JPH09283449A - Plasma chemical vapor deposition system - Google Patents

Plasma chemical vapor deposition system

Info

Publication number
JPH09283449A
JPH09283449A JP8092405A JP9240596A JPH09283449A JP H09283449 A JPH09283449 A JP H09283449A JP 8092405 A JP8092405 A JP 8092405A JP 9240596 A JP9240596 A JP 9240596A JP H09283449 A JPH09283449 A JP H09283449A
Authority
JP
Japan
Prior art keywords
electrode
substrate
cylindrical
plasma
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092405A
Other languages
Japanese (ja)
Inventor
Masayoshi Murata
正義 村田
Shoji Morita
章二 森田
Hirohisa Yoshida
博久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8092405A priority Critical patent/JPH09283449A/en
Publication of JPH09283449A publication Critical patent/JPH09283449A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Plasma Technology (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent contamination by particles generated at the time of high- speed deposition of an amorphous silicon (a-Si) film in the case where a plasma chemical vapor deposition system is applied to manufacture of a semiconductor thin film, such as, an amorphous silicon photosensitive drum. SOLUTION: A cylindrical RF electrode 31, a cylindrical heater (earth electrode) 33 and a cylindrical substrate 32 are arranged in parallel in a reactor 30. An RF power is supplied between both electrodes 31, 33 by an RF generator 37 and an impedance matching unit 38. In addition, a pair of electromagnetic coils 1-a, 1-b are arranged on the axes of the electrodes 31, 33 from outside of the reactor 30, and a DC power is supplied from a DC power supply 2. A reaction gas is fed to the electrode 31 from a feed tube 34 and guided between both electrodes 31, 33 by a gas emission tube 35, thereby generating a glow discharge plasma. Thus, an a-Si thin film is formed on the surface of the substrate 32. Electrons and particles in the plasma rotate around the magnetic line of force, increasing collision with gas molecules. Also, since the generated particles are negatively charged, the particles rotate around the magnetic line of force and do not migrate to the substrate 32. Thus, contamination by particles on the surface of the substrate 32 is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアモルファスシリコ
ン感光ドラム、太陽電池、光センサ及び半導体保護膜な
どの各種電子デバイスに使用される薄膜の製造に適用さ
れるプラズマ化学蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma chemical vapor deposition apparatus applied to the production of thin films used in various electronic devices such as amorphous silicon photosensitive drums, solar cells, photosensors and semiconductor protective films.

【0002】[0002]

【従来の技術】アモルファスシリコン(以下、a−Si
と記す)薄膜や窒化シリコン(以下、SiNxと記す)
薄膜を製造するために、従来より用いられているプラズ
マ化学蒸着装置(以下、プラズマCVD装置と称する)
の構成について、代表例を説明する。なお、薄膜を形成
する基板の形状は通常、平板及び円筒の2種類がある
が、ここでは、円筒形基板を対象にしたプラズマCVD
装置を示す。
2. Description of the Related Art Amorphous silicon (hereinafter a-Si)
Thin film and silicon nitride (hereinafter referred to as SiNx)
A plasma chemical vapor deposition apparatus (hereinafter referred to as a plasma CVD apparatus) which has been conventionally used for producing a thin film.
A typical example of the configuration will be described. The shape of the substrate on which the thin film is formed is usually of two types: flat plate and cylindrical. Here, plasma CVD for a cylindrical substrate is used.
The device is shown.

【0003】図5は従来の感光ドラムを製造するために
用いられるプラズマCVD装置の構成図である。同図に
おいて、反応容器30内には、外側円筒電極、すなわ
ち、円筒形高周波電極31、円筒形基板32及び内側円
筒電極、すなわち、接地電極を兼ねる円筒形ヒータ33
が基板ホルダ36と共に平行に配置されている。
FIG. 5 is a block diagram of a plasma CVD apparatus used for manufacturing a conventional photosensitive drum. In the figure, in the reaction vessel 30, an outer cylindrical electrode, that is, a cylindrical high-frequency electrode 31, a cylindrical substrate 32, and an inner cylindrical electrode, that is, a cylindrical heater 33 that also serves as a ground electrode.
Are arranged in parallel with the substrate holder 36.

