JPS6383271A - Production of diamond-like carbon film - Google Patents

Production of diamond-like carbon film

Info

Publication number
JPS6383271A
JPS6383271A JP22644386A JP22644386A JPS6383271A JP S6383271 A JPS6383271 A JP S6383271A JP 22644386 A JP22644386 A JP 22644386A JP 22644386 A JP22644386 A JP 22644386A JP S6383271 A JPS6383271 A JP S6383271A
Authority
JP
Japan
Prior art keywords
carbon
film
substrate
active species
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22644386A
Other languages
Japanese (ja)
Inventor
Noriko Kurihara
栗原 紀子
Keiji Hirabayashi
敬二 平林
Keiko Ikoma
生駒 圭子
Susumu Ito
進 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22644386A priority Critical patent/JPS6383271A/en
Publication of JPS6383271A publication Critical patent/JPS6383271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form the title diamond-like carbon film having high hardness and an excellent insulating property on the surface of a substrate with good productivity by introducing an active species formed by an electron cyclotron resonance method and a carbon-contg. gas into a vacuum vessel wherein the film forming substrate is arranged. CONSTITUTION:Gaseous H2 is introduced from an inlet pipe 7 into a plasma producing chamber 1-1 provided with a magnet 3 as a carrier gas, and an H2 plasma active species formed by an electron cyclotron resonance method using a microwave generator 2 and the magnet 3 is introduced into the vacuum reaction chamber 1-2. The substrate 4 heated to about 300 deg.C by a heater 5 is arranged in the vacuum reaction chamber 1-2, and a carbon-contg. gas such as CH4 is supplied directly before the substrate. Diamond-like carbon film having high hardness and extremely low electric conductivity is formed on the substrate 4 by the reaction with the H2 plasma active species.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、装飾用被膜、工作物品用被膜、電子デバイス
用被膜に利用されるダイヤモンド状炭素膜の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a diamond-like carbon film used as a decorative coating, a coating for workpieces, and a coating for electronic devices.

[従来の技術] ダイヤモンド状炭素膜の製造方法の1つに低圧合成法か
あり、これまてに提案されている方法としては、熱CV
D法、プラズマCVD法(PCVD法)、イオンビーム
法(IB法)、イオンプレーテインク法(IP法)等が
ある。
[Prior art] One of the methods for manufacturing diamond-like carbon films is low-pressure synthesis, and the methods that have been proposed so far include thermal CV
D method, plasma CVD method (PCVD method), ion beam method (IB method), ion plate ink method (IP method), etc.

これ等の方法は、水素ガスをキャリアガスとして炭素含
有ガスを成膜空間に導入し600〜1300°C程度に
加熱した基体」二に熱分解して成膜する(熱CVD法)
か又は前記の導入ガスを成膜空間中てプラズマ状態にし
て炭素を含有する活性種(C)を生成し、該活性種又は
該活性種より派生して生成された他の活性種を基体表面
に衝突させて成膜する(PCVD法)、イオン化した炭
素又は炭素含有ガスの活性種を生成し、該活性種を電界
により基体表面側に加速して衝突させることでr&膜す
る(IB法及びIP法)。
In these methods, carbon-containing gas is introduced into the film-forming space using hydrogen gas as a carrier gas, and the substrate is heated to approximately 600 to 1,300°C.
Alternatively, the introduced gas is brought into a plasma state in the film forming space to generate carbon-containing active species (C), and the active species or other active species derived from the active species are applied to the substrate surface. (PCVD method), active species of ionized carbon or carbon-containing gas are generated, and the active species are accelerated and collided with the surface of the substrate by an electric field to form an r& film (IB method and IP Law).

この他に電子サイクロトロン共鳴法(ECR)によりダ
イヤモンド状炭素膜を製造する方法かある。例えば、E
CRプラズマの吹き出し口に加速電圧をかけイオンを引
き出しダイヤモンド状炭素膜を製造する方法(特開6O
−103099)、ECRプラズマ発生室てダイヤモン
ド状炭素膜を製造する方法(特開6O−103098)
、荷電粒子を間欠的に堆積室に差し向ける方法(特開6
0−195092などが知られてる。
Another method is to manufacture a diamond-like carbon film by electron cyclotron resonance (ECR). For example, E
A method for producing a diamond-like carbon film by applying an accelerating voltage to the CR plasma outlet to draw out ions (Unexamined Japanese Patent Publication No. 6O
-103099), method for producing diamond-like carbon film in ECR plasma generation chamber (JP-A-6O-103098)
, a method of intermittently directing charged particles to a deposition chamber (Unexamined Japanese Patent Publication No. 6)
0-195092 etc. are known.

