arranged in the vacuum chamber 2, a glow discharge is generated between the electrodes, and the generated glow discharge causes a vacuum chamber. The process gas supplied into 2 is decomposed to generate plasma. Then, these gas components decomposed by the plasma are deposited on the electrode surface, whereby a CVD film is formed. That is, if a base material is used for either of the pair of electrodes, a CVD film can be formed on the surface of the base material.
 なお、真空チャンバ2内には、基材の温度を制御して膜質を調整する加熱ヒータが適宜配備されていても良い。 In the vacuum chamber 2, a heater for adjusting the film quality by controlling the temperature of the substrate may be provided as appropriate.
 このプラズマCVD装置1においては、成膜対象である基材W(例えば、図4A、図4B参照)を自転する状態で保持する複数(ここでは6個)の自転テーブル4が1個の回転テーブル5上に設けられている。すなわち、これら複数の自転テーブル4は回転テーブル5に配備されており、このプラズマCVD装置1には複数の自転テーブル4が設けられた回転テーブル5を自転テーブル4の回転軸(自転軸P)と軸心が平行な公転軸Q回りに公転させる回転機構8が設けられている。複数の自転テーブル4の各々は、回転テーブル5の公転軸Qから等しい半径で且つ公転軸Q回りに等間隔となるように配備されている。 In this plasma CVD apparatus 1, a plurality of (six in this case) rotation tables 4 that hold a substrate W (for example, see FIGS. 4A and 4B) that is a film formation target in a rotating state are provided as one rotation table. 5 is provided. That is, the plurality of rotation tables 4 are provided on a rotation table 5, and the rotation table 5 provided with the plurality of rotation tables 4 in the plasma CVD apparatus 1 is used as a rotation axis (rotation axis P) of the rotation table 4. A rotation mechanism 8 that revolves around a revolution axis Q having parallel axes is provided. Each of the plurality of rotation tables 4 is arranged to have an equal radius from the revolution axis Q of the rotary table 5 and at equal intervals around the revolution axis Q.
 図1における「A」および「B」の表記は、複数の基材が分けられる2つの群であって、一方の群とチャンバ電位および他方の群との間で電気的に絶縁がとられた上で、プラズマ発生用のプラズマ発生電源10の両極に接続されている。これについて、さらに詳しく説明する。 The notations “A” and “B” in FIG. 1 are two groups in which a plurality of base materials are separated, and electrical insulation is provided between one group and the chamber potential and the other group. Above, it is connected to both electrodes of the plasma generating power source 10 for generating plasma. This will be described in more detail.
 図1および図2に示されるように、このプラズマCVD装置1においては、複数の自転テーブル4の半数が、プラズマ発生電源10の一方の極に接続された第1の群18とされている。併せて、複数の自転テーブル4の残り半数が、プラズマ発生電源10の他方の極に接続された第2の群19とされている。互いに異なる極性とされた第1の群18の自転テーブル4に保持された基材Wと、第2の群19の自転テーブル4に保持された基材Wとの間にプラズマが発生できる。 As shown in FIGS. 1 and 2, in this plasma CVD apparatus 1, half of the plurality of rotation tables 4 is a first group 18 connected to one pole of the plasma generation power source 10. In addition, the remaining half of the plurality of rotation tables 4 is a second group 19 connected to the other pole of the plasma generation power source 10. Plasma can be generated between the substrate W held on the rotation table 4 of the first group 18 and the substrate W held on the rotation table 4 of the second group 19 having different polarities.
 詳しくは、回転テーブル5に自転テーブル4が全部で6つ配備されている状態においては、図2の「A」で示される第1の群18の自転テーブル4は全部で3つ存在し、また図2の「B」で示される第2の群19の自転テーブル4も全部で3つ存在している。第1の群18に属する自転テーブル4の数と第2の群19に属する自転テーブル4の数とは同数となっている。 Specifically, in a state where six rotation tables 4 are arranged in total on the rotary table 5, there are three rotation tables 4 in the first group 18 indicated by “A” in FIG. There are also a total of three rotation tables 4 of the second group 19 indicated by “B” in FIG. The number of rotation tables 4 belonging to the first group 18 is the same as the number of rotation tables 4 belonging to the second group 19.
 これらの自転テーブル4については、第1の群18に属する自転テーブル4の両隣に第2の群19の自転テーブル4が設けられている。これらの第2の群19の自転テーブル4のさらに隣に別の第1の群18に属する自転テーブル4が設けられている。つまり、第1の群18に属する自転テーブル4と第2の群19に属する自転テーブル4とは、回転テーブル5の公転軸Q回りに1つずつ交番に(交互に)並ぶように配備されている。 The rotation table 4 of the second group 19 is provided on both sides of the rotation table 4 belonging to the first group 18 with respect to these rotation tables 4. A rotation table 4 belonging to another first group 18 is provided next to the rotation table 4 of the second group 19. That is, the rotation table 4 belonging to the first group 18 and the rotation table 4 belonging to the second group 19 are arranged so as to be alternately (alternately) arranged one by one around the revolution axis Q of the rotation table 5. Yes.
 そして、第1の群18に属する3つの自転テーブル4はいずれも、プラズマ発生電源10の一方の電極10aに接続されている。また第2の群19に属する3つの自転テーブル4はいずれもプラズマ発生電源10の他方の電極10bに接続されている。つまり、電圧印加中は、第1の群18に属する自転テーブル4と、第2の群19に属する自転テーブル4とは、常に逆の極性となっている。 The three rotation tables 4 belonging to the first group 18 are all connected to one electrode 10a of the plasma generation power source 10. Further, all of the three rotation tables 4 belonging to the second group 19 are connected to the other electrode 10 b of the plasma generating power source 10. That is, during voltage application, the rotation table 4 belonging to the first group 18 and the rotation table 4 belonging to the second group 19 are always in opposite polarities.
 なお、各自転テーブル4を上記した極性とするためには、公転軸Qならびに自転軸Pにそれぞれブラシ機構(図示略)が設けられ、このブラシ機構を通じてそれぞれの極性の電圧を印加するとよい。公転軸Q及び自転軸Pはベアリング機構を介して回転時自在に保持されているが、このベアリング機構を通じて電圧を印加するようにしてもよい。 In addition, in order to make each rotation table 4 have the above-described polarity, a brush mechanism (not shown) is provided on each of the revolution axis Q and the rotation axis P, and a voltage of each polarity may be applied through this brush mechanism. The revolution shaft Q and the rotation shaft P are held freely during rotation through a bearing mechanism, but a voltage may be applied through this bearing mechanism.
 このプラズマCVD装置1で成膜される基材Wは、均一な成膜を可能とするため上下に長尺な円柱状空間内に基材セットWSとして配備するとよい。 The base material W formed by the plasma CVD apparatus 1 is preferably provided as a base material set WS in a vertically long cylindrical space in order to enable uniform film formation.
 例えば、基材Wが図4Aに示されるようなピストンリングである場合は、そのままでは不均一に成膜される可能性がある。このため、図4Aに示されるように基材Wを積み重ねた基材セットWSを形成すればよい。この場合において、基材Wを積み重ねて基材セットWSを形成したときに周方向の一部が欠落して完全な円筒にならない場合は、必要に応じてカバー11で開口部分に蓋をした基材セットWSを形成することにより、均一な成膜が可能となる。 For example, when the substrate W is a piston ring as shown in FIG. 4A, the film may be formed non-uniformly as it is. For this reason, what is necessary is just to form the base material set WS which accumulated the base material W, as FIG. 4A shows. In this case, when the base material set WS is formed by stacking the base materials W, when a part of the circumferential direction is missing and a complete cylinder is not obtained, the base with the cover 11 covered with the cover 11 as necessary. By forming the material set WS, uniform film formation is possible.
 また、成膜しようとする基材Wが図4Bに示されるような小型部材(例えば小さなピストンピン)の場合は、円板12が上下方向に多段に積み重ねられた設置ジグ13を用意し、それぞれの円板12の上に基材Wを配備して基材セットWSとして、この基材セットWSが円柱状空間内に収まるように配備するとよい。 When the base material W to be formed is a small member (for example, a small piston pin) as shown in FIG. 4B, an installation jig 13 in which the disks 12 are stacked in multiple stages in the vertical direction is prepared. The base material W may be provided on the circular plate 12 as a base material set WS, and the base material set WS may be provided in a cylindrical space.
 さらに、基材Wが前記以外の形状を有する物である場合であっても、固定用のジグを適宜製作し、ジグと基材が円柱状空間内に収まるようにすればよい。 Furthermore, even if the base material W is a thing having a shape other than the above, a fixing jig may be appropriately manufactured so that the jig and the base material can be accommodated in the cylindrical space.
 次に、以上述べた構成を有するプラズマCVD装置1を用いたプラズマCVD法による保護膜の形成方法について説明する。 Next, a method for forming a protective film by plasma CVD using the plasma CVD apparatus 1 having the above-described configuration will be described.
(基材セットから真空排気まで)
 まず、全ての自転軸にワークセットを搭載し、基材Wをセットする。このようにして基材Wがセットされたら、真空ポンプ3(真空排気手段3)を用いて真空チャンバ2内を高真空状態まで排気する。
(From substrate set to vacuum exhaust)
First, work sets are mounted on all the rotating shafts, and the substrate W is set. When the base material W is set in this way, the vacuum chamber 2 is evacuated to a high vacuum state using the vacuum pump 3 (evacuation means 3).
(イオンボンバード処理)
 次に、イオンボンバード処理を行う。すなわち、必要に応じて、Ar等の不活性ガスやH2 やO2 などのガスをガス供給部9を用いて真空チャンバ2内に供給し、プラズマ発生電源10から電力を供給して基材W間に表面清化のためのグロー放電を発生させる。
(Ion bombard treatment)
Next, ion bombardment is performed. That is, if necessary, an inert gas such as Ar or a gas such as H 2 or O 2 is supplied into the vacuum chamber 2 using the gas supply unit 9, and electric power is supplied from the plasma generation power source 10 between the substrates W. To generate glow discharge for surface cleansing.
 また、上述した加熱ヒータを用いて、回転する基材Wに対して予備加熱を行っても良い。また、真空チャンバ2内に別の皮膜供給源(スパッタ源、AIP(Arc Ion Plating)蒸発源など)を設けた場合には、これらの皮膜供給源を利用して、プラズマCVDによる皮膜と基材Wの間に挿入する中間層を形成してもよい。なお、この中間層の形成の詳細については第5の実施形態および第6の実施形態において詳述する。 Moreover, you may pre-heat with respect to the rotating base material W using the heater mentioned above. In addition, when another film supply source (sputter source, AIP (Arc Ion Placing) evaporation source, etc.) is provided in the vacuum chamber 2, using these film supply sources, a film and a substrate by plasma CVD are used. An intermediate layer inserted between W may be formed. The details of the formation of the intermediate layer will be described in detail in the fifth and sixth embodiments.
(成膜)
 この後、ガス供給部9を用いてプロセスガスを真空チャンバ2内に供給する。
(Film formation)
Thereafter, the process gas is supplied into the vacuum chamber 2 using the gas supply unit 9.
 成膜時の圧力(すなわち、プロセスガスの圧力)は成膜しようとするCVD皮膜(プロセスガスや反応性ガス)の種類によって好適な値は異なるが、0.1Pa~1000Pa程度の圧力が好ましい。上述したように成膜時の圧力は0.1Pa~1000Pa程度の圧力にすることで、安定したグロー放電を発生させることが可能となり、良好な成膜速度で成膜を行うことが可能となる。なお、気体中での反応に伴うパウダー生成を抑制する観点では、成膜時の圧力はさらに100Pa以下の圧力が好ましい。 The pressure at the time of film formation (that is, the pressure of the process gas) varies depending on the type of CVD film (process gas or reactive gas) to be formed, but a pressure of about 0.1 Pa to 1000 Pa is preferable. As described above, when the pressure during film formation is about 0.1 Pa to 1000 Pa, stable glow discharge can be generated, and film formation can be performed at a good film formation rate. . In addition, from the viewpoint of suppressing the generation of powder accompanying the reaction in the gas, the pressure during film formation is further preferably 100 Pa or less.