【0004】なお、この高周波電極31にはガス吐出管
35が付属しており、図示しない反応ガス供給装置より
導入管34を通して、例えばモノシランと水素の混合ガ
スが供給され、該ガス吐出管35より上記高周波電極3
1と上記基板32の空間に上記混合ガスが吐出される。
反応容器30内のガスは、排気筒39を通して、図示し
ない真空ポンプ40を介して、排出される。
A gas discharge pipe 35 is attached to the high-frequency electrode 31, and a mixed gas of, for example, monosilane and hydrogen is supplied from a reaction gas supply device (not shown) through the introduction pipe 34, and the gas discharge pipe 35 is supplied. The high frequency electrode 3
The mixed gas is discharged into the space between 1 and the substrate 32.
The gas in the reaction container 30 is discharged through the exhaust pipe 39 and the vacuum pump 40 (not shown).

【0005】該高周波電極31には、高周波電源37か
らインピーダンス整合器38を介して、例えば13.5
6MHzの高周波電力が供給される。該ヒータ33は、
反応容器30とともに接地され、接地電極となってい
る。したがって、該高周波電極31と該ヒータ33、す
なわち基板32との間でグロー放電プラズマが発生す
る。
The high frequency electrode 31 is supplied to the high frequency electrode 31 from a high frequency power source 37 through an impedance matching device 38, for example, 13.5.
High-frequency power of 6 MHz is supplied. The heater 33 is
It is grounded together with the reaction container 30 and serves as a ground electrode. Therefore, glow discharge plasma is generated between the high frequency electrode 31 and the heater 33, that is, the substrate 32.

【0006】この装置を用いて、以下のようにしてa−
Si系薄膜を製造する。図示省略の真空ポンプを駆動し
て反応容器30内を排気する。反応ガス導入管34を通
して、例えばモノシランと水素の混合ガスを供給して反
応容器30内の圧力を0.5〜2.0Torrに保ち、高周
波電源37から高周波電極31に電圧をかけると、グロ
ー放電プラズマが発生する。
Using this device, a-
A Si-based thin film is manufactured. The inside of the reaction vessel 30 is evacuated by driving a vacuum pump (not shown). When a mixed gas of, for example, monosilane and hydrogen is supplied through the reaction gas introducing pipe 34 to maintain the pressure in the reaction container 30 at 0.5 to 2.0 Torr and a voltage is applied from the high frequency power supply 37 to the high frequency electrode 31, glow discharge occurs. Plasma is generated.

【0007】反応ガス吐出管35より吐出された上記混
合ガスは、グロー放電によって、SiH3 ,SiH2
どSiを含むラジカルに分解、解離される。その結果、
基板32表面にa−Si系薄膜が形成される。
The mixed gas discharged from the reactive gas discharge pipe 35 is decomposed and dissociated into radicals containing Si such as SiH 3 and SiH 2 by glow discharge. as a result,
An a-Si based thin film is formed on the surface of the substrate 32.

【0008】[0008]

【発明が解決しようとする課題】従来のプラズマCVD
装置では、a−Si膜形成の成膜速度を大きくすると、
下記理由により大量の粉が発生し、感光ドラムなどの製
造では問題である。すなわち、図5において、高周波電
極31と接地電極33の間に供給する高周波電力を0.
1〜1KW、反応ガスの圧力0.2〜2.0Torrとし、成
膜速度を5〜20Å/Sの高速にすると、プラズマ中で
粉すなわち、Si2 6 やSi3 8 などのポリマが発
生する。
SUMMARY OF THE INVENTION Conventional plasma CVD
In the apparatus, when the film formation rate for forming the a-Si film is increased,
A large amount of powder is generated for the following reasons, which is a problem in manufacturing a photosensitive drum and the like. That is, in FIG. 5, the high frequency power supplied between the high frequency electrode 31 and the ground electrode 33 is 0.
When the film formation rate is set to a high speed of 5 to 20 Å / S and the pressure of the reaction gas is set to 1 to 1 KW and the pressure of the reaction gas is set to 0.2 to 2.0 Torr, powders such as polymers such as Si 2 H 6 and Si 3 H 8 are generated in the plasma. appear.