[解決すべき問題点] しかし乍ら、上記従来の方法においては、炭素含有ガス
と水素ガスとを混合状態て成膜空間に導入して、これ等
のガスを混合状態て同時に活性化し分解するのて、水素
ガスより生成される活性種(以後、「活性種(H)」と
表記し、励起分子、イオン種、ラジカル種を意味する。
[Problems to be Solved] However, in the conventional method described above, carbon-containing gas and hydrogen gas are introduced into the film forming space in a mixed state, and these gases are simultaneously activated and decomposed in the mixed state. Active species generated from hydrogen gas (hereinafter referred to as "active species (H)", meaning excited molecules, ion species, and radical species).

)と炭素含有活性種(以後、「活性種(C)」と表記し
、励起分子、イオン種、ラジカル種を意味する。)の生
成が同時に起きて仕舞い、夫々の活性種の生成割合及び
活性化度を独立に制御することか出来ず、膜設計の自由
度に可成りの制約かある。
) and carbon-containing active species (hereinafter referred to as "active species (C)", meaning excited molecules, ionic species, and radical species) occur simultaneously, and the production rate and activity of each active species It is not possible to independently control the degree of oxidation, and there are considerable restrictions on the degree of freedom in membrane design.

熱CVD法、PCVD法の場合には、成膜中の真空度か
比較的低い為に、又、IB法やIP法の場合には、活性
種か生成する位置から成膜用の基体表面まての距離か長
い為に、生成した炭素含有活性種(C)か基体表面に到
達する前に該活性種同志か衝突して、タイヤセント状炭
素膜(sp3構造の炭素か主体として含有される炭素膜
)の成膜には、不都合な活性種が生成され、これか原因
でSP2構造、SP構造の炭素か主体として含有される
炭素膜(電気伝導度が高い、ビッカース硬度が低い)か
形成され易い。又、原料ガスの種類によっては、分子量
の大きな炭素含有活性種か生じ、該活性種か成膜用の基
体上に形成される膜表面に衝突して、膜表面をエツチン
グやスパッTタリンクする為に成膜速度が抑制されると
いう問題もある。
In the case of the thermal CVD method and PCVD method, the degree of vacuum during film formation is relatively low, and in the case of the IB method and IP method, the distance from the position where active species are generated to the substrate surface for film formation is Because of the long distance, the generated carbon-containing active species (C) collide with each other before reaching the substrate surface, resulting in a tire cent-like carbon film (mainly containing carbon with sp3 structure). In the formation of a carbon film), undesirable active species are generated, and this causes the formation of a carbon film (high electrical conductivity, low Vickers hardness) that mainly contains SP2 structure or SP structure carbon. easy to be Also, depending on the type of raw material gas, carbon-containing active species with a large molecular weight are generated, and these active species collide with the surface of the film formed on the substrate for film formation, causing etching or sputtering of the film surface. Another problem is that the film formation rate is suppressed.

又、熱CVD法やPCVD法の様に炭素含有活性種(C
)の生成と成膜とを同一の空間て行う場合には、該空間
を形成する真空堆積室の内壁面が煤等の付着により汚染
され、該汚染か原因で所期の目的とする膜特性を有する
成膜が出来ない、或はIB法の様に活性種の生成室と成
膜室とを分離した構造とした場合においても、矢張り活
性種生成室の内壁面の汚染は避けられない。この為、成
膜の都度真空堆積装置の内壁面の洗浄か必要となり生産
性及び量産性の点て問題があった。
In addition, carbon-containing active species (C
) and film formation are performed in the same space, the inner wall surface of the vacuum deposition chamber that forms the space becomes contaminated with adhesion of soot, etc., and this contamination may cause the desired film properties to deteriorate. Even if it is not possible to form a film with a 100% active species, or if the active species generation chamber and film formation chamber are separated from each other as in the IB method, contamination of the inner wall surface of the active species generation chamber is unavoidable. . For this reason, it is necessary to clean the inner wall surface of the vacuum deposition apparatus each time a film is formed, which poses problems in terms of productivity and mass production.