 プラズマCVD法による保護膜を形成するにあたっては、テーブルを回転させると共に、プラズマ発生電源10から交流の電力を供給して、第1の群18に属する自転テーブル4の基材Wと第2の群19に属する自転テーブル4の基材Wとの間にグロー放電を発生させ、基材W間に成膜に必要なプラズマを発生させる。また、プラズマ発生電源10から供給される交流の電圧は、グロー放電の維持に必要な300V~3000Vの間(両極間の電圧の波高値)となる。さらに、プラズマ発生電源10から供給される交流の出力電力は、単位面積あたりの電力に換算すると0.05~5W/cm程度が好ましい。 In forming the protective film by the plasma CVD method, the table is rotated and AC power is supplied from the plasma generation power source 10, so that the substrate W and the second group of the rotation table 4 belonging to the first group 18 are supplied. Glow discharge is generated between the rotating table 4 and the base material W belonging to 19, and plasma necessary for film formation is generated between the base materials W. The AC voltage supplied from the plasma generating power supply 10 is between 300 V and 3000 V (the peak value of the voltage between both electrodes) necessary for maintaining glow discharge. Further, the AC output power supplied from the plasma generation power source 10 is preferably about 0.05 to 5 W / cm 2 in terms of power per unit area.
 上述したように、互いが逆極性となる第1の群18の自転テーブル4と第2の群19の自転テーブル4とを周方向に交番(交互)に配置すれば、周方向に隣り合う自転テーブル4に保持される基材W間に必ず電位差が生じて、基材W間にグロー放電が発生する。そして、プラズマ発生電源10の正極と負極が入れ替われば、周方向に隣り合う自転テーブル4の極性も入れ替わり、引き続き基材W間にグロー放電が発生する。それ故、多数の基材Wに対して一度に且つ均一に成膜を行うことが可能となる。 As described above, if the rotation tables 4 of the first group 18 and the rotation tables 4 of the second group 19 having opposite polarities are arranged alternately (alternately) in the circumferential direction, rotations adjacent to each other in the circumferential direction are performed. A potential difference always occurs between the substrates W held on the table 4, and glow discharge occurs between the substrates W. When the positive electrode and the negative electrode of the plasma generating power supply 10 are switched, the polarities of the rotating tables 4 adjacent in the circumferential direction are also switched, and glow discharge is continuously generated between the base materials W. Therefore, it is possible to perform film formation on a large number of substrates W at once and uniformly.
 すなわち、第1の群18に属する自転テーブル4の基材Wが作用極として働いてこの基材W側にCVD皮膜が成膜されているときには、第2の群19に属する自転テーブル4の基材Wが対極(反対極)となる。そして、プラズマ発生電源10の正極と負極が入れ替われば、第2の群19に属する自転テーブル4の基材Wが作用極となり、第1の群18に属する自転テーブル4の基材Wが対極となる。 That is, when the base material W of the rotation table 4 belonging to the first group 18 acts as a working electrode and a CVD film is formed on the base W side, the base of the rotation table 4 belonging to the second group 19 is formed. The material W becomes a counter electrode (opposite electrode). When the positive electrode and the negative electrode of the plasma generating power source 10 are switched, the base material W of the rotation table 4 belonging to the second group 19 becomes the working electrode, and the base material W of the rotation table 4 belonging to the first group 18 is the counter electrode. It becomes.
 つまり、上述の構成であれば、基材Wは対極となっても、回転テーブル5や真空チャンバ2の筐体が対極になることはない。それ故、これらの部材(すなわち、回転テーブル5や真空チャンバ2の筐体)はプラズマ生成のためのグロー放電発生用電極としては作用しない。そのため、仮に絶縁皮膜が長時間の運転で厚く堆積したとしても、プラズマの不安定化が発生せず、膜質や厚みにバラツキのないCVD皮膜を安定的に生産することも可能となる。また、これらの部材は放電発生電極として作用していないため、原料ガスを分解するプラズマに直接的にはさらされない。このため、従来技術に比べてこれらの部材には皮膜が堆積しにくい。このため、皮膜の厚い堆積が原因となるフレークの飛散も起りにくく、皮膜欠陥も発生しにくい。 That is, with the above-described configuration, even if the base material W is a counter electrode, the casing of the rotary table 5 or the vacuum chamber 2 does not become a counter electrode. Therefore, these members (that is, the casing of the turntable 5 and the vacuum chamber 2) do not act as glow discharge generating electrodes for generating plasma. For this reason, even if the insulating film is deposited thickly for a long time, plasma instability does not occur, and a CVD film without variations in film quality and thickness can be stably produced. Moreover, since these members do not act as discharge generating electrodes, they are not directly exposed to plasma that decomposes the source gas. For this reason, it is hard to deposit a film | membrane on these members compared with a prior art. For this reason, scattering of flakes caused by thick deposition of the film hardly occurs, and film defects are hardly generated.
(大気開放から取り出しまで)
 成膜処理が終わったら、プラズマ発生電源10の出力、プロセスガスの導入を停止し、成膜を終了する。基材Wの温度が高い場合には、必要に応じて温度低下を待ち、真空チャンバ2内を大気に開放し、基材Wを取外す。このようにすれば、表面にCVD皮膜が形成された基材Wを得ることが可能となる。
(From open air to removal)
When the film formation process is completed, the output of the plasma generation power source 10 and the introduction of the process gas are stopped, and the film formation is completed. When the temperature of the base material W is high, the temperature is lowered if necessary, the inside of the vacuum chamber 2 is opened to the atmosphere, and the base material W is removed. If it does in this way, it will become possible to obtain the base material W in which the CVD film was formed in the surface.
(実施例)
 次に、以上述べた構成を有するプラズマCVD装置1を用いたプラズマCVD法による保護膜の形成事例について説明する。
(Example)
Next, an example of forming a protective film by the plasma CVD method using the plasma CVD apparatus 1 having the above-described configuration will be described.
 なお、このプラズマCVD装置1にはパルスDC電源も装備されている。電気的な接続を切り替えることにより、プラズマ発生電源10に替えて、2つの群に属する自転軸に同時に負の間欠的な直流電圧を印加することができる。このような方法により、従来技術と同等の皮膜形成を比較例として行うことが可能である。 The plasma CVD apparatus 1 is also equipped with a pulsed DC power source. By switching the electrical connection, a negative intermittent DC voltage can be simultaneously applied to the rotating shafts belonging to the two groups instead of the plasma generating power source 10. By such a method, it is possible to perform film formation equivalent to the prior art as a comparative example.
 なお、以下においては、全ての自転軸には図4Bに示されるようなツリー状のワークセットが搭載された。そして、このワークセット自体は模擬基材として取扱い、実際の基材Wは6軸の内1軸のワークセット(模擬基材)の上に、ツリー状のワークセットをホルダーWHとして扱って、その上に評価用の基材(テストピース)Wを搭載した。なお、基材(テストピース)Wの種類としては、(1)シリコン(Si)ウエハのテストピース(以下、テストピース(1))、(2)超硬製テストピース(以下、テストピース(2))、(3)あらかじめ中間層(Cr層+WC層、総膜厚1μm)を被覆した超硬製テストピース(以下、テストピース(3))とした。 In the following, a tree-like work set as shown in FIG. 4B was mounted on all the rotation axes. And this work set itself is handled as a simulated base material, and the actual base material W is handled as a holder WH on a tree-like work set on one of six axes work set (simulated base material). A base material (test piece) W for evaluation was mounted on the top. In addition, as a kind of base material (test piece) W, (1) Test piece of silicon (Si) wafer (hereinafter referred to as test piece (1)), (2) Carbide test piece (hereinafter referred to as test piece (2) )), (3) A cemented carbide test piece (hereinafter referred to as test piece (3)) coated with an intermediate layer (Cr layer + WC layer, total film thickness 1 μm) in advance was used.
(基材セットから真空排気まで)
 まず、全ての自転軸にツリー状のワークセットが模擬基材として搭載される。そのうちの1つの模擬基材を基材ホルダーWHとして扱い、基材Wを固定して、基材Wをセットする。このようにして基材Wおよび模擬基材がセットされたら、真空ポンプ3(真空排気手段3)を用いて真空チャンバ2内を高真空状態まで排気する。
(From substrate set to vacuum exhaust)
First, a tree-like work set is mounted as a simulated base material on all the rotation axes. One of the simulated substrates is handled as the substrate holder WH, the substrate W is fixed, and the substrate W is set. When the base material W and the simulated base material are thus set, the inside of the vacuum chamber 2 is exhausted to a high vacuum state using the vacuum pump 3 (evacuation means 3).
(イオンボンバード処理)
 次に、ガス供給部9からAr等の不活性ガスを導入し、自公転テーブルを回転させながら3Paの圧力で2kWの電力を加えて30秒間グロー放電を発生させて、基材Wの表面をエッチングして清浄化を行なった。
(Ion bombard treatment)
Next, an inert gas such as Ar is introduced from the gas supply unit 9 and 2 kW of electric power is applied at a pressure of 3 Pa while rotating the revolution table to generate a glow discharge for 30 seconds. Etching was performed for cleaning.
(成膜)
 この後、ガス供給部9から、プロセスガスとして、アセチレンを700sccmの流量で導入し、2.5Paの圧力に維持しながら、プラズマ発生電源10から70~80kHzの周波数で4kWの電力を加えてグロー放電を発生させ、基材Wを含む模擬基材の表面に皮膜を形成した。成膜工程の中で、アーク放電が観察されることがあったが、その頻度は1分間に5回未満であり、プラズマ発生電源が有する放電遮断機構によりアーク放電が遮断され100msec程度の短時間で通常の放電状態に復帰する。そのため、特に成膜に異常が生じることが無かった。皮膜形成の速度は、約5μm/Hrであり、成膜時間を調整することで、膜厚を約3μmとした。
(Film formation)
Thereafter, acetylene is introduced as a process gas from the gas supply unit 9 at a flow rate of 700 sccm, and while maintaining a pressure of 2.5 Pa, the plasma generation power supply 10 is applied with 4 kW of power at a frequency of 70 to 80 kHz to grow it. Electric discharge was generated, and a film was formed on the surface of the simulated base material including the base material W. During the film forming process, arc discharge was sometimes observed, but the frequency was less than 5 times per minute, and the arc discharge was interrupted by the discharge interrupting mechanism of the plasma generation power source, and the time was about 100 msec. To return to normal discharge. Therefore, there was no abnormality in the film formation. The film formation rate was about 5 μm / Hr, and the film thickness was about 3 μm by adjusting the film formation time.
(大気開放から取り出しまで)
 成膜処理が終わったら、プラズマ発生電源10の出力、プロセスガスの導入を停止し、成膜を終了する。真空チャンバ2の内部を大気に開放し、成膜された基材Wを取り出した。
(From open air to removal)
When the film formation process is completed, the output of the plasma generation power source 10 and the introduction of the process gas are stopped, and the film formation is completed. The inside of the vacuum chamber 2 was opened to the atmosphere, and the formed substrate W was taken out.
 処理された基材Wの表面には約3μmの水素を含有する硬質カーボン皮膜が形成された。形成された皮膜は、テストピース(1)、テストピース(2)、テストピース(3)のいずれのテストピースであっても健全な光沢のある皮膜である。皮膜の剥離等は観察されなかった。 A hard carbon film containing about 3 μm of hydrogen was formed on the surface of the treated substrate W. The formed film is a healthy and glossy film regardless of any test piece (1), test piece (2), or test piece (3). No peeling of the film was observed.