【0009】その結果、a−Si膜は光導電率の低下や
ピンホールの発生などにより品質が著しく低下し、感光
ドラムや太陽電池などへの実用化が困難である。したが
って、膜質を低下せずに成膜速度を向上させることは非
常に困難であった。
As a result, the quality of the a-Si film is remarkably deteriorated due to deterioration of photoconductivity and generation of pinholes, and it is difficult to put it into practical use for a photosensitive drum, a solar cell and the like. Therefore, it is very difficult to improve the film forming speed without deteriorating the film quality.

【0010】[0010]

【課題を解決するための手段】本発明はこのような課題
を解決するために次の手段を提供する。
The present invention provides the following means in order to solve such a problem.

【0011】反応容器と;同反応容器内に反応ガスを供
給する反応ガス吐出孔と;前記容器内の反応ガスを排出
する反応ガス排出孔と;前記反応容器内に設置された内
側円筒電極及び外側円筒電極から構成の一対の放電用円
筒電極と;同放電用円筒電極にグロー放電発生用電力を
供給する電源と;前記放電用円筒電極の内側と外側円筒
電極間に配置される円筒基板を加熱するヒータと;前記
放電用円筒電極の軸芯と同じ軸芯をもち、前記反応容器
外に配置された電磁コイルと;同電磁コイルに電力を供
給する直流電源とを具備してなり、前記円筒基板に前記
反応ガスによる薄膜を形成することを特徴とするプラズ
マ化学蒸着装置。
A reaction container; a reaction gas discharge hole for supplying a reaction gas into the reaction container; a reaction gas discharge hole for discharging the reaction gas in the container; an inner cylindrical electrode installed in the reaction container; A pair of discharge cylindrical electrodes composed of outer cylindrical electrodes; a power supply for supplying electric power for glow discharge generation to the discharge cylindrical electrodes; and a cylindrical substrate arranged between the inner and outer cylindrical electrodes of the discharge cylindrical electrodes. A heater for heating; an electromagnetic coil having the same axis as the axis of the discharge cylindrical electrode and arranged outside the reaction container; and a direct current power source for supplying electric power to the electromagnetic coil, A plasma-enhanced chemical vapor deposition device, comprising forming a thin film of the reaction gas on a cylindrical substrate.

【0012】本発明は、上記の手段において、反応容器
に反応ガス、例えば、モノシランと水素の混合ガスを所
定量導入し、反応ガス吐出孔より一対の放電用円筒電極
間に供給する。一対の電極間のヒータには近接して円筒
基板が配置されており、一対の電極間には電源より高周
波電力が供給され、かつ、電磁コイルには直流電源より
直流電力が供給されて、このコイルで磁場を発生させ
る。磁場が発生すると、上記電極間にグロー放電プラズ
マが形成される。ここで、反応容器内圧力は、例えば、
2.0Torr以下、磁場の強さは、40〜100ガウスと
する。
According to the present invention, in the above means, a predetermined amount of a reaction gas, for example, a mixed gas of monosilane and hydrogen is introduced into the reaction vessel and is supplied from the reaction gas discharge hole between the pair of discharge cylindrical electrodes. A cylindrical substrate is arranged close to the heater between the pair of electrodes, high frequency power is supplied from the power supply between the pair of electrodes, and direct current power is supplied to the electromagnetic coil from the direct current power supply. A magnetic field is generated by the coil. When a magnetic field is generated, glow discharge plasma is formed between the electrodes. Here, the pressure in the reaction vessel is, for example,
The magnetic field strength is set to 2.0 Torr or less and 40 to 100 Gauss.

【0013】この場合、プラズマ中の電子や荷電粒子
は、磁場、すなわち磁力線周りを回転するような運動を
起こす。すなわち、電子の反応ガス分子との衝突頻度は
著しく増大し、プラズマ密度が増大し、円筒基板表面に
形成されるa−Si薄膜形成の成膜速度は増大する。ま
た、プラズマ中に発生する粉、すなわちSi2 6 やS
3 8 などのポリマは一般的には負に帯電しているの
で、この磁力線周りを回転する運動を起し、円筒基板の
方向へは輸送されないようになる。
In this case, the electrons and charged particles in the plasma cause a motion of rotating around a magnetic field, that is, a line of magnetic force. That is, the frequency of collision of electrons with the reaction gas molecules is remarkably increased, the plasma density is increased, and the film formation rate for forming the a-Si thin film formed on the surface of the cylindrical substrate is increased. In addition, powder generated in plasma, that is, Si 2 H 6 and S
Since a polymer such as i 3 H 8 is generally negatively charged, it causes a motion of rotating around this magnetic field line and is not transported toward the cylindrical substrate.