ECR法においても上記の点は問題であった。The above points were also a problem in the ECR method.

[目 的] 本発明は、上記の点に鑑み成されたものてあって、従来
の問題点を解決出来るタイヤセント状炭素膜の製造法を
提案することを主たる目的とする。
[Purpose] The present invention has been made in view of the above points, and its main purpose is to propose a method for producing a tire cent-like carbon film that can solve the conventional problems.

本発明の別の目的はSP2構造及びsp構造の炭素の含
有を抑制し、SP3構造の炭素を主体として含有する膜
質な有し、電気伝導度か極めて小さくビッカース硬度の
高い炭素膜が容易に作成され得るダイヤモンド状炭素膜
の製造方法を提案することである。
Another object of the present invention is to suppress the inclusion of SP2 structure and sp structure carbon, and to easily create a carbon film containing mainly SP3 structure carbon, with extremely low electrical conductivity and high Vickers hardness. The purpose of the present invention is to propose a method for manufacturing a diamond-like carbon film that can be produced using a diamond-like carbon film.

本発明の更に別の目的は、生産性・量産性に優れたダイ
ヤモンド状炭素膜の製造方法を提案するととてもある。
Still another object of the present invention is to propose a method for manufacturing a diamond-like carbon film with excellent productivity and mass production.

[問題点を解決するための手段] 本発明の前記目的は、成膜用の基体が配されている成膜
空間中に、電子サイクロトロン共鳴法により生成される
活性種を第一の導入手段より導入し、第二の導入手段よ
り炭素含有ガスを導入して成膜する事によって達成され
る。
[Means for Solving the Problems] The object of the present invention is to introduce active species generated by an electron cyclotron resonance method into a film forming space in which a film forming substrate is arranged by a first introducing means. This is achieved by introducing a carbon-containing gas from the second introducing means and forming a film.

[作 用] 上述した本発明のタイヤセント状炭素膜の製造方法によ
れば、SP2構造及びSP構造の炭素の含有が従来にく
らべて極めて少なくsp’構造の炭素か主体として含有
される炭素膜を従来に較べ高効率て再現性良く作成する
ことか出来、□真空堆積装置自体の洗浄も従来の様にす
る必要はない。
[Function] According to the above-described method for producing a tire cent-shaped carbon film of the present invention, the content of carbon having the SP2 structure and the SP structure is extremely small compared to conventional carbon films, and the carbon film mainly contains carbon having the sp' structure. can be produced with higher efficiency and better reproducibility than in the past, and there is no need to clean the vacuum deposition apparatus itself as in the past.

更に作成される膜は、SP″構造の炭素を主体として含
有する膜質である為に、硬度の点においても従来法で作
成されるダイヤモンド状炭素膜と比べても勝るとも劣る
ことのない、且つ電気的品質も良好て電気伝導度もIQ
−IIΩ−Icm″′以下と極めて小さいのて装飾用被
膜、工作物品用被膜、半導体のパッシベーション用膜、
更には新規電子デバイスを構成する膜に適するものであ
る。
Furthermore, since the produced film mainly contains carbon with an SP'' structure, it is comparable in hardness to diamond-like carbon films produced by conventional methods. Good electrical quality and IQ electrical conductivity
Extremely small decorative coatings, coatings for workpieces, and passivation coatings for semiconductors, which are as small as -IIΩ-Icm″′ or less,
Furthermore, it is suitable for films constituting new electronic devices.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明によるダイヤモンド状炭素膜の製造方法は、前記
した点を特徴とするか、更に具体的に好適態様例として
示せばECR法によって生成される活性種としては水素
ガスより生成される活性種(H)か使用され、該活性種
か第一の導入手段の導入口より成膜室に導入され、これ
とは別に炭素含有ガスを別の導入手段の導入口より成膜
室に導入されて、夫々を基体表面近傍で混合し、基体表
面にダイヤモンド状炭素膜を生成するものであり、その
時の炭素含有活性種(C)の平均自由行程(又)か炭素
含有ガスの導入手段の導入口と基体との間の距離より長
くなるように、真空堆積室の成膜中の圧力か調整される
。この圧力の調整は導入される活性種(H)、炭素含有
原料ガス夫々の流量、排気系の排気速度等を制御するこ
とて実行される。
The method for producing a diamond-like carbon film according to the present invention is characterized by the above points, and more specifically, as a preferred embodiment, the active species produced by the ECR method include the active species produced from hydrogen gas ( H) is used, the active species is introduced into the film forming chamber from the inlet of the first introducing means, and separately from this, a carbon-containing gas is introduced into the film forming chamber from the inlet of another introducing means, These are mixed near the substrate surface to form a diamond-like carbon film on the substrate surface, and the mean free path (also) of the carbon-containing active species (C) at that time or the inlet of the carbon-containing gas introduction means is The pressure in the vacuum deposition chamber during film formation is adjusted so that the distance is longer than the distance from the substrate. This pressure adjustment is carried out by controlling the flow rates of the introduced active species (H), the carbon-containing raw material gas, the exhaust speed of the exhaust system, and the like.