 形成された皮膜を、ナノインデンターに皮膜硬度を測定した所、皮膜硬さは21GPaであることが判った。また、スクラッチ試験機を用いて、テストピース(3)の上の皮膜の密着性を評価したところ、皮膜の密着性は100N以上と評価された。以上の成膜試験の結果を実施例1とする。 When the film hardness of the formed film was measured with a nanoindenter, it was found that the film hardness was 21 GPa. Moreover, when the adhesiveness of the film | membrane on a test piece (3) was evaluated using the scratch testing machine, the adhesiveness of the film | membrane was evaluated as 100 N or more. The result of the above film formation test is referred to as Example 1.
 比較例として、イオンボンバード工程までは実施例1と全く同様にして、成膜工程において、プロセスガスとして、アセチレンを700sccmの流量で導入し、2.5Paの圧力に維持しながら、パルスDC電源から電源の最大周波数である30kHzの周波数で4kWの間欠的直流電力をA群の基材WおよびB群の基材Wに同時に加えて真空チャンバ2との間にグロー放電を発生させ、実施例と同様の皮膜形成を試みた。しかし、アーク放電が連続的に発生する状況となり、所定の電力の印加が困難であった。真空チャンバの内部を観察すると、グロー放電が断続的に発生する一方で、基材ホルダ各所でアーク放電が発生する状況であった。予定の電力印加が出来ないため、試験を打ち切った。以上の成膜試験を、比較例1とする。なお、上記のアーク放電の頻発の問題点を解消する目的で、間欠的な電圧動作を止め、直流電圧印加による方法や、あるいは、最大周波数250kHzの別の電源によって、80kHzに周波数を上げた試みを実施したが、状況に大きな変化は無かった。 As a comparative example, the process up to the ion bombardment process was exactly the same as in Example 1, and in the film formation process, acetylene was introduced as a process gas at a flow rate of 700 sccm and maintained at a pressure of 2.5 Pa. An intermittent DC power of 4 kW at a frequency of 30 kHz, which is the maximum frequency of the power source, is simultaneously applied to the base material W of group A and the base material W of group B to generate glow discharge between the vacuum chamber 2 and the embodiment. A similar film formation was attempted. However, arc discharge occurs continuously, and it is difficult to apply predetermined power. When the inside of the vacuum chamber was observed, glow discharge was intermittently generated while arc discharge was generated at various locations on the base material holder. The test was terminated because scheduled power application was not possible. The above film formation test is referred to as Comparative Example 1. In order to solve the above-mentioned problems of frequent arc discharge, the intermittent voltage operation was stopped, and a method using a DC voltage application or another power source with a maximum frequency of 250 kHz was used to increase the frequency to 80 kHz. However, there was no significant change in the situation.
 以上の問題点を踏まえて、比較例1と同様にしながら、パルスDC電源からの電力をアーク放電が頻発しないレベルを調査した。その結果、設定電力が1.2kW以下ならばアーク放電の発生頻度は、1分間に数回の水準となることがわかった。 Based on the above problems, the level at which arc discharge does not occur frequently in the power from the pulse DC power source was investigated in the same manner as in Comparative Example 1. As a result, it was found that when the set power is 1.2 kW or less, the occurrence frequency of arc discharge is several times per minute.
 このため、別の比較例として、他の工程は全く実施例1と同様にして、成膜工程において、プロセスガスとして、アセチレンを700sccmの流量で導入し、2.5Paの圧力に維持しながら、パルスDC電源から電源の最大周波数である30kHzの周波数で1.2kWの間欠的直流電力をA群およびB群の基材に同時に加えて真空チャンバとの間にグロー放電を発生させ、実施例と同様の皮膜形成を行った。皮膜形成の速度は、2.2μm/Hrであり、成膜時間の調整により、約3μmの皮膜を形成した。 For this reason, as another comparative example, the other steps are completely the same as in Example 1, and in the film forming step, acetylene is introduced as a process gas at a flow rate of 700 sccm and maintained at a pressure of 2.5 Pa. An intermittent direct current power of 1.2 kW at a frequency of 30 kHz, which is the maximum frequency of the power supply, is simultaneously applied to the base materials of the group A and the group B from the pulse DC power source to generate a glow discharge between the vacuum chamber and the embodiment. A similar film was formed. The film formation rate was 2.2 μm / Hr, and a film of about 3 μm was formed by adjusting the film formation time.
 このようにして形成した基材の表面には約3μmの水素を含有する硬質カーボン皮膜が形成された。形成された皮膜は、テストピース(1)、テストピース(2)、テストピース(3)のいずれのテストピースであっても健全な成膜が出来、皮膜の剥離等は観察されなかった。但し、皮膜の外観は実施例1に比較するとやや光沢が少ない印象がある。形成された皮膜を、ナノインデンターに皮膜硬度を測定した。その結果、皮膜硬さは14GPaであることが判った。また、スクラッチ試験機を用いて、テストピース(3)の上の皮膜の密着性を評価した。その結果、皮膜の密着性は80Nと評価された。以上の成膜試験の結果を比較例2とする。 A hard carbon film containing about 3 μm of hydrogen was formed on the surface of the base material thus formed. The formed film was able to form a sound film regardless of the test piece (1), test piece (2), or test piece (3), and no peeling of the film was observed. However, the appearance of the film is slightly less glossy than Example 1. The film hardness of the formed film was measured using a nanoindenter. As a result, the film hardness was found to be 14 GPa. Moreover, the adhesiveness of the film | membrane on a test piece (3) was evaluated using the scratch testing machine. As a result, the adhesion of the film was evaluated as 80N. The result of the above film formation test is referred to as Comparative Example 2.
 比較例2では電力を低下した結果皮膜硬度が低下した。そのため、さらに条件探索を実施し、出来るだけ高い電力の印加が可能な条件を探索した。 In Comparative Example 2, the film hardness decreased as a result of lowering the power. Therefore, a condition search was further performed to search for a condition that allows the application of as high a power as possible.
 その結果を踏まえて、他の工程は全く実施例1と同様にして、成膜工程において、プロセスガスとして、アセチレンを100sccmの流量で導入し、1Paの圧力に維持しながら、パルスDC電源から電源の最大周波数である30kHzの周波数で3.5kWの間欠的直流電力をA群およびB群の基材に同時に加えて真空チャンバとの間にグロー放電を発生させ、実施例と同様の皮膜形成を行った。皮膜形成の速度は、0.9μm/Hrであり、成膜時間の調整により、約2μmの皮膜を形成した。膜厚が2μmである理由は、3μmの成膜を試みたが、全ての基材で健全な皮膜が形成できなかったためであり、膜厚は減少した。 Based on the result, the other steps are the same as in Example 1, and in the film forming step, acetylene is introduced as a process gas at a flow rate of 100 sccm, and the pressure is supplied from the pulse DC power source while maintaining the pressure of 1 Pa. A 3.5 kW intermittent DC power at a maximum frequency of 30 kHz is simultaneously applied to the base materials of the A group and the B group to generate a glow discharge between the vacuum chamber and the same film formation as in the example. went. The film formation rate was 0.9 μm / Hr, and a film of about 2 μm was formed by adjusting the film formation time. The reason why the film thickness was 2 μm was that although a film formation of 3 μm was attempted, a sound film could not be formed with all the substrates, and the film thickness decreased.
 このようにして形成された基材Wの表面には約2μmの水素を含有する硬質カーボン皮膜が形成された。形成された皮膜は、テストピース(3)には健全な光沢のある皮膜が形成されたが、テストピース(1)、テストピース(2)の皮膜では部分的な剥離が観察された。形成された皮膜を、ナノインデンターに皮膜硬度を測定した。その結果、皮膜硬さは24GPaであることが判った。また、スクラッチ試験機を用いて、テストピース(3)上の皮膜の密着性を評価した。その結果、皮膜の密着性は50Nと評価された。以上の成膜試験の結果を比較例3とする。 A hard carbon film containing about 2 μm of hydrogen was formed on the surface of the substrate W thus formed. As for the formed film, a healthy glossy film was formed on the test piece (3), but partial peeling was observed on the test piece (1) and the test piece (2). The film hardness of the formed film was measured using a nanoindenter. As a result, the film hardness was found to be 24 GPa. Moreover, the adhesiveness of the film | membrane on a test piece (3) was evaluated using the scratch testing machine. As a result, the adhesion of the film was evaluated as 50N. The result of the above film formation test is referred to as Comparative Example 3.
 実施例1と比較例1の成膜状況を比較すると、同一のプロセス条件が設定された場合に、本発明の方法では、異常放電が抑制され、成膜の安定性が大きく向上することが判った。これは、比較例の方法では、間欠的DC電圧によりグロー放電を励起するため基材が負電位にバイアスされてプラズマ中のイオンを引き付ける電位にいる期間が長い。それに対して、本発明の成膜方法によると、基材はプラズマに対して負の電位となりプラズマ中のイオンを引き付ける状態と、プラズマに対して正の電位となりプラズマ中のイオンは反発し電子を引き付ける状態となる期間をほぼ同じ割合で経験する。 Comparing the film formation conditions of Example 1 and Comparative Example 1, it is found that when the same process conditions are set, the method of the present invention suppresses abnormal discharge and greatly improves the film formation stability. It was. This is because, in the method of the comparative example, since the glow discharge is excited by the intermittent DC voltage, the substrate is biased to a negative potential and is at a potential that attracts ions in the plasma. On the other hand, according to the film forming method of the present invention, the substrate has a negative potential with respect to the plasma and attracts ions in the plasma, and the substrate has a positive potential with respect to the plasma and the ions in the plasma repel and emit electrons. Experience the same period of attraction.
 ここからは推測であるが、導電性の金属基材の表面に、DLCやSiOxなどの絶縁性の皮膜を形成する場合、成膜中の基材は導電性の金属と絶縁性の皮膜の複合体となる。そのため、本発明のように基材が成膜中にイオンを引き付ける期間と、電子を引き付ける期間とが同等に存在することで、チャージアップが発生し難く、アーク放電の発生が、比較的高い電力レベルまで発生しないものと考えられる。 Although it is speculated from here, when an insulating film such as DLC or SiOx is formed on the surface of a conductive metal substrate, the substrate being formed is a composite of a conductive metal and an insulating film. Become a body. Therefore, as in the present invention, the period during which the substrate attracts ions during film formation and the period during which electrons are attracted are equivalent, so that charge-up is unlikely to occur, and arc discharge is relatively high power. It is thought that it does not occur to the level.
 実施例1の成膜状況と比較例2の成膜状況とを比較すると、本発明の成膜方法では、同一のガス条件を設定すると、より大きな電力が投入可能であるので、硬度の高い皮膜を高速に成膜可能となる。 When the film formation state of Example 1 and the film formation state of Comparative Example 2 are compared, in the film formation method of the present invention, when the same gas condition is set, a larger electric power can be input. Can be formed at high speed.
 実施例1と比較例3の間に認められた、皮膜の密着性に関わる大きな差異の原因を探る目的で、テストピース(1)を用いて皮膜内部応力を基材の反りにより測定した。その結果、実施例1のテストピースでは0.6GPaの圧縮応力であるのに対して、比較例1のテストピースでは2.8GPaの圧縮応力が観察された。これらの結果から、密着性の大きな差異は形成された皮膜の圧縮応力の水準の違いによるものと思われる。 For the purpose of investigating the cause of the large difference related to the adhesion of the film observed between Example 1 and Comparative Example 3, the internal stress of the film was measured by the warp of the base material using the test piece (1). As a result, the compressive stress of 0.6 GPa was observed in the test piece of Example 1, while the compressive stress of 2.8 GPa was observed in the test piece of Comparative Example 1. From these results, it is considered that the large difference in adhesion is due to the difference in the level of compressive stress of the formed film.
 同様の方法で、成膜時の皮膜形成条件を変更して成膜処理を実施して、その評価結果を実施例2~3を作成した。これらの結果は、以下の表に示される。 In the same manner, the film formation conditions were changed at the time of film formation, and the film formation process was performed, and Examples 2 to 3 were created as the evaluation results. These results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表からわかるように、本発明に係る保護膜の形成方法では、他の条件が同一であれば、高い電力の印加が可能であり、結果として速度の高い皮膜形成が可能である。また本発明に関わる保護膜の形成方法による皮膜は、従来の形成方法に比較して、皮膜の応力が低く、密着性に優れた皮膜が形成可能である。これは、以下のメカニズムによると思われる。 As can be seen from this table, in the method for forming a protective film according to the present invention, if other conditions are the same, high power can be applied, and as a result, a high-speed film can be formed. In addition, the film formed by the method for forming a protective film according to the present invention can form a film having low film stress and excellent adhesion as compared with the conventional forming method. This is thought to be due to the following mechanism.