【0014】この状況は後述の実施の形態で図3に基づ
いて説明するように、円筒基板の近傍をレーザ光で照射
し、その部分に浮遊している粉からの散乱光強度の計測
を行った結果、圧力0.5〜1Torrにおいて、磁場の強
さが50ガウス近傍で粉からの散乱光強度が急激に弱く
なることからも分かるものである。すなわち、一対の円
筒電極で形成される電場に対し、電磁コイルによって直
角に磁場を加えることにより、円筒基板表面近傍に輸送
されてくる粉の量が抑制され、a−Si薄膜形成におい
て膜中に混入する粉を抑制することになる。
In this situation, as will be described with reference to FIG. 3 in an embodiment to be described later, the vicinity of the cylindrical substrate is irradiated with laser light, and the scattered light intensity from the powder floating in that portion is measured. As a result, at a pressure of 0.5 to 1 Torr, it can be seen from the fact that the scattered light intensity from the powder suddenly weakens when the magnetic field intensity is around 50 Gauss. That is, by applying a magnetic field at right angles to the electric field formed by a pair of cylindrical electrodes with an electromagnetic coil, the amount of powder transported to the vicinity of the surface of the cylindrical substrate is suppressed, and the powder is formed in the film during a-Si thin film formation. It suppresses the mixed powder.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の一形態に係るプラズマ化学蒸着装置の構成図であ
る。図1において、符号30乃至31は図5の従来例と
同じ構成であるが、再度説明する。反応容器30内には
円筒形高周波電極31、円筒形基板32及び円筒形ヒー
タ33が基板ホルダ36とともに平行に配置されてい
る。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a configuration diagram of a plasma enhanced chemical vapor deposition apparatus according to an embodiment of the present invention. In FIG. 1, reference numerals 30 to 31 have the same configuration as the conventional example of FIG. 5, but will be described again. A cylindrical high frequency electrode 31, a cylindrical substrate 32, and a cylindrical heater 33 are arranged in parallel with a substrate holder 36 in the reaction container 30.

【0016】該高周波電極31には反応ガスを吐出する
ガス吐出管35が付属しており、図示しない反応ガス供
給装置より導入管34を通して、例えば、モノシランと
水素の混合ガスが供給され、該ガス吐出管35より該高
周波電極31と該基板32の間の空間に上記混合ガスが
吐出される。
A gas discharge pipe 35 for discharging a reaction gas is attached to the high-frequency electrode 31, and a mixed gas of, for example, monosilane and hydrogen is supplied from a reaction gas supply device (not shown) through an introduction pipe 34 to supply the gas. The mixed gas is discharged from the discharge pipe 35 into the space between the high frequency electrode 31 and the substrate 32.

【0017】反応容器30内のガスは、排気筒39を通
して図示しない真空ポンプ40を介して排出される。
The gas in the reaction container 30 is exhausted through an exhaust pipe 39 and a vacuum pump 40 (not shown).

【0018】該高周波電極31には、高周波電源37か
らインピーダンス整合器38を介して、例えば13.5
6MHzの高周波電力が供給される。該ヒータ33は、
反応容器30と共に接地され、接地電極となっている。
したがって、該高周波電極31と該ヒータ33との間、
すなわち基板32との間でグロー放電プラズマが発生す
る。
To the high frequency electrode 31, for example, 13.5 from a high frequency power source 37 through an impedance matching device 38.
High-frequency power of 6 MHz is supplied. The heater 33 is
It is grounded together with the reaction container 30 and serves as a ground electrode.
Therefore, between the high frequency electrode 31 and the heater 33,
That is, glow discharge plasma is generated with the substrate 32.