本発明においては、成膜用の基体に負の電場をかけるこ
とて、正のイオンのプラズマの引き出しを効率よく行い
、特にプラズマが不安定なときには、負電圧(−5v〜
200V)を与える事とで、プラズマを安定化させ、均
一な膜を就ける事かできる。
In the present invention, by applying a negative electric field to the substrate for film formation, positive ion plasma is efficiently extracted.
By applying a voltage of 200 V), the plasma can be stabilized and a uniform film can be formed.

更に炭素含有ガスをパルス化するととて、水素かスプラ
ズマにより膜中のsp、sp2混成炭素を取り除くこと
かてきる。本発明に用いられる炭素含有ガスはCHs 
、C2H6,C:l HA、C6H12などの鎖状及び
脂環炭化水素、CH,OH。
Furthermore, by pulsing the carbon-containing gas, it is possible to remove the sp and sp2 hybrid carbon in the film using hydrogen gas plasma. The carbon-containing gas used in the present invention is CHs
, C2H6, C:l HA, linear and alicyclic hydrocarbons such as C6H12, CH, OH.

C,H,OHなどのアルコール、CF、、C2F6など
のハロゲン化物あるいはアルデヒド、ケトンや有機金属
化合物などを単独であるいは2種以上を混合して用いる
ことかできる。
Alcohols such as C, H, OH, halides such as CF, C2F6, aldehydes, ketones, organometallic compounds, etc. can be used alone or in combination of two or more.

笥 次に本発明の実地例を示す。笥 Next, a practical example of the present invention will be shown.

蜘 一実地例1 第1図は、真空容器l、マイクロ発生器2、磁8からな
っている。更に真空容器はプラズマ発生室1−1、反応
室1−2からなっている。磁石3より発生ずる磁場の大
きさは、マイクロ波の周波数をVと、v−e−B/2に
 mの関係を満たすようにした。m、eは、それぞれ電
子の質量、電荷である。
Spider Example 1 Figure 1 consists of a vacuum container 1, a micro generator 2, and a magnet 8. Furthermore, the vacuum vessel is comprised of a plasma generation chamber 1-1 and a reaction chamber 1-2. The magnitude of the magnetic field generated by the magnet 3 was made to satisfy the relationship between the microwave frequency V and v-e-B/2 m. m and e are the mass and charge of an electron, respectively.

まずチャンバ1を排気し、基板の温度を300°Cに設
定した。ガスラインH2ガス200SCCM、ガスライ
ン8よりメタンガス5CCMを導入した。圧力は、2.
0×弓Torrて流量が安定したところて、周波数2゜
45GHz、600Wのマイクロ波及び875ガウスの
磁場を印加かした。H2プラズマによって活性化される
メタンの導入位置を基板の直前にした。堆積速度は、平
均10 p m / hてあった。又、暗導電率は、1
0−9Ω−’cm−’て、光学的バンドギャップは、2
.3eVであった。又、ラマンスペクトルては、133
2cm−’のダイヤモンドに帰属されるピークか確認さ
れた。これは、他のプラズマCVD法に比べると(堆積
速度〜1)1 m / h、メタン濃度1%)堆積速度
か速く、硬さ、光学的バンドギャップ、電気伝導度など
の点において遜色はなかった。
First, chamber 1 was evacuated and the temperature of the substrate was set at 300°C. 200 SCCM of H2 gas was introduced into the gas line, and 5 CCM of methane gas was introduced through the gas line 8. The pressure is 2.
Once the flow rate was stabilized at 0.times.torr, microwaves of 600 W at a frequency of 2.degree. 45 GHz and a magnetic field of 875 Gauss were applied. The introduction position of methane activated by H2 plasma was set just before the substrate. The deposition rate was on average 10 pm/h. Also, the dark conductivity is 1
0-9Ω-'cm-', the optical bandgap is 2
.. It was 3 eV. Also, the Raman spectrum is 133
It was confirmed that the peak belonged to diamond at 2 cm-'. Compared to other plasma CVD methods, this method has a faster deposition rate (deposition rate ~1) of 1 m/h, methane concentration of 1%), and is comparable in terms of hardness, optical band gap, electrical conductivity, etc. Ta.