 図5A、図5Bには従来技術との比較で、本発明に係る保護膜の形成方法における成膜中の電位の変化を表している。 5A and 5B show a change in potential during film formation in the method for forming a protective film according to the present invention in comparison with the prior art.
 従来の保護膜の形成方法の場合は、図5Bに示されるように、グロー放電の励起にあたり、基材Wには負の直流電位が間欠的に加えられる。このため、正にバイアスされる短時間を除いて、基材Wに成膜された皮膜は、プラズマ中からの正イオンの衝撃(ボンバードメント)を受けながら皮膜が形成されることになる。このため、皮膜形成中の皮膜には継続的にイオンの打ち込みを受けながら成膜されることになり、皮膜中に大きな圧縮応力を生むものと推定される。結果として、皮膜の硬度面では高いものが得やすいが、圧縮応力の影響で皮膜の密着性は相対的に悪い。 In the case of the conventional method for forming a protective film, a negative DC potential is intermittently applied to the substrate W when glow discharge is excited, as shown in FIG. 5B. For this reason, the film formed on the substrate W is formed while receiving a positive ion bombardment (bombardment) from plasma except for a short time when it is positively biased. For this reason, it is presumed that the film being formed is formed while continuously receiving ion implantation, and a large compressive stress is generated in the film. As a result, it is easy to obtain a high hardness in the film, but the adhesion of the film is relatively poor due to the influence of compressive stress.
 一方、本発明に係る保護膜の形成方法の場合には、図5Aに示されるように、グロー放電の励起は、A群の基材WとB群の基材Wとの間に加わる交流電圧により行なわれる。そのため、皮膜形成中の半分は負の電位が加わりプラズマ中の正イオンによりボンバードされるが、残りの半分の期間は低い正の電位が加わりプラズマ中の電子が流入するのみで、イオンの衝撃が無い期間が存在する。負の電位が加わった期間中には従来技術と同様にイオンの打ち込みを受けるが、残りの期間には電子の衝撃が中心の期間となりイオンの衝撃の影響を緩和する作用が起きると推定される。結果として、皮膜中の圧縮応力は低減されて、相対的に密着に優れた皮膜が形成できるものと考えられる。 On the other hand, in the case of the method for forming a protective film according to the present invention, as shown in FIG. 5A, the glow discharge is excited by an alternating voltage applied between the A group of base materials W and the B group of base materials W. It is done by. For this reason, a negative potential is applied to the half during film formation and bombarded by positive ions in the plasma, but a low positive potential is applied during the remaining half of the period, and only electrons in the plasma flow in, causing ion bombardment. There is no period. During the period when a negative potential is applied, ions are implanted in the same way as in the prior art, but in the remaining period, the impact of electrons becomes the central period and it is estimated that the effect of mitigating the impact of ions occurs. . As a result, it is considered that the compressive stress in the film is reduced and a film having relatively excellent adhesion can be formed.
 このようなメカニズムが発現するためには、交流のプラズマ発生電源10の周波数を適当な範囲にすることが重要である。プラズマ発生電源10の周波数が高すぎると、プラズマ中のイオンが電位の変化に追従できなくなり、本発明のイオン照射が間欠的に起きる状況が形成されなくなる。このためには、プラズマ発生電源10の周波数は、イオンが追従可能な1MHz以下とされることが必要である。一方で、プラズマ発生電源10の周波数が低すぎると、正負の電圧の入れ替わりの間で、チャージアップが発生しアーク放電が起こりやすくなる。そのため、プラズマ発生電源10の周波数は、1kHz以上、好ましくは10kHz以上の周波数とすることが好ましい。 In order to develop such a mechanism, it is important to set the frequency of the AC plasma generation power source 10 to an appropriate range. If the frequency of the plasma generating power supply 10 is too high, ions in the plasma cannot follow the change in potential, and the situation where the ion irradiation of the present invention occurs intermittently is not formed. For this purpose, it is necessary that the frequency of the plasma generation power source 10 be 1 MHz or less at which ions can follow. On the other hand, if the frequency of the plasma generating power supply 10 is too low, charge-up occurs between the switching of positive and negative voltages, and arc discharge is likely to occur. Therefore, the frequency of the plasma generating power source 10 is preferably 1 kHz or higher, and more preferably 10 kHz or higher.
 以上のようにして、プラズマCVD装置1を用いた本発明の第1の実施形態に係る保護膜の形成方法によると、基材以外の部分にCVD皮膜が堆積しにくく、長期にわたり清掃を行なわずに安定操業が可能である。しかも、安定した成膜条件を維持しつつ生産効率が高い。さらに、皮膜の応力が低く、密着性に優れた皮膜を形成することができる。 As described above, according to the method for forming a protective film according to the first embodiment of the present invention using the plasma CVD apparatus 1, a CVD film is difficult to deposit on a portion other than the base material, and cleaning is not performed for a long time. Stable operation is possible. In addition, production efficiency is high while maintaining stable film formation conditions. Furthermore, it is possible to form a film having low film stress and excellent adhesion.
 <第2の実施形態>
 以下、図6を参照して、本発明の第2の実施形態に係るプラズマCVD装置21について説明する。なお、第2の実施形態に係るプラズマCVD装置21は、上述した第1の実施形態に係るプラズマCVD装置1が基材を自公転させる装置であったのに対して基材Wを回転させず静止させた状態である点が異なる。すなわち、一方の群と他方の群とが対向する位置で基材Wを静止させて基材Wの表面に保護膜を形成する。それ以外は、第1の実施形態と同じであるので、上述した説明と重複する部分についてはここでは繰り返さない。
<Second Embodiment>
Hereinafter, the plasma CVD apparatus 21 according to the second embodiment of the present invention will be described with reference to FIG. The plasma CVD apparatus 21 according to the second embodiment does not rotate the substrate W, whereas the plasma CVD apparatus 1 according to the first embodiment described above is an apparatus that revolves the substrate. The difference is that it is stationary. That is, the base material W is stopped at a position where one group and the other group face each other, and a protective film is formed on the surface of the base material W. Other than that, the second embodiment is the same as the first embodiment, and therefore, the same parts as those described above are not repeated here.
 図6に示されるように、このプラズマCVD装置21は、自公転テーブル5を備えず(あるいは回転テーブル5を備えているが、回転テーブル5を回転させないものであっても構わない)、四角形のステンレス板を略対向させる状態で、プラズマCVD法により保護膜を基材に形成する。この場合において、ステンレス板自体は、多数孔を備えた基材ホルダーWHであって、その孔に基材Wを保持させるものであっても構わない。また、ステンレス板自体が基材Wであっても構わない。以下においては、ステンレス板自体が基材Wであるとして説明する。 As shown in FIG. 6, the plasma CVD apparatus 21 does not include the self-revolving table 5 (or includes the rotary table 5, but may not rotate the rotary table 5), and has a rectangular shape. A protective film is formed on the substrate by a plasma CVD method with the stainless steel plates facing each other. In this case, the stainless steel plate itself may be a base material holder WH provided with a large number of holes, and the base material W may be held in the holes. Further, the stainless steel plate itself may be the base material W. In the following description, it is assumed that the stainless steel plate itself is the base material W.
 なお、図6における「A」および「B」の表記は、第1の実施形態における「A」および「B」と同じであって、基材が分けられる2つの群であって、一方の群とチャンバ電位および他方の群との間で電気的に絶縁がとられた上で、プラズマ発生用のプラズマ発生電源10の両極に接続されている。図6に示される例では、一方の群Aの基材と他方の群Bの基材とは互い違いに配置されることによって、これらの基材は、互いに異なる群の基材と対向して配置している。
第1の実施形態と同様に、ステンレス板(基材W)を真空チャンバ22に載置して、エッチング工程までを終了させた。
Note that the notations “A” and “B” in FIG. 6 are the same as “A” and “B” in the first embodiment, and are two groups into which the base material is divided, and one group Is electrically insulated from the chamber potential and the other group, and is connected to both electrodes of a plasma generation power source 10 for generating plasma. In the example shown in FIG. 6, the base material of one group A and the base material of the other group B are alternately arranged, so that these base materials are arranged to face different groups of base materials. is doing.
Similar to the first embodiment, the stainless steel plate (base material W) was placed in the vacuum chamber 22 and the process up to the etching process was completed.
 実施例として、成膜工程では、プロセスガスとして、HMDSOを2.5Paの圧力で導入し、プラズマ発生電源10から2kWの電力を加えてグロー放電を発生させ、A群の基材W(ステンレス板)とB群の基材W(ステンレス板)との間にグロー放電を発生させ、基材Wの表面に皮膜を形成し、大気に取り出した。 As an example, in the film forming process, HMDSO is introduced as a process gas at a pressure of 2.5 Pa, and 2 kW of electric power is applied from the plasma generation power source 10 to generate glow discharge. ) And a group B base material W (stainless steel plate), a glow discharge was generated, a film was formed on the surface of the base material W, and taken out to the atmosphere.
 このようにして形成された基材Wの表面には約2μmのSi、C、O、Hを成分とする皮膜が形成された。この皮膜は、撥水性を有し、たとえば粘着性の樹脂の付着等があっても、簡単に除去できる特性を有している。このように皮膜に付着させた粘着テープは、水を高圧でスプレーすることにより、簡単に剥離可能である。 A film containing about 2 μm of Si, C, O, and H as a component was formed on the surface of the base material W thus formed. This film has water repellency and, for example, has a characteristic that it can be easily removed even if an adhesive resin adheres. The adhesive tape adhered to the film in this way can be easily peeled off by spraying water at a high pressure.
 一方、比較例として、成膜工程において、パルスDC電源から2kWの電力をA群の基材WとB群の基材Wとに同時に加えて真空チャンバ22との間にグロー放電を発生させた以外は同じように処理して基材Wの表面に皮膜を形成し、基材Wを大気に取り出した。このように形成した基材Wの表面には、ほぼ同様の皮膜が形成されたが、ステンレス板の角部にはわずかな剥離が認められた。皮膜の特性は、実施例と同様に撥水性を有するが、同様に粘着テープを水のスプレーにより除去する試験においては、前記の剥離箇所から皮膜の剥離が拡大した。 On the other hand, as a comparative example, a glow discharge was generated between the vacuum chamber 22 by simultaneously applying 2 kW of power from the pulse DC power source to the group A base material W and the group B base material W in the film forming process. Except for the above, the same treatment was performed to form a film on the surface of the substrate W, and the substrate W was taken out to the atmosphere. A substantially similar film was formed on the surface of the base material W thus formed, but slight peeling was observed at the corners of the stainless steel plate. The characteristics of the film have water repellency as in the examples. Similarly, in the test in which the adhesive tape was removed by spraying water, the peeling of the film expanded from the above-mentioned peeling site.
 このようなことから、形成する皮膜および基材配置の状況が異なる場合であっても、本発明に係るプラズマCVD法による保護膜の形成方法によると、相対的に密着性に優れた皮膜を形成することができる。 For this reason, even if the coating film to be formed and the situation of the base material arrangement are different, according to the method for forming a protective film by the plasma CVD method according to the present invention, a film having relatively excellent adhesion is formed. can do.
 <実施形態に適用可能な皮膜材料に関わる好ましい形態>
 以下に、皮膜材料に関わる好ましい形態について説明する。
<Preferred form relating to coating material applicable to the embodiment>
Below, the preferable form in connection with film | membrane material is demonstrated.