【0019】該反応容器30の外側には、一対の電磁コ
イル1−a及び電磁コイル1−bが、それぞれの軸芯が
上記円筒形ヒータ33及び円筒形高周波電極31の軸芯
と一致するように配置される。
Outside the reaction container 30, a pair of electromagnetic coils 1-a and 1-b are arranged so that their respective axes coincide with the axes of the cylindrical heater 33 and the cylindrical high-frequency electrode 31. Is located in.

【0020】直流電源2からの出力は、一対の電磁コイ
ル1−a,1−bに供給され、該一対のコイル1−a,
1−bは、上記ヒータ33及び基板32の軸芯と、同じ
方向の磁力線すなわち磁場Bを発生する。(以下、磁場
B、電場Eでの文字B及びEはベクトルを表す)。
The output from the DC power source 2 is supplied to a pair of electromagnetic coils 1-a, 1-b, and the pair of coils 1-a, 1-b
1-b generates magnetic lines of force, that is, a magnetic field B, in the same direction as the axes of the heater 33 and the substrate 32. (Hereinafter, the letters B and E in magnetic field B and electric field E represent vectors).

【0021】図2は図1の構成における接地電極33と
高周波電極31とが形成する電場E及び磁場Bの関係を
示し、(a)は両電極の水平面における電場の状態、
(b)はx,y,z軸での電場と磁場の関係を示してい
る。
FIG. 2 shows the relationship between the electric field E and the magnetic field B formed by the ground electrode 33 and the high frequency electrode 31 in the configuration of FIG. 1, (a) shows the state of the electric field on the horizontal plane of both electrodes,
(B) shows the relationship between the electric field and the magnetic field on the x, y, and z axes.

【0022】図2(a),(b)において、磁場Bと電
場Eの発生により、接地電極33と高周波電極31の内
に発生したプラズマ中の電子や荷電粒子は、それぞれE
×Bドリフトを受ける。また、電子は磁場Bにより、ラ
ーモア旋回運動をする。
In FIGS. 2A and 2B, electrons and charged particles in the plasma generated in the ground electrode 33 and the high frequency electrode 31 due to the generation of the magnetic field B and the electric field E are respectively E
Receives xB drift. In addition, the electrons make Larmor orbital motion by the magnetic field B.

【0023】これらの運動で電子の反応ガス分子との衝
突頻度は著しく増大し、プラズマ密度が増大するので、
a−Si薄膜形成の成膜速度は速くなる。更に、プラズ
マ中に発生する粉は一般的には負に帯電しているので、
磁力線の周りを回転するような運動をする。すなわち、
帯電した粉は磁場Bに補促されて、基板32の方向への
移動が抑制される。
Due to these movements, the collision frequency of electrons with the reaction gas molecules is remarkably increased, and the plasma density is increased.
The film formation rate for forming the a-Si thin film is high. Furthermore, since the powder generated in plasma is generally negatively charged,
It moves like rotating around the magnetic field lines. That is,
The charged powder is promoted by the magnetic field B, and its movement toward the substrate 32 is suppressed.

【0024】図3はこのような粉の基板32方向への移
動抑制効果を調査した結果である。円筒基板32の近傍
をレーザ光で照射し、その部分に浮遊している粉からの
散乱光強度の計測を行った結果、図3に示すようなデー
タが得られたものである。同図によると、圧力0.5〜
1Torrにおいて、磁場の強さが50ガウス近傍で粉から
の散乱光強度が急激に弱くなることが判った。
FIG. 3 shows the results of investigation of the effect of suppressing the movement of such powder in the direction of the substrate 32. As a result of irradiating the vicinity of the cylindrical substrate 32 with laser light and measuring the scattered light intensity from the powder floating in that portion, the data as shown in FIG. 3 was obtained. According to the figure, pressure 0.5 ~
It was found that at 1 Torr, the scattered light intensity from the powder suddenly weakened when the magnetic field intensity was around 50 gauss.

【0025】すなわち、一対の円筒電極31で形成され
る電場Eに対し、直角方向に磁場Bを加えることによ
り、基板表面近傍に輸送されてくる粉の量が抑制される
ということが見い出された。従って、このようなプラズ
マ化学蒸着装置は、a−Si薄膜形成において、膜中に
混入してくる粉の抑制に有効に作用するものである。
That is, it was found that by applying a magnetic field B in the direction perpendicular to the electric field E formed by the pair of cylindrical electrodes 31, the amount of powder transported to the vicinity of the substrate surface is suppressed. . Therefore, such a plasma-enhanced chemical vapor deposition apparatus effectively acts to suppress powder mixed in the film during the formation of the a-Si thin film.