[比較例1] 実施例1と同様な条件でメタンを水素ガスと同じ位置8
′、プラズマの吹き出し口8″の2つの方法で導入した
。実施例1の結果と共に膜の性質を表1に示す。
[Comparative Example 1] Methane was placed at the same position 8 as hydrogen gas under the same conditions as Example 1.
' and plasma outlet 8''. The properties of the film are shown in Table 1 along with the results of Example 1.

[実施例2] 実施例1と同様の条件で、基体4に負電位9を印加した
。堆請速度は、実施例1より落ち8μm/hとなったか
、暗導電率は下がり、1〇−目〜10−1″Ω″I c
 m ”’ Iとなった。光学ギャップは2.8eVと
なり、膜は無色となった。
[Example 2] Under the same conditions as in Example 1, a negative potential 9 was applied to the substrate 4. The deposition speed was 8 μm/h, which was lower than that in Example 1, and the dark conductivity was lower, and from the 10th to the 10th -1″Ω″ I c
m''' I. The optical gap was 2.8 eV, and the film was colorless.

[実施例3] 実施例1と同様の成膜条件で成膜した。たたしCH,ガ
スは、周期20s、パルスiJ 10 sて導入した。
[Example 3] A film was formed under the same film forming conditions as in Example 1. The gas was introduced with a period of 20 s and a pulse iJ 10 s.

4時間の堆積で、IΔ導電率IQ−12〜IQ−+4Ω
−1c m 伺、光学ギャップ3.2eVの膜が生成で
きた。ラマンスペクトルも1580 cm−’の石墨に
帰属される強度が減少した。
After 4 hours of deposition, IΔ conductivity IQ-12 to IQ-+4Ω
A film with an optical gap of -1 cm and an optical gap of 3.2 eV was produced. The Raman spectrum also showed a decrease in the intensity attributable to graphite at 1580 cm-'.

[実施例41 実施例1と同様の条件て成膜した。たたし、メタンガス
に82H60,01モル%を混入した。
[Example 41 A film was formed under the same conditions as in Example 1. Then, 60.01 mol% of 82H was mixed into the methane gas.

この膜では光伝導か観測され、暗電導率は10−1′〜
10−’Ω−ICIn−1、光導電率比は103〜lO
″てあった。
Photoconduction was observed in this film, and the dark conductivity was 10-1'~
10-'Ω-ICIn-1, photoconductivity ratio is 103~1O
"There was.

(発明の効果) 以」二説明したように、炭素含有ガスの導入位置を工夫
し、基体に電圧をかけ、炭素含有ガスの導入をパルス化
する事て、炭素含有ガスの濃度を高くしたダイヤモンド
状炭素膜の高速堆積が可能となり、更にまた、sp、s
p2混威の炭素原子の寄与の少ない光学ギャップの広い
膜の堆積か可能になった。また、炭素原子以外の元素を
膜中に導入する事で光導電性の膜を生成てきた。
(Effects of the Invention) As explained below, by devising the introduction position of the carbon-containing gas, applying voltage to the substrate, and pulsing the introduction of the carbon-containing gas, diamonds with a high concentration of carbon-containing gas were produced. It becomes possible to deposit carbon films at high speed, and furthermore, sp, s
It has now become possible to deposit a film with a wide optical gap, with less contribution from p2-enhanced carbon atoms. Photoconductive films have also been produced by introducing elements other than carbon atoms into the film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ダイヤモンド成度素膜合成用ECR装置を示
す。 1 真空容器、1−1  プラズマ発生室、1−2 反
応室。 2 マイクロ波発振機 3 81石 4 基体 5 基体過熱ヒーター 6 排気系 7 水素ガス導入管 8.8′、8″、炭素含有ガス導入管 9 直流電源
FIG. 1 shows an ECR apparatus for synthesizing a diamond grown elementary film. 1 vacuum container, 1-1 plasma generation chamber, 1-2 reaction chamber. 2 Microwave oscillator 3 81 stones 4 Substrate 5 Substrate overheating heater 6 Exhaust system 7 Hydrogen gas introduction pipe 8.8', 8'', carbon-containing gas introduction pipe 9 DC power supply