(1)真空チャンバ内に供給されるガスは、アセチレン、メタン、ベンゼン、トルエン、エタン、エチレンなどの炭化水素ガスを含む。形成される皮膜は、DLCなどと呼ばれる水素含有の炭素膜である。
(2)真空チャンバ内に供給されるガスは、アセチレン、メタン、ベンゼン、トルエン、エタン、エチレンなどの炭化水素ガスを含む。形成される皮膜は、導電性を有する炭素膜である。
(3)真空チャンバ内に供給されるガスは、アセチレン、メタン、ベンゼン、トルエン、エタン、エチレンなどの炭化水素ガスと、シラン、TMS、HMDSO,HMDSN等を含み、形成される皮膜は、シリコン含有DLCなどと呼ばれるC,Si,Hを必須の元素として含む皮膜である。
(4)真空チャンバ内に供給されるガスは、アセチレン、メタン、ベンゼン、トルエン、エタン、エチレンなどの炭化水素ガスを主成分として含み、これに金属を含むガス(TMS、TTIP等)を添加成分として含む。形成される皮膜は、Me:DLCなどと呼ばれる金属元素含有の炭素膜である。
(5)真空チャンバ内に供給されるガスは、TMS、HMDSO,HMDSNなどのSiを必須元素として含む有機シラン系のガスを含む。形成される皮膜は、Si,C,Hを必須の元素として含む保護皮膜である。
(6)真空チャンバ内に供給されるガスは、シラン、TMS、HMDSO,HMDSNなどのSiを必須元素として含む有機シラン系のガスを含む。これに酸化作用を有するガス(酸素など)を混合して形成される皮膜は、Si,O,C,Hを必須の元素として含む保護皮膜である。
(7)真空チャンバ内に供給されるガスは、シラン、TMS、HMDSO,HMDSNのSiを必須元素として含む有機シラン系のガスを含む。これに窒素を含有するガス(窒素ガス、アンモニアなど)を混合して形成される皮膜は、Si,N,C,Hを必須の元素として含む保護皮膜である。
(1) The gas supplied into the vacuum chamber includes a hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, and ethylene. The formed film is a hydrogen-containing carbon film called DLC or the like.
(2) The gas supplied into the vacuum chamber includes a hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, and ethylene. The formed film is a carbon film having conductivity.
(3) Gas supplied into the vacuum chamber contains hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, ethylene, and silane, TMS, HMDSO, HMDSN, etc., and the formed film contains silicon. It is a film containing C, Si, and H as essential elements called DLC.
(4) The gas supplied into the vacuum chamber contains a hydrocarbon gas such as acetylene, methane, benzene, toluene, ethane, and ethylene as a main component, and a gas containing a metal (TMS, TTIP, etc.) as an additional component. Include as. The formed film is a carbon film containing a metal element called Me: DLC.
(5) The gas supplied into the vacuum chamber includes an organosilane-based gas containing Si as an essential element, such as TMS, HMDSO, and HMDSN. The formed film is a protective film containing Si, C, and H as essential elements.
(6) The gas supplied into the vacuum chamber includes an organosilane-based gas containing Si as an essential element, such as silane, TMS, HMDSO, and HMDSN. A film formed by mixing an oxidizing gas (such as oxygen) with this is a protective film containing Si, O, C, and H as essential elements.
(7) The gas supplied into the vacuum chamber includes an organosilane-based gas containing Si of silane, TMS, HMDSO, and HMDSN as an essential element. A film formed by mixing a gas containing nitrogen (nitrogen gas, ammonia, etc.) with this is a protective film containing Si, N, C, and H as essential elements.
 <実施形態に適用可能な基材に関わる好ましい形態>
 以下に、基材に関わる好ましい形態について説明する。
<Preferred embodiment relating to a substrate applicable to the embodiment>
Below, the preferable form in connection with a base material is demonstrated.
 膜形成方法については、基材材料としてはある程度の導電性を有していることが必要である。これは、基材に印加する交流電圧がいわゆるRF(Radio Frequency)と呼ばれる高周波よりは低いためであり、たとえば、絶縁性のガラスは本皮膜形成方法の対象とはならない。 Regarding the film formation method, the base material must have a certain degree of conductivity. This is because the AC voltage applied to the base material is lower than a so-called RF (Radio Frequency) high frequency, and for example, insulating glass is not an object of this film forming method.
(1)好ましい基材は、金属、導電性セラミックス、導電膜を表面に形成したプラスチック・ガラスなどが対象となる。また、導電性を出すために不純物元素をドープしたシリコン基材なども対象となる。これは、プラズマを作るための電圧を有効に基材全域に伝えるのに必要である。
(2)従来の成膜方法では、このような保護膜の被覆対象としては、たとえば、工具・金型などに使われる超硬合金、セラミックス、工具鋼、金型鋼、あるいは、自動車のパーツに使われる、浸炭材、窒化材、熱処理材など概ね硬度が10GPaを超えるような基材が多く用いられる。これは、このような高硬度の材料の表面に、さらに硬度の高い皮膜をつけるとの考え方に基づくが、一方で、やわらかい基材の表面に成膜を行なっても、形成した皮膜が基材の変形に追従できずに剥離することが多いからである。
(3)本発明に係るプラズマCVD法による保護膜の形成方法においても、このような高硬度の基材を用いるのが好適であるのは言うまでも無い。むしろ、比較的硬度の低い基材に皮膜形成を行ったときに、従来技術との差異が顕著に現れる。これは、本発明に係るプラズマCVD法による保護膜の形成方法においては、皮膜の応力が相対的に低く基材の変形に追従しやすい特性を有するからである。加えて、本発明に係るプラズマCVD法による保護膜の形成方法においては膜厚の厚い被覆が可能となることも相対的に硬度の低い対象物に適用した場合に有利である。
(4)このような観点から本発明に係るプラズマCVD法による保護膜の形成方法に好適な基材としては、表面硬化を行なっていない鋼材やステンレス鋼、あまり高い硬度が得られない非鉄金属(チタン、アルミ、アルミ合金、マグネシウム合金)、導電性の表面処理(例えばメッキなど)が施されたプラスチックなどが、従来方法に比べて本発明が有利に作用する。
(5)なお、表面が導電性を有することが本発明に係るプラズマCVD法による保護膜の形成方法を適用する前提と上述している。しかし、例外的に、導電性材料の表面に薄く被覆された絶縁性部材は、本発明に係るプラズマCVD法による保護膜の形成方法の対象となりえる。これは、絶縁層が薄い場合には、この絶縁層が有する静電容量を通じて交流の電圧を伝達可能なためである。適用可能な絶縁層の厚みは電源の周波数によって変動する。例えば数十kHzの周波数域を用いる場合には、絶縁層の厚みは1mmを超えることは不可能で、200μm程度までが好ましい。
(1) Preferred substrates include metals, conductive ceramics, plastics / glasses having a conductive film formed on the surface, and the like. In addition, a silicon base material doped with an impurity element to provide conductivity is also a target. This is necessary to effectively transmit the voltage for creating the plasma across the substrate.
(2) In the conventional film formation method, such a protective film can be coated on, for example, cemented carbide, ceramics, tool steel, mold steel used for tools and molds, or automotive parts. In many cases, a carburized material, a nitrided material, a heat-treated material and the like whose hardness generally exceeds 10 GPa are used. This is based on the idea that a coating with higher hardness is applied to the surface of such a high hardness material. This is because they often peel off without being able to follow the deformation.
(3) Needless to say, it is also preferable to use such a hard substrate in the method for forming a protective film by the plasma CVD method according to the present invention. Rather, when a film is formed on a substrate having a relatively low hardness, the difference from the prior art becomes noticeable. This is because the method for forming a protective film by the plasma CVD method according to the present invention has a characteristic that the film stress is relatively low and can easily follow the deformation of the substrate. In addition, in the method for forming a protective film by the plasma CVD method according to the present invention, it is advantageous that a thick coating is possible when applied to an object having a relatively low hardness.
(4) From such a viewpoint, as a suitable base material for the method for forming a protective film by the plasma CVD method according to the present invention, a steel material and stainless steel that are not surface-hardened, a non-ferrous metal that does not have a very high hardness ( Titanium, aluminum, aluminum alloy, magnesium alloy), plastics with conductive surface treatment (for example, plating), and the like are more advantageous than the conventional method.
(5) The above description is based on the premise that the method for forming a protective film by the plasma CVD method according to the present invention applies that the surface has conductivity. However, as an exception, an insulating member that is thinly coated on the surface of a conductive material can be an object of the method for forming a protective film by the plasma CVD method according to the present invention. This is because when the insulating layer is thin, an alternating voltage can be transmitted through the capacitance of the insulating layer. The applicable insulating layer thickness varies depending on the frequency of the power source. For example, when a frequency range of several tens of kHz is used, the thickness of the insulating layer cannot exceed 1 mm and is preferably up to about 200 μm.
<実施形態に適用可能な基材の搭載形態に関わる好ましい形態>
 以下に、基材の搭載形態に関わる好ましい形態であって、特に、2群に分けられた基材の搭載形態に着眼して、好ましい形態を列挙する。
<Preferable form relating to mounting form of base material applicable to the embodiment>
In the following, preferred forms relating to the mounting form of the base material, and particularly preferred forms will be listed, focusing on the mounting form of the base material divided into two groups.
(1)第1の実施形態として開示した、自公転テーブルを有し、その自転軸がA群とB群とに分かれている形態(図1)。さらに、この自公転テーブルを2対以上有する形態。
(2)第2の実施形態として開示した、平板状の基材または基材ホルダーを複数交互にA群とB群とに属する形態(図2)。
(3)第3の実施形態として後述する、回転テーブルを1対以上有し、各回転テーブルとそれに搭載された基材がA群とB群とに分かれている形態。図7、図8に示される第3の実施形態に係るプラズマCVD装置31は真空チャンバ32内に2対の回転テーブルを有する。
(4)第4の実施形態として後述する、自公転テーブルを1対以上有し、各自公転テーブルとそれに搭載された基材がA群とB群とに分かれている形態。図9に示される第4の実施形態に係るプラズマCVD装置41は真空チャンバ42内に2対の回転テーブルを有する。
(5)2枚の平板状の基材ホルダが対向配置され、基材ホルダの向かい合う面側に複数の基材が固定された形態。
(6)回転テーブル(自公転テーブルを含む)を上下2層に配置され、上下2層のテーブル上に配置した基材がA群とB群とに分かれている形態。
(1) The embodiment disclosed as the first embodiment, which has a self-revolving table and whose rotation axis is divided into a group A and a group B (FIG. 1). Furthermore, the form which has two or more pairs of this self-revolving table.
(2) A form disclosed as the second embodiment, in which a plurality of flat base materials or base material holders belong alternately to the A group and the B group (FIG. 2).
(3) A mode having at least one pair of rotary tables, which will be described later as a third embodiment, and each rotary table and a substrate mounted thereon are divided into a group A and a group B. A plasma CVD apparatus 31 according to the third embodiment shown in FIGS. 7 and 8 has two pairs of rotary tables in a vacuum chamber 32.
(4) A mode in which one or more pairs of self-revolving tables, which will be described later as a fourth embodiment, are provided, and each self-revolving table and the substrate mounted thereon are divided into a group A and a group B. A plasma CVD apparatus 41 according to the fourth embodiment shown in FIG. 9 has two pairs of rotary tables in a vacuum chamber 42.
(5) A form in which two flat substrate holders are arranged to face each other, and a plurality of substrates are fixed to the facing surfaces of the substrate holders.
(6) A mode in which a rotary table (including a self-revolving table) is arranged in two upper and lower layers, and a base material arranged on the upper and lower two-layer table is divided into a group A and a group B.
<第3の実施形態>
 以下、本発明の第3の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置31について説明する。
<Third Embodiment>
Hereinafter, a plasma CVD apparatus 31 that realizes the protective film forming method according to the third embodiment of the present invention will be described.
 このプラズマCVD装置31の全体構成の斜視図が図7に示され、その上面図が図8に示される。 FIG. 7 shows a perspective view of the entire configuration of the plasma CVD apparatus 31, and FIG. 8 shows a top view thereof.