【0026】上記に説明の実施の形態において、アモル
ファスシリコン薄膜を製造する具体例を説明する。図示
省略の真空ポンプにより反応容器30内を排気する。反
応容器30が充分に排気された後、例えば1×10-6
1×10-7Torrの圧力になった後、反応ガス吐出管35
から、例えばモノシランを100〜150cc/分程度の
流量で供給し、反応容器30内の圧力を0.2〜2.0
Torrに保つ。
A specific example of manufacturing an amorphous silicon thin film in the above-described embodiment will be described. The inside of the reaction vessel 30 is evacuated by a vacuum pump (not shown). After the reaction container 30 is sufficiently evacuated, for example, 1 × 10 −6
After reaching the pressure of 1 × 10 −7 Torr, the reaction gas discharge pipe 35
From the above, for example, monosilane is supplied at a flow rate of about 100 to 150 cc / min, and the pressure in the reaction vessel 30 is set to 0.2 to 2.0.
Keep on Torr.

【0027】高周波電源37からインピーダンス整合器
38を介して、高周波電極31に例えば13.56MH
z高周波電力200W〜1000Wを供給する。
From the high frequency power source 37 to the high frequency electrode 31 via the impedance matching device 38, for example, 13.56 MH.
z High-frequency power of 200 W to 1000 W is supplied.

【0028】一方、電磁コイル1−a,1−bに直流電
源2より直流電力を供給し、磁場の強さ10〜100ガ
ウスの磁場を該電磁コイル内に発生させる。
On the other hand, DC power is supplied from the DC power source 2 to the electromagnetic coils 1-a and 1-b to generate a magnetic field having a magnetic field strength of 10 to 100 gauss in the electromagnetic coils.

【0029】アモルファスシリコン薄膜の成膜速度は反
応ガス流量、圧力、高周波電力及び磁場の強さなどに依
存する。そこで、以下のような条件でアモルファス薄膜
を成膜した。
The film formation rate of the amorphous silicon thin film depends on the reaction gas flow rate, pressure, high frequency power and magnetic field strength. Therefore, an amorphous thin film was formed under the following conditions.

【0030】反応ガスとして100%モノシランを10
0cc/分の流量で供給し、反応容器30内の圧力を0.
2〜2.0Torrとした。高周波電力は500W、磁場の
強さは60ガウスとした。その成膜結果の一例を図4に
示す。
As reaction gas, 10% of 100% monosilane was used.
It is supplied at a flow rate of 0 cc / min and the pressure in the reaction vessel 30 is adjusted to 0.
It was set to 2 to 2.0 Torr. The high frequency power was 500 W and the strength of the magnetic field was 60 gauss. An example of the film formation result is shown in FIG.

【0031】このデータによると、圧力範囲0.2〜
2.0Torrにおいて、屈折率が3.2以上あるので、粉
の混入の無い良質の膜と判断される。なお、a−Siの
場合、粉の混入があると屈折率が3.2以下になるが、
図4に示す結果によれば屈折率は3.2以上であり、粉
の混入のないことを示している。
According to this data, the pressure range 0.2-
At 2.0 Torr, since the refractive index is 3.2 or more, it is judged that the film is a good quality film free from the inclusion of powder. In the case of a-Si, if powder is mixed, the refractive index will be 3.2 or less,
According to the results shown in FIG. 4, the refractive index is 3.2 or more, indicating that no powder is mixed.

【0032】[0032]

【発明の効果】以上、具体的に説明したように、本発明
は、反応容器、反応容器内の反応ガス吐出孔、反応ガス
排出孔、反応容器内に設置した一対の放電用円筒電極、
放電用円筒電極にグロー放電を発生させる電源、電極間
に配置される円筒基板を加熱するヒータ、放電用円筒電
極と同一軸芯となるように配置した電磁コイル及び電磁
コイルに電力を供給する直流電源とを備えた構成とした
ので次のような効果を奏する。
As described above in detail, the present invention provides a reaction container, a reaction gas discharge hole in the reaction container, a reaction gas discharge hole, a pair of discharge cylindrical electrodes installed in the reaction container,
Power source for generating glow discharge in the discharge cylinder electrode, heater for heating the cylindrical substrate arranged between the electrodes, electromagnetic coil arranged to have the same axis as the discharge cylinder electrode, and direct current for supplying power to the electromagnetic coil Since it is configured to include a power supply, the following effects are achieved.