Claims (1)

【特許請求の範囲】[Claims] 成膜用の基体が配されている成膜空間中に、電子サイク
ロトロン共鳴法により生成される活性種を第一の導入手
段より導入し、第二の導入手段より炭素含有ガスを導入
して成膜する事を特徴とするダイヤモンド状炭素膜の製
造方法。
Active species generated by electron cyclotron resonance are introduced into a film forming space in which a film forming substrate is placed through a first introducing means, and a carbon-containing gas is introduced through a second introducing means to form a film. A method for producing a diamond-like carbon film.
JP22644386A 1986-09-25 1986-09-25 Production of diamond-like carbon film Pending JPS6383271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22644386A JPS6383271A (en) 1986-09-25 1986-09-25 Production of diamond-like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22644386A JPS6383271A (en) 1986-09-25 1986-09-25 Production of diamond-like carbon film

Publications (1)

Publication Number Publication Date
JPS6383271A true JPS6383271A (en) 1988-04-13

Family

ID=16845186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22644386A Pending JPS6383271A (en) 1986-09-25 1986-09-25 Production of diamond-like carbon film

Country Status (1)

Country Link
JP (1) JPS6383271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385092A (en) * 1986-09-26 1988-04-15 Tdk Corp Production of diamond film
JPH02111695A (en) * 1988-10-20 1990-04-24 Res Dev Corp Of Japan Production of diamond carbon thin film
EP0967844A1 (en) * 1998-06-24 1999-12-29 Commissariat A L'energie Atomique Method for ECR plasma deposition of electron emitting carbon layers under the effect of an applied electric field
US6423383B1 (en) * 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385092A (en) * 1986-09-26 1988-04-15 Tdk Corp Production of diamond film
US6423383B1 (en) * 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
JPH02111695A (en) * 1988-10-20 1990-04-24 Res Dev Corp Of Japan Production of diamond carbon thin film
JPH0521875B2 (en) * 1988-10-20 1993-03-25 Shingijutsu Jigyodan
EP0967844A1 (en) * 1998-06-24 1999-12-29 Commissariat A L'energie Atomique Method for ECR plasma deposition of electron emitting carbon layers under the effect of an applied electric field
FR2780601A1 (en) * 1998-06-24 1999-12-31 Commissariat Energie Atomique ELECTRONIC CYCLOTRON RESONANCE PLASMA DEPOSIT PROCESS OF CARBON LAYERS EMITTING ELECTRONS UNDER THE EFFECT OF AN APPLIED ELECTRIC FIELD

Similar Documents

Publication Publication Date Title
US7125588B2 (en) Pulsed plasma CVD method for forming a film
EP1918967B1 (en) Method of forming a film by deposition from a plasma
JPS6383271A (en) Production of diamond-like carbon film
JPH0420984B2 (en)
JP2626339B2 (en) Thin film forming equipment
JPH0420985B2 (en)
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS5935092A (en) Vapor-phase synthesis of diamond
JPS6383270A (en) Production of diamond-like carbon film
JPS6379971A (en) Production of diamondlike carbon film
RU2788258C1 (en) Gas jet method for deposition of diamond films with activation in microwave discharge plasma
JPS619577A (en) Plasma chemical vapor phase growing method
JPH031377B2 (en)
JPS60176224A (en) Plasmic chemical vapor-deposition method
JP2715277B2 (en) Thin film forming equipment
JPS63241183A (en) Treatment of object
JPH0254758A (en) Thin film-forming equipment
JPH0361371A (en) Thin film forming device
JPS6277465A (en) Formation of amorphous silicon film
JPH0814022B2 (en) How to remove unwanted materials
JPS6130040A (en) Thin film forming apparatus
JPH05330986A (en) Production of thin film of diamond
JPH01298098A (en) Production of diamondlike carbon film
JPH0248494A (en) Method for preparing carbon
JPH01203294A (en) Production of diamond film