 このプラズマCVD装置31は、真空チャンバ32内に配置された2つの回転テーブル5(5A、5B)上に基材が設置されている。図7に示される基材は模式的に円筒で表されている。実際の品物は、ピストンリング、ロッカーアーム、切削工具、ピストンピンなどであり、比較的小さいこれらの部品がジグに搭載されて、ジグと部品を一体として円筒状の空間に収まるようにしたものである。そして、同一の回転テーブル5上に搭載された複数の基材は群を構成している。回転テーブル5が2つあるため、複数の基材は2つの群(A群、B群)に分けられる。各回転テーブル5は、チャンバ電位および相互の群の間で電気的に絶縁がとられた上で、プラズマ発生用のプラズマ発生電源10の両極に接続されている。 In this plasma CVD apparatus 31, a base material is installed on two rotary tables 5 (5A, 5B) arranged in a vacuum chamber 32. The base material shown in FIG. 7 is schematically represented by a cylinder. The actual items are piston rings, rocker arms, cutting tools, piston pins, etc. These relatively small parts are mounted on a jig so that the jig and parts can be integrated into a cylindrical space. is there. And the some base material mounted on the same turntable 5 comprises the group. Since there are two turntables 5, the plurality of base materials are divided into two groups (Group A and Group B). Each turntable 5 is electrically insulated between the chamber potential and the mutual group, and is connected to both electrodes of the plasma generating power source 10 for generating plasma.
 これらの構成以外の部分は、第1の実施形態と同じであるので、上述した説明と重複する部分についてはここでは繰り返さない。 Since parts other than these configurations are the same as those in the first embodiment, the same parts as those described above will not be repeated here.
 このプラズマCVD装置31を用いて上述した第1の実施形態に係る保護膜の形成方法を実施すると、基材W以外の部分にCVD皮膜が堆積しにくく、長期にわたり清掃を行なわずに安定操業が可能である。しかも、安定した成膜条件を維持しつつ生産効率が高い。さらに、皮膜の応力が低く、密着性に優れた皮膜を形成することができる。 When the method for forming a protective film according to the first embodiment described above is performed using this plasma CVD apparatus 31, a CVD film is unlikely to deposit on portions other than the substrate W, and stable operation can be performed without cleaning over a long period of time. Is possible. In addition, production efficiency is high while maintaining stable film formation conditions. Furthermore, it is possible to form a film having low film stress and excellent adhesion.
<第4の実施形態>
 以下、本発明の第4の実施形態に係る保護膜の形成方法を実現するプラズマCVD装置41について説明する。
<Fourth Embodiment>
Hereinafter, a plasma CVD apparatus 41 that realizes the protective film forming method according to the fourth embodiment of the present invention will be described.
 このプラズマCVD装置41の全体構成の斜視図が図9に示される。 A perspective view of the overall configuration of the plasma CVD apparatus 41 is shown in FIG.
 このプラズマCVD装置41は、成膜対象である基材Wを自転する状態で保持する複数(ここでは4個)の自転テーブル4が回転テーブル5上に設けられている。すなわち、これら複数の自転テーブル4は回転テーブル5に配備されており、このプラズマCVD装置21には複数の自転テーブル4が設けられた回転テーブル5を自転テーブル4の回転軸(自転軸P)と軸心平行な公転軸Q回りに公転させる回転機構8が設けられている。そして、このプラズマCVD装置21は、複数(ここでは2個)の回転テーブル5が、真空チャンバ22の中においてプラズマCVD装置1の中心線に対して対称に配置されている。また、真空排気手段3は、この中心線上に設けられている。ここで、回転テーブル5の数は、プラズマCVD装置1の中心線に対して対称になるように配置されていれば、特に限定されるものではない。1個の回転テーブル5あたりに配備される自転テーブル4の数は、特に限定されるものではないが、異なる回転テーブル5であっても同じ数になるように配置されていることが望ましい。さらに、複数の自転テーブル4の各々は、回転テーブル5の公転軸から等しい半径で且つ公転軸Q回りに等間隔となるように配備されている。 In this plasma CVD apparatus 41, a plurality (four in this case) of rotation tables 4 that hold the substrate W, which is a film formation target, in a state of rotation are provided on the rotation table 5. That is, the plurality of rotation tables 4 are arranged on the rotation table 5, and the rotation table 5 provided with the plurality of rotation tables 4 in the plasma CVD apparatus 21 is used as the rotation axis of the rotation table 4 (rotation axis P). A rotation mechanism 8 that revolves around a revolution axis Q that is parallel to the axis is provided. In the plasma CVD apparatus 21, a plurality of (here, two) turntables 5 are arranged symmetrically with respect to the center line of the plasma CVD apparatus 1 in the vacuum chamber 22. Further, the vacuum exhaust means 3 is provided on this center line. Here, the number of turntables 5 is not particularly limited as long as it is arranged so as to be symmetric with respect to the center line of plasma CVD apparatus 1. The number of the rotation tables 4 provided per one rotation table 5 is not particularly limited, but it is desirable that the rotation tables 5 are arranged so as to have the same number even if they are different. Further, each of the plurality of rotation tables 4 is arranged to have an equal radius from the revolution axis of the rotary table 5 and at equal intervals around the revolution axis Q.
 これらの構成以外の部分は、第1の実施形態と同じであるので、上述した説明と重複する部分についてはここでは繰り返さない。 Since parts other than these configurations are the same as those in the first embodiment, the same parts as those described above will not be repeated here.
 このプラズマCVD装置41を用いて上述した第1の実施形態に係る保護膜の形成方法を実施すると、第1の実施形態よりも多くの基材Wを一度に成膜処理できるようになる。しかも、安定した成膜条件を維持しつつ生産効率が高い。さらに、皮膜の応力が低く、密着性に優れた皮膜を形成することができる。 When the method for forming a protective film according to the first embodiment described above is performed using the plasma CVD apparatus 41, more base materials W can be formed at a time than in the first embodiment. In addition, production efficiency is high while maintaining stable film formation conditions. Furthermore, it is possible to form a film having low film stress and excellent adhesion.
<第5の実施形態>
 以下、本発明の第5の実施形態に係るプラズマCVD装置51について説明する。なお、第5の実施形態に係るプラズマCVD装置51は、上述した第1の実施形態に係るプラズマCVD装置1と、基材に中間層を形成する皮膜供給源(スパッタ蒸発源、アーク蒸発源)を備える点が異なる。それ以外は、第1の実施形態と同じであるので、上述した説明と重複する部分についてはここでは繰り返さない。
<Fifth Embodiment>
Hereinafter, a plasma CVD apparatus 51 according to a fifth embodiment of the present invention will be described. The plasma CVD apparatus 51 according to the fifth embodiment includes the plasma CVD apparatus 1 according to the first embodiment described above and a film supply source (sputter evaporation source, arc evaporation source) that forms an intermediate layer on the substrate. Is different. Other than that, the second embodiment is the same as the first embodiment, and therefore, the same parts as those described above are not repeated here.
 このプラズマCVD装置51は、図10に示される如く、真空チャンバ52内に、プラズマCVD法による保護膜とは別の膜を形成するための皮膜供給源6(スパッタ蒸発源、アーク蒸発源などであるが以下ではアーク蒸発源6またはスパッタ蒸発源6と記載する)が設けられている。成膜処理において、アーク蒸発源6を利用して、プラズマCVDによる皮膜と基材Wとの間に挿入する中間層が形成される。 As shown in FIG. 10, the plasma CVD apparatus 51 includes a film supply source 6 (sputter evaporation source, arc evaporation source, etc.) for forming a film different from the protective film by the plasma CVD method in the vacuum chamber 52. In the following description, an arc evaporation source 6 or a sputter evaporation source 6 will be described). In the film forming process, an intermediate layer to be inserted between the film formed by plasma CVD and the substrate W is formed using the arc evaporation source 6.
 プラズマCVD法によって保護膜を形成する場合、プラズマ発生電源10から交流の電力を供給して、第1の群18(図1~2参照)に属する自転テーブル4の基材Wと第2の群19(図1~2参照)に属する自転テーブル4の基材Wとの間にグロー放電を発生させ、基材W間に成膜に必要なプラズマを発生させる。 When the protective film is formed by the plasma CVD method, alternating current power is supplied from the plasma generation power source 10 and the substrate W and the second group of the rotation table 4 belonging to the first group 18 (see FIGS. 1 and 2). Glow discharge is generated between the rotating table 4 and the base material W belonging to 19 (see FIGS. 1 and 2), and plasma necessary for film formation is generated between the base materials W.
 上述したように、互いが逆極性となる第1の群18の自転テーブル4と第2の群19の自転テーブル4とを周方向に交番(交互)に配置すれば、周方向に隣り合う自転テーブル4に保持される基材W間に必ず電位差が生じて、両者の間に確実にグロー放電が発生する。そして、プラズマ発生電源10の正極と負極が入れ替われば、周方向に隣り合う自転テーブル4の極性も入れ替わり、引き続き両者間にグロー放電が発生する。それ故、多数の基材Wに対して一度に且つ均一に成膜を行うことが可能となる。 As described above, if the rotation tables 4 of the first group 18 and the rotation tables 4 of the second group 19 having opposite polarities are arranged alternately (alternately) in the circumferential direction, rotations adjacent to each other in the circumferential direction are performed. A potential difference always occurs between the base materials W held on the table 4, and a glow discharge is surely generated between them. When the positive electrode and the negative electrode of the plasma generating power source 10 are switched, the polarities of the rotating tables 4 adjacent in the circumferential direction are also switched, and glow discharge is continuously generated between the two. Therefore, it is possible to perform film formation on a large number of substrates W at once and uniformly.
 すなわち、第1の群18に属する自転テーブル4の基材Wが作用極として働いてこの基材W側にCVD皮膜が成膜されているときには、第2の群19に属する自転テーブル4の基材Wが対極(反対極)となる。そして、プラズマ発生電源10の正極と負極が入れ替われば、第2の群19に属する自転テーブル4の基材Wが作用極となり、第1の群18に属する自転テーブル4の基材Wが対極となる。 That is, when the base material W of the rotation table 4 belonging to the first group 18 acts as a working electrode and a CVD film is formed on the base W side, the base of the rotation table 4 belonging to the second group 19 is formed. The material W becomes a counter electrode (opposite electrode). When the positive electrode and the negative electrode of the plasma generating power source 10 are switched, the base material W of the rotation table 4 belonging to the second group 19 becomes the working electrode, and the base material W of the rotation table 4 belonging to the first group 18 is the counter electrode. It becomes.
 つまり、上述の構成であれば、基材Wは対極となっても、回転テーブル5や真空チャンバ2の筐体が対極になることはない。それ故、これらの部材はプラズマ生成のためのグロー放電発生用電極としては作用しない。仮に絶縁皮膜が長時間の運転で厚く堆積したとしても、プラズマの不安定化が発生せず、膜質や厚みにバラツキのないCVD皮膜を安定的に生産することも可能となる。また、これらの部材は放電発生電極として作用していないため、原料ガスを分解するプラズマに直接的にはさらされない。このため、従来技術に比べてこれらの部材には皮膜が堆積しにくい。このため、皮膜の厚い堆積が原因となるフレークの飛散も起りにくく、皮膜欠陥も発生しにくい。なお、金属含有のDLCに代表される皮膜は皮膜自身がやや導電性を有する。しかし、この場合も真空チャンバ52の筐体等に皮膜が堆積しにくく、フレークの飛散が起こりにくく、皮膜欠陥が発生しにくいとの効果は残る。加えて、金属含有DLCのような一定の導電性の皮膜を基材に形成する場合であっても、プラズマが弱いチャンバ部には膜質の悪い絶縁性を帯びた皮膜が形成される場合がある。このような場合にはプラズマの不安定化防止の効果も現れる。 That is, if it is the above-mentioned structure, even if the base material W becomes a counter electrode, the housing | casing of the turntable 5 and the vacuum chamber 2 will not become a counter electrode. Therefore, these members do not act as glow discharge generating electrodes for generating plasma. Even if the insulating film is deposited thick for a long time, plasma instability does not occur, and it is possible to stably produce a CVD film having no variation in film quality and thickness. Moreover, since these members do not act as discharge generating electrodes, they are not directly exposed to plasma that decomposes the source gas. For this reason, it is hard to deposit a film | membrane on these members compared with a prior art. For this reason, scattering of flakes caused by thick deposition of the film hardly occurs, and film defects are hardly generated. In addition, the coating itself represented by metal-containing DLC is somewhat conductive. However, in this case as well, there remains an effect that the film is difficult to be deposited on the housing of the vacuum chamber 52, flakes are hardly scattered, and film defects are hardly generated. In addition, even when a certain conductive film such as metal-containing DLC is formed on the base material, a film with poor insulating properties may be formed in the chamber portion where plasma is weak. . In such a case, the effect of preventing plasma destabilization also appears.