【0033】(1)円筒形放電用電極の軸芯に平行な方
向をも磁場Bを電磁コイルで付加することにより、プラ
ズマにE×Bドリフト及び磁場B周りに負に帯電した粉
を回転させる運動を起こさせることが実現したため、プ
ラズマ内で発生し、成長する粉が基板上のa−Si膜へ
混入しなくなった。
(1) A magnetic field B is added by an electromagnetic coil also in a direction parallel to the axis of the cylindrical discharge electrode to rotate E × B drift and negatively charged powder around the magnetic field B in the plasma. Since the movement was realized, the powder generated and growing in the plasma did not mix with the a-Si film on the substrate.

【0034】(2)その結果、従来困難視されていたa
−Si膜高速成膜時のa−Si膜への粉混入に伴う膜質
の低下が防止可能となった。したがって、a−Si感光
ドラム、太陽電池及び光センサなどの製造分野での工業
的価値は著しく大きいものがある。
(2) As a result, a, which was conventionally regarded as difficult,
-Si film It became possible to prevent deterioration of film quality due to mixing of powder into the a-Si film during high-speed film formation. Therefore, the industrial value thereof in the manufacturing field of a-Si photosensitive drums, solar cells, photosensors, and the like is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係るプラズマ化学蒸着
装置の構成図である。
FIG. 1 is a configuration diagram of a plasma enhanced chemical vapor deposition apparatus according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係るプラズマ化学蒸着
装置の作用を示す図で、(a)は電極の水平平面におけ
る電場の状態、(b)はx,y,z軸上での電場と磁場
の関係を、それぞれ示す。
FIG. 2 is a diagram showing an operation of the plasma enhanced chemical vapor deposition apparatus according to the embodiment of the present invention, in which (a) shows a state of an electric field in a horizontal plane of an electrode, and (b) shows x, y, z axes. The relationship between the electric field and the magnetic field is shown respectively.

【図3】本発明の実施の一形態に係るプラズマ化学蒸着
装置で得られた粉からの散乱光の特性図である。
FIG. 3 is a characteristic diagram of scattered light from powder obtained by the plasma chemical vapor deposition apparatus according to the embodiment of the present invention.

【図4】本発明の実施の一形態に係るプラズマ化学蒸着
装置で得られた特性図で、(a)は成膜速度、(b)は
屈折率、(c)は光導電率、(d)は暗導電率、をそれ
ぞれ示す。
FIG. 4 is a characteristic diagram obtained by a plasma chemical vapor deposition apparatus according to an embodiment of the present invention, where (a) is a film forming rate, (b) is a refractive index, (c) is a photoconductivity, and (d) is ) Indicates dark conductivity, respectively.

【図5】従来の円筒形放電用電極を用いたプラズマ化学
蒸着装置の構成図である。
FIG. 5 is a configuration diagram of a plasma chemical vapor deposition apparatus using a conventional cylindrical discharge electrode.

【符号の説明】[Explanation of symbols]

1−a,1−b 電磁コイル 2 直流電源 30 反応容器 31 円筒形高周波電極 32 円筒形基板 33 円筒形ヒータ 34 導入管 35 ガス吐出管 36 基板ホルダ 37 高周波電源 38 インピーダンス整合器 1-a, 1-b Electromagnetic coil 2 DC power supply 30 Reaction container 31 Cylindrical high frequency electrode 32 Cylindrical substrate 33 Cylindrical heater 34 Introducing pipe 35 Gas discharge pipe 36 Substrate holder 37 High frequency power supply 38 Impedance matching device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 31/04 H01L 31/04 V ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // H01L 31/04 H01L 31/04 V