 このように、このプラズマCVD装置51においては、真空チャンバ52内には、アーク蒸発源6が設置されている。プラズマCVD法による皮膜形成を行いつつ、アーク蒸発源6を作動させることにより、添加元素を含むCVD皮膜の形成が可能である。より好ましくは、図10に示されるように、真空チャンバ52内に区画部材により区画された領域がある。この領域内にアーク蒸発源6が設置されている。図10に示されるように、アーク蒸発源6は矩形平板形状である。 Thus, in this plasma CVD apparatus 51, the arc evaporation source 6 is installed in the vacuum chamber 52. A CVD film containing an additive element can be formed by operating the arc evaporation source 6 while forming a film by plasma CVD. More preferably, as shown in FIG. 10, there is a region partitioned by a partition member in the vacuum chamber 52. An arc evaporation source 6 is installed in this region. As shown in FIG. 10, the arc evaporation source 6 has a rectangular flat plate shape.
 区画を区切る区画部材は、真空チャンバ52と電気的に接続されていて、アーク蒸発源6の陽極としても機能する。アーク蒸発源6に搭載した蒸発材料(ターゲット)は陰極として作用する。蒸発材料の表面に生成されるアークスポットからは、放電電流を運ぶ電子と、蒸発材料の蒸気とがイオン化した状態で噴出し、アーク蒸発源6の前にプラズマを形成する。プラズマ中の電子は、区画部材に流れ込み、区画部材は陽極として作用する。 The partition member that partitions the partition is electrically connected to the vacuum chamber 52 and also functions as an anode of the arc evaporation source 6. The evaporation material (target) mounted on the arc evaporation source 6 acts as a cathode. From the arc spot generated on the surface of the evaporation material, the electrons carrying the discharge current and the vapor of the evaporation material are ejected in an ionized state, and plasma is formed in front of the arc evaporation source 6. Electrons in the plasma flow into the partition member, and the partition member acts as an anode.
 区画を区切る区画部材には、開口が設けられている。この開口を通じてアーク放電で蒸発させた金属蒸気が基材に照射可能である。グロー放電プラズマで形成されるCVD皮膜の中に、金属が混合した皮膜の形成が可能となる。 * The partition member that divides the partition has an opening. Through this opening, the substrate can be irradiated with metal vapor evaporated by arc discharge. It is possible to form a film in which a metal is mixed in a CVD film formed by glow discharge plasma.
 一方で、金属の蒸気の供給に伴いアーク蒸発源で発生したプラズマは、グロー放電の状態に影響を及ぼす。しかし、グロー放電を励起する電力の調整によって、グロー放電の動作状態は制御可能である。プラズマCVDの成膜速度に関してはアーク蒸発源6の動作で制限されるものではない。 On the other hand, plasma generated in the arc evaporation source with the supply of metal vapor affects the state of glow discharge. However, the operating state of the glow discharge can be controlled by adjusting the power for exciting the glow discharge. The deposition rate of plasma CVD is not limited by the operation of the arc evaporation source 6.
 区画領域の内部は、開口を通じて真空チャンバ52の基材W周辺の成膜領域と連通しているが、それ以外は雰囲気を遮断しており、異なるガス雰囲気に制御可能である。特に、区画領域にCVDの成膜ガスとは別種のガス(非成膜ガス)が供給されると、区画領域は成膜領域より高圧となり、非成膜ガスが成膜ガスの区画領域への流入を防止する。供給ガスは、好ましくは、不活性ガス(Ar、Ne、He、Kr、Xe等)である。また、反応性のガスであってもアーク蒸発源6の蒸発材料と化合したときに絶縁性の化合物を作らないガス、例えば窒素ガスでも良い。 The inside of the partition region communicates with the film forming region around the base material W of the vacuum chamber 52 through the opening, but the atmosphere is blocked except for that, and can be controlled to different gas atmospheres. In particular, when a gas other than the CVD film forming gas (non-film forming gas) is supplied to the partition region, the partition region has a higher pressure than the film forming region, and the non-film forming gas is supplied to the partition region of the film forming gas. Prevent inflow. The supply gas is preferably an inert gas (Ar, Ne, He, Kr, Xe, etc.). Further, even a reactive gas may be a gas that does not form an insulating compound when combined with the evaporation material of the arc evaporation source 6, such as nitrogen gas.
 このような状態でアーク蒸発源6を動作させると、区画領域に成膜ガスが流入してきたとしても、陽極として動作している区画領域の内面には導電性を維持した皮膜が形成可能である。そのため、従来問題となった放電の安定性を損なう絶縁性の皮膜は堆積せず、安定した操業が可能である。 When the arc evaporation source 6 is operated in such a state, even if the film forming gas flows into the partition region, a film that maintains conductivity can be formed on the inner surface of the partition region that is operating as the anode. . Therefore, an insulating film that impairs the stability of discharge, which has been a problem in the past, is not deposited, and stable operation is possible.
 なお、成膜時の圧力は、膜種と搭載した蒸発源によって好適な値は異なる。 In addition, the pressure at the time of film formation differs depending on the film type and the mounted evaporation source.
 アーク蒸発源6が搭載された場合、0.1Pa~10Pa程度の圧力が好ましい。ガスの成分にもよるが、0.1Pa未満では安定なグロー放電の発生が難しく、成膜速度はガス圧に依存するため、1Pa以上の圧力がより好ましい。10Paを超える圧力では圧力が高すぎてアーク蒸発源6から供給される金属元素が基材にまで到達しにくくるからである。 When the arc evaporation source 6 is mounted, a pressure of about 0.1 Pa to 10 Pa is preferable. Although depending on the gas component, if it is less than 0.1 Pa, it is difficult to generate a stable glow discharge, and the deposition rate depends on the gas pressure, so a pressure of 1 Pa or more is more preferable. This is because at a pressure exceeding 10 Pa, the pressure is too high and the metal element supplied from the arc evaporation source 6 does not easily reach the substrate.
 加えて、スパッタ蒸発源が搭載された場合、雰囲気中の成膜ガスの分圧をスパッタ蒸発源にCVD皮膜が堆積しない範囲にとどめるのが望ましい。成膜ガスの圧力は0.5Pa未満にする必要がある。 In addition, when a sputter evaporation source is installed, it is desirable to keep the partial pressure of the film forming gas in the atmosphere within a range where no CVD film is deposited on the sputter evaporation source. The pressure of the film forming gas needs to be less than 0.5 Pa.
 また、アーク蒸発源6が搭載されたプラズマCVD装置51においては、イオンボンバード処理を、アーク蒸発源6から供給する金属イオンを照射しながら、基材に500~1000Vの負の電圧を加えて行なうことも可能である。この処理をメタルイオンボンバードと呼ぶこともある。 In the plasma CVD apparatus 51 equipped with the arc evaporation source 6, ion bombarding is performed by applying a negative voltage of 500 to 1000 V to the substrate while irradiating metal ions supplied from the arc evaporation source 6. It is also possible. This process is sometimes called metal ion bombardment.
 ところで、上述したプラズマCVD装置51は、回転テーブル5上に6個の自転テーブル4を配置したものである。しかしながら、回転テーブル5上における自転テーブル4の数や並べ方には、さまざまなパターンが考えられる。 By the way, the plasma CVD apparatus 51 described above has six rotation tables 4 arranged on the rotation table 5. However, various patterns are conceivable for the number and arrangement of the rotating tables 4 on the rotating table 5.
<第6の実施形態>
 以下、本発明の第6の実施形態に係るプラズマCVD装置61について説明する。なお、第6の実施形態に係るプラズマCVD装置61は、上述した第5の実施形態に係るプラズマCVD装置51と回転テーブル5上の基材Wの保持状態が異なる。それ以外は、第5の実施形態と同じであるので、上述した説明と重複する部分についてはここでは繰り返さない。
<Sixth Embodiment>
Hereinafter, a plasma CVD apparatus 61 according to a sixth embodiment of the present invention will be described. Note that the plasma CVD apparatus 61 according to the sixth embodiment differs from the plasma CVD apparatus 51 according to the fifth embodiment described above in the holding state of the substrate W on the turntable 5. Other than that, it is the same as the fifth embodiment, and therefore, the same parts as those described above are not repeated here.
 本発明の第6の実施形態に係るプラズマCVD装置61は、第3の実施形態に係るプラズマCVD装置31または第4の実施形態に係るプラズマCVD装置41の構成に加えて、皮膜供給源としてのスパッタ蒸発源6を備える。すなわち、このプラズマCVD装置61では、2つの回転テーブル5の両方に蒸気が供給可能であるようにスパッタ蒸発源6が設置されている。このように構成すると、プラズマCVDの被覆は、2つの回転テーブル5上に搭載した2群の基材間に生じるグロー放電によって形成される。成膜ガスの分解はもっぱら基材周辺で発生し、真空チャンバ62には付着しにくい。結果として、添加元素供給用として設置したスパッタ蒸発源6を長時間、安定的に動作させることができる。 The plasma CVD apparatus 61 according to the sixth embodiment of the present invention is a film supply source in addition to the configuration of the plasma CVD apparatus 31 according to the third embodiment or the plasma CVD apparatus 41 according to the fourth embodiment. A sputter evaporation source 6 is provided. That is, in this plasma CVD apparatus 61, the sputter evaporation source 6 is installed so that vapor can be supplied to both of the two rotary tables 5. With this configuration, the plasma CVD coating is formed by glow discharge generated between the two groups of substrates mounted on the two turntables 5. Decomposition of the film forming gas occurs exclusively around the base material and hardly adheres to the vacuum chamber 62. As a result, the sputter evaporation source 6 installed for supplying the additive element can be stably operated for a long time.
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。 The specific embodiments described above mainly include inventions having the following configurations.
 即ち、本発明の保護膜の形成方法は、複数の導電性の基材の表面にプラズマCVD法により保護膜を形成する方法であって、前記複数の基材を2つの群に分け、一方の群と他方の群およびチャンバとは電気的に絶縁された状態で基材をチャンバ内に搭載するステップと、前記チャンバ内を真空状態にするステップと、成膜ガスを含むプロセスガスを前記チャンバ内に供給すると共に、前記2つの群の基材間に交流電力を供給することにより前記基材間に放電プラズマを生成させて前記基材の表面に保護膜を形成するステップと、を含むことを特徴とする。 That is, the method for forming a protective film of the present invention is a method of forming a protective film on the surface of a plurality of conductive substrates by plasma CVD, and the plurality of substrates are divided into two groups, Mounting a substrate in the chamber in a state in which the group and the other group and the chamber are electrically insulated; setting a vacuum state in the chamber; and supplying a process gas including a deposition gas in the chamber And forming a protective film on the surface of the substrate by generating discharge plasma between the substrates by supplying AC power between the two groups of substrates. Features.