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応容器と;同反応容器内に反応ガスを
供給する反応ガス吐出孔と;前記容器内の反応ガスを排
出する反応ガス排出孔と;前記反応容器内に設置された
内側円筒電極及び外側円筒電極から構成の一対の放電用
円筒電極と;同放電用円筒電極にグロー放電発生用電力
を供給する電源と;前記放電用円筒電極の内側と外側円
筒電極間に配置される円筒基板を加熱するヒータと;前
記放電用円筒電極の軸芯と同じ軸芯をもち、前記反応容
器外に配置された電磁コイルと;同電磁コイルに電力を
供給する直流電源とを具備してなり、前記円筒基板に前
記反応ガスによる薄膜を形成することを特徴とするプラ
ズマ化学蒸着装置。
1. A reaction vessel; a reaction gas discharge hole for supplying a reaction gas into the reaction vessel; a reaction gas discharge hole for discharging the reaction gas in the vessel; an inner cylinder installed in the reaction vessel. A pair of discharge cylinder electrodes composed of an electrode and an outer cylinder electrode; a power supply for supplying glow discharge generation power to the discharge cylinder electrode; a cylinder arranged between the inner and outer cylinder electrodes of the discharge cylinder electrode A heater for heating the substrate; an electromagnetic coil having the same axis as the axis of the discharge cylindrical electrode and arranged outside the reaction container; and a direct current power source for supplying electric power to the electromagnetic coil. A plasma-enhanced chemical vapor deposition apparatus comprising: forming a thin film of the reaction gas on the cylindrical substrate.
JP8092405A 1996-04-15 1996-04-15 Plasma chemical vapor deposition system Pending JPH09283449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092405A JPH09283449A (en) 1996-04-15 1996-04-15 Plasma chemical vapor deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092405A JPH09283449A (en) 1996-04-15 1996-04-15 Plasma chemical vapor deposition system

Publications (1)

Publication Number Publication Date
JPH09283449A true JPH09283449A (en) 1997-10-31

Family

ID=14053514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092405A Pending JPH09283449A (en) 1996-04-15 1996-04-15 Plasma chemical vapor deposition system

Country Status (1)

Country Link
JP (1) JPH09283449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450286B1 (en) * 2001-11-15 2004-10-15 국제엘렉트릭코리아 주식회사 Chemical vapor deposition apparatus using plasma
TWI422288B (en) * 2009-09-11 2014-01-01 Univ Nat Formosa High dissociation rate plasma generation method and application device thereof
CN111569803A (en) * 2020-05-13 2020-08-25 山东师范大学 Device and method for catalytically reforming greenhouse gas by using plasma

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450286B1 (en) * 2001-11-15 2004-10-15 국제엘렉트릭코리아 주식회사 Chemical vapor deposition apparatus using plasma
TWI422288B (en) * 2009-09-11 2014-01-01 Univ Nat Formosa High dissociation rate plasma generation method and application device thereof
CN111569803A (en) * 2020-05-13 2020-08-25 山东师范大学 Device and method for catalytically reforming greenhouse gas by using plasma

Similar Documents

Publication Publication Date Title
US4532199A (en) Method of forming amorphous silicon film
EP0574100B1 (en) Plasma CVD method and apparatus therefor
JPH06287760A (en) Plasma treating device and treatment
EP0230788B1 (en) Method for preparation of multi-layer structure film
JPH0456448B2 (en)
EP0342113B1 (en) Thin film formation apparatus
WO2004083486A1 (en) Method and apparatus for plasma cdv by use of ultrashort wave
US5129359A (en) Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate
JPS6248753B2 (en)
JPH0459390B2 (en)
JPH02133577A (en) Formation of deposited film by microwave plasma cvd and device therefor
JPH09283449A (en) Plasma chemical vapor deposition system
JPH08333684A (en) Formation of deposited film
JP2730693B2 (en) Thin film formation method
US5718769A (en) Plasma processing apparatus
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
JP3281796B2 (en) Plasma chemical vapor deposition equipment
JP2798225B2 (en) High frequency plasma CVD equipment
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JPH0411626B2 (en)
JP2867150B2 (en) Microwave plasma CVD equipment
JPS6227575A (en) Formation of film
JP2002332572A (en) Film deposition apparatus
JPS59131517A (en) Formation of amorphous silicon film
JPH06196407A (en) Method and device for forming deposited film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723