 好ましくは、前記保護膜を形成するステップでは、前記一方の群が負の電位となり放電プラズマ生成に主体的な役割を果たす作用極として動作すると共に前記他方の群は正の電位となりその対極として動作する第1の状態と、前記第1の状態と電位の正負が入れ替わった第2の状態とを、時間的に交互に繰り返して前記2つの群の基材間に放電プラズマを生成させるように構成することができる。 Preferably, in the step of forming the protective film, the one group becomes a negative potential and operates as a working electrode which plays a main role in generating discharge plasma, and the other group becomes a positive potential and operates as a counter electrode. The first state to be performed and the second state in which the first state and the positive / negative of the potential are switched are alternately and temporally repeated to generate discharge plasma between the two groups of base materials. can do.
 さらに好ましくは、前記交流電力は、正弦波形、正負交互の矩形波形、連続した同一極性のパルス群が交互に現れる波形、および、正弦波形に矩形波パルスを重畳した波形のうちの少なくともいずれか1つの波形により表されるように構成することができる。 More preferably, the AC power is at least one of a sine waveform, a positive and negative alternating rectangular waveform, a waveform in which successive pulses of the same polarity appear alternately, and a waveform in which a rectangular wave pulse is superimposed on a sine waveform. It can be configured to be represented by two waveforms.
 さらに好ましくは、前記交流電力の周波数は1kHz~1MHzの範囲内であるように構成することができる。 More preferably, the frequency of the AC power can be configured to be within a range of 1 kHz to 1 MHz.
 さらに好ましくは、前記交流電力の周波数は10kHz~400kHzの範囲内であるように構成することができる。 More preferably, the frequency of the AC power can be configured to be within a range of 10 kHz to 400 kHz.
 さらに好ましくは、前記基材に蒸発材料の蒸気を照射するステップをさらに含むように構成することができる。 More preferably, it may be configured to further include a step of irradiating the base material with vapor of evaporating material.
 さらに好ましくは、前記基材に蒸発材料の蒸気を照射しながら前記基材の表面に保護膜を形成するように構成することができる。 More preferably, a protective film can be formed on the surface of the base material while irradiating the base material with vapor of an evaporation material.
 さらに好ましくは、前記基材を回転させながら前記基材の表面に保護膜を形成するように構成することができる。 More preferably, a protective film can be formed on the surface of the base material while rotating the base material.
 さらに好ましくは、前記一方の群と前記他方の群とが対向する位置で前記基材を静止させて前記基材の表面に保護膜を形成することができる。 More preferably, a protective film can be formed on the surface of the base material by stopping the base material at a position where the one group and the other group face each other.
 本発明の保護膜の形成方法を用いることで、基材以外の部分にCVD皮膜が堆積しにくい。長期にわたり清掃を行なわずに安定操業が可能である。しかも、安定した成膜条件を維持しつつ生産効率が高い。そして、基材への密着性が高い保護膜を形成することができる。 By using the method for forming a protective film of the present invention, it is difficult for a CVD film to be deposited on portions other than the base material. Stable operation is possible without cleaning for a long time. In addition, production efficiency is high while maintaining stable film formation conditions. And a protective film with high adhesiveness to a base material can be formed.
 ところで、本発明は上述した各実施形態に限定されるものではなく、発明の本質を変更しない範囲で各部材の形状、構造、材質、組み合わせなどを適宜変更可能である。また、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。 By the way, the present invention is not limited to the above-described embodiments, and the shape, structure, material, combination, and the like of each member can be appropriately changed without changing the essence of the invention. Further, in the embodiment disclosed this time, matters that are not explicitly disclosed, for example, operating conditions and operating conditions, various parameters, dimensions, weights, volumes, and the like of a component deviate from a range that a person skilled in the art normally performs. However, matters that can be easily assumed by those skilled in the art are employed.

Claims (9)

  1.  複数の導電性の基材の表面にプラズマCVD法により保護膜を形成する方法であって、
     前記複数の基材を2つの群に分け、一方の群と他方の群およびチャンバとは電気的に絶縁された状態で前記基材を前記チャンバ内に搭載するステップと、
     前記チャンバ内を真空状態にするステップと、
     成膜ガスを含むプロセスガスを前記チャンバ内に供給すると共に、前記2つの群の基材間に交流電力を供給することにより前記基材間に放電プラズマを生成させて前記基材の表面に保護膜を形成するステップと、
    を含む保護膜の形成方法。
    A method of forming a protective film on the surface of a plurality of conductive substrates by plasma CVD,
    Dividing the plurality of substrates into two groups, mounting the substrate in the chamber in a state where one group and the other group and the chamber are electrically insulated; and
    Creating a vacuum in the chamber;
    A process gas including a film forming gas is supplied into the chamber, and an alternating current power is supplied between the two groups of substrates to generate discharge plasma between the substrates to protect the surface of the substrate. Forming a film;
    A method for forming a protective film comprising:
  2.  前記保護膜を形成するステップでは、前記一方の群が負の電位となり前記放電プラズマの生成に主体的な役割を果たす作用極として動作すると共に前記他方の群は正の電位となりその対極として動作する第1の状態と、前記第1の状態と電位の正負が入れ替わった第2の状態とを、時間的に交互に繰り返して前記2つの群の基材間に前記放電プラズマを生成させる、
    請求項1に記載の保護膜の形成方法。
    In the step of forming the protective film, the one group becomes a negative potential and operates as a working electrode that plays a main role in generating the discharge plasma, and the other group becomes a positive potential and operates as a counter electrode. The first state and the second state in which the first state and the positive / negative of the potential are interchanged are alternately repeated in time to generate the discharge plasma between the two groups of substrates.
    The method for forming a protective film according to claim 1.
  3.  前記交流電力は、正弦波形、正負交互の矩形波形、連続した同一極性のパルス群が交互に現れる波形、および、正弦波形に矩形波パルスを重畳した波形のうちの少なくともいずれか1つの波形により表される、
    請求項1に記載の保護膜の形成方法。
    The AC power is expressed by at least one of a sine waveform, a positive and negative alternating rectangular waveform, a waveform in which consecutive pulses of the same polarity appear alternately, and a waveform in which a rectangular wave pulse is superimposed on a sine waveform. To be
    The method for forming a protective film according to claim 1.
  4.  前記交流電力の周波数は、1kHz~1MHzの範囲内である、
    請求項1に記載の保護膜の形成方法。
    The frequency of the AC power is in the range of 1 kHz to 1 MHz.
    The method for forming a protective film according to claim 1.
  5.  前記交流電力の周波数は10kHz~400kHzの範囲内である、
    請求項4に記載の保護膜の形成方法。
    The frequency of the AC power is in the range of 10 kHz to 400 kHz.
    The method for forming a protective film according to claim 4.
  6.  前記基材に蒸発材料の蒸気を照射するステップをさらに含む、
    請求項1に記載の保護膜の形成方法。
    Further comprising irradiating the substrate with vapor of evaporating material;
    The method for forming a protective film according to claim 1.
  7.  前記基材に蒸発材料の蒸気を照射しながら前記基材の表面に保護膜を形成する、
    請求項6に記載の保護膜の形成方法。
    Forming a protective film on the surface of the base material while irradiating the base material with vapor of evaporating material;
    The method for forming a protective film according to claim 6.
  8.  前記基材を回転させながら前記基材の表面に保護膜を形成する、請求項1に記載の保護膜の形成方法。 The method for forming a protective film according to claim 1, wherein the protective film is formed on the surface of the base material while rotating the base material.
  9.  前記一方の群と前記他方の群とが対向する位置で前記基材を静止させて前記基材の表面に保護膜を形成する、請求項1に記載の保護膜の形成方法。 The method for forming a protective film according to claim 1, wherein the base material is stopped at a position where the one group and the other group face each other to form a protective film on the surface of the base material.
PCT/JP2013/007623 2012-12-27 2013-12-26 Method for forming protective film using plasma cvd method WO2014103318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-284929 2012-12-27
JP2012284929A JP2014125670A (en) 2012-12-27 2012-12-27 Method of forming protective film by plasma cvd method

Publications (1)

Publication Number Publication Date
WO2014103318A1 true WO2014103318A1 (en) 2014-07-03

Family

ID=51020433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007623 WO2014103318A1 (en) 2012-12-27 2013-12-26 Method for forming protective film using plasma cvd method

Country Status (2)

Country Link
JP (1) JP2014125670A (en)
WO (1) WO2014103318A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523309A (en) * 2014-07-16 2017-08-17 バイオトロニック アクチェンゲゼルシャフト Method and apparatus for coating a base body
CN113667990A (en) * 2021-07-28 2021-11-19 仪征纳环科技有限公司 Vacuum film removing machine for DLC film removing of piston ring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019023330A (en) * 2017-07-24 2019-02-14 キヤノン株式会社 Formation method of hydrogenated amorphous carbon film and manufacturing method of electrophotographic photoreceptor
CN110665768B (en) * 2019-07-26 2022-04-26 江苏菲沃泰纳米科技股份有限公司 Waterproof nano film and preparation method, application and product thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622240U (en) * 1985-06-20 1987-01-08
JPS62174383A (en) * 1986-01-28 1987-07-31 Mitsubishi Chem Ind Ltd Thin film deposition device
JPH0551953U (en) * 1991-12-12 1993-07-09 日新電機株式会社 Plasma processing device
JP2000096233A (en) * 1998-06-20 2000-04-04 Nissin Electric Co Ltd Carbon film and its formation, and carbon film coated article and its manufacture
JP2002504189A (en) * 1997-06-16 2002-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for vacuum coating of substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622240U (en) * 1985-06-20 1987-01-08
JPS62174383A (en) * 1986-01-28 1987-07-31 Mitsubishi Chem Ind Ltd Thin film deposition device
JPH0551953U (en) * 1991-12-12 1993-07-09 日新電機株式会社 Plasma processing device
JP2002504189A (en) * 1997-06-16 2002-02-05 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for vacuum coating of substrate
JP2000096233A (en) * 1998-06-20 2000-04-04 Nissin Electric Co Ltd Carbon film and its formation, and carbon film coated article and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523309A (en) * 2014-07-16 2017-08-17 バイオトロニック アクチェンゲゼルシャフト Method and apparatus for coating a base body
CN113667990A (en) * 2021-07-28 2021-11-19 仪征纳环科技有限公司 Vacuum film removing machine for DLC film removing of piston ring
CN113667990B (en) * 2021-07-28 2022-06-03 仪征纳环科技有限公司 Vacuum film removing machine for DLC film removing of piston ring

Also Published As

Publication number Publication date
JP2014125670A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
KR101578280B1 (en) Vacuum film formation device
JP6084032B2 (en) Steel-coated article and manufacturing method thereof
KR101948013B1 (en) Current Insulated Bearing Components and Bearings
CN106256927B (en) Film forming method and film forming apparatus
WO2014103228A1 (en) In-line plasma cvd device
JP2009133008A (en) Multilayer structure
EP2122006B1 (en) Methods and apparatus for forming diamond-like coatings
US20050136656A1 (en) Process for depositing composite coating on a surface
EP2738288A1 (en) Plasma cvd device
WO2014103318A1 (en) Method for forming protective film using plasma cvd method
CA2846434A1 (en) Stripping process for hard carbon coatings
JP5634962B2 (en) Vacuum deposition system
US20220127726A1 (en) Methods and apparatuses for deposition of adherent carbon coatings on insulator surfaces
JP2015224348A (en) Method of depositing diamond-like carbon film
JP2004292934A (en) Ion nitriding apparatus and deposition system using the same
US20120308810A1 (en) Coated article and method for making the same
JP6005536B2 (en) Plasma CVD apparatus with arc evaporation source
JP5634954B2 (en) Plasma CVD equipment
WO2012144580A1 (en) Amorphous carbon film and method for forming same
JP2010229552A (en) Method for manufacturing amorphous carbon-coated member
RU2773044C1 (en) Magnetron sputtering device
JPH10265955A (en) Formation of carbonaceous highly functional material thin film by electron beam-excited plasma cvd
US9230778B2 (en) Method for removing hard carbon layers
US20190122873A1 (en) Ion Source Device, Sputtering Apparatus and Method
JP2015059259A (en) Method of forming laminate coating including dlc film, and the laminate coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868461

Country of ref document: EP

Kind code of ref document: A1