JPS6130040A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPS6130040A
JPS6130040A JP15106484A JP15106484A JPS6130040A JP S6130040 A JPS6130040 A JP S6130040A JP 15106484 A JP15106484 A JP 15106484A JP 15106484 A JP15106484 A JP 15106484A JP S6130040 A JPS6130040 A JP S6130040A
Authority
JP
Japan
Prior art keywords
plasma
chamber
thin film
discharge
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15106484A
Other languages
Japanese (ja)
Inventor
Atsushi Sekiguchi
敦 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP15106484A priority Critical patent/JPS6130040A/en
Publication of JPS6130040A publication Critical patent/JPS6130040A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To deposite high quality thin films on a substrate placed within a chamber by providing the main and auxiliary plasma chambers connected to each other within a reactor, generating and maintaining the stable plasma within the main chamber, guiding such plasma to the auxiliary chamber and stably maintaining weak plasma. CONSTITUTION:A substrate 7 is heated 6 up to a specified temperature, a substrate holder 3 is grounded or set 23 to a specified potential 24, and a reaction gas is supplied 18 after adjustment of flow rate through a valve 11 and a needle valve 32. The reaction chamber 1 is kept at the specified degree of vacuum with the pumps 26, 28. A high frequency voltage is applied to an electrode 19 from a power supply 5, the main plasma 8 is stably maintained by forming the main follow cathode discharge within the main chamber 80 at the pressure of 5X 10<-1>Torr with a discharge trigger 31. Thereby dispersion can be prevented with the grounded grid 22 and it is effectively extracted to the auxiliary chamber 81. The plasma in the chamber 81 is lowered but since high density plasma is successively supplied from the chamber 80, discharge is maintained stably. According to this apparatus, a high quality Si3N4 thin film can be formed, for example, on the Si substrate 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はLSI等の半導体装置の製造等に用いる放電プ
ラズマを利用する薄膜作成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film forming apparatus that utilizes discharge plasma and is used in the manufacture of semiconductor devices such as LSIs.

(従来技術とその問題点) 第5図に従来一般に用いられているプラズマCVD装置
を示した。1は必要に応じて気密に保つことのできる反
応容器であり、この反応容器1内に設置された高周波印
加電極2へ高周波電源5から気密封止用の絶縁体4を通
して高周波印加電極2へ高周波電圧が印加される。一方
、基板ホルダー3は接地電極を兼ねており、ヒーター6
により基板7を所定の温度まで加熱することができる。
(Prior art and its problems) FIG. 5 shows a conventionally commonly used plasma CVD apparatus. Reference numeral 1 denotes a reaction vessel that can be kept airtight as required, and a high-frequency power source 5 passes a high-frequency wave from a high-frequency power source 5 to a high-frequency applying electrode 2 installed in the reaction vessel 1 through an insulator 4 for airtight sealing. A voltage is applied. On the other hand, the substrate holder 3 also serves as a ground electrode, and the heater 6
The substrate 7 can be heated to a predetermined temperature.

9は所定の気体の導入方向を示しており、所定の気体は
バルブ11を通して反応容器1内に導入される。
Reference numeral 9 indicates the direction of introduction of a predetermined gas, and the predetermined gas is introduced into the reaction vessel 1 through a valve 11 .

一方[2は排気の方向であり、反応容器1からバルブ1
3を通して気体が排気される。
On the other hand, [2 is the direction of exhaust, from reaction vessel 1 to valve 1
Gas is exhausted through 3.

この種の従来のプラズマCVD装置では、プラズマ8の
安定して得られる圧力領域が0.5〜a T。
In this type of conventional plasma CVD apparatus, the pressure range in which the plasma 8 can be stably obtained is 0.5 to aT.

rr付近に限定されるために、動作圧力は専らこの範囲
内の圧力が使用されている。
Since the pressure is limited to around rr, the operating pressure is exclusively within this range.

この装置の場合、放電そのものは0.ITorr付近ま
で維持することが可能であるが、0,5 Torrより
低い圧力領域では僅かな放電条件の変化(たとえば高周
波マツチングのずれ、ガス流量、圧力の変化等)により
プラズマの状態が大きく変わるため安定したプラズマを
得ることができず、良質な膜を作成することが不可能と
なるのである。たとえば日型アネルバ■製プラズマCV
D装置PBD−301,401型では動作圧力が0.5
〜l Torrとなっている。
In the case of this device, the discharge itself is 0. Although it is possible to maintain temperatures close to ITorr, in the pressure region lower than 0.5 Torr, the state of the plasma changes significantly due to slight changes in discharge conditions (for example, deviations in high frequency matching, changes in gas flow rate, pressure, etc.) It is not possible to obtain stable plasma, and it becomes impossible to create a high-quality film. For example, the plasma CV manufactured by Nikkei ANELVA
D device PBD-301, 401 type has an operating pressure of 0.5
~l Torr.

さて電子温度T。を高くするためには圧力pを下げるこ
とが有効である。しかし前記のように従来の第5図のよ
うな装置には動作圧力を0.5 Tor、r以下にする
とプラズマ8が不安定となる欠点があり、この不安定の
故に良質の薄膜を堆積させることが困難である。
Now, the electronic temperature T. In order to increase the pressure p, it is effective to lower the pressure p. However, as mentioned above, the conventional apparatus shown in FIG. 5 has the disadvantage that the plasma 8 becomes unstable when the operating pressure is lower than 0.5 Torr, and this instability makes it difficult to deposit a high-quality thin film. It is difficult to do so.

もともと良質な膜は所以ウィークプラズマ、即ち弱い放
電プラズマの中で得られることが知られている。
It is known that films of good quality can be obtained in weak plasma, that is, weak discharge plasma.

例えばホローカソード放電やマグネトロン放電のような
強い放電は0.5 Torr以下の低い圧力で十分安定
に動作するのであるが、しかし、これらはプラズマの密
度が高く、かつ、放射光の輝度が高いために、荷電粒子
および/または放射光による生成膜の損傷が大きくなり
、これらの放電プラズマの中に基板を設置したのでは、
良質の薄膜を得ることができない。また、ホローカソー
ド放電の放電プラズマの場合はスパッタリング作用が激
しくスパッタリングされた電極材料などが生成膜に混入
する不都合も生ずる。従って、従来の装置で得られるよ
うな弱い放電プラズマを0.5 Torr以下の十分低
い圧力で安定に維持することが出来るならば、その弱い
プラズマの中では極めて良質の薄膜を堆積できることが
予想される。
For example, strong discharges such as hollow cathode discharge and magnetron discharge operate sufficiently stably at low pressures of 0.5 Torr or less, but these discharges have high plasma density and high luminance of synchrotron radiation. However, if the substrate is placed in these discharge plasmas, the resulting film will be severely damaged by charged particles and/or synchrotron radiation.
It is not possible to obtain a good quality thin film. In addition, in the case of discharge plasma of hollow cathode discharge, the sputtering action is strong and sputtered electrode material etc. may be mixed into the produced film, resulting in the inconvenience. Therefore, if a weak discharge plasma such as that obtained with conventional equipment can be stably maintained at a sufficiently low pressure of 0.5 Torr or less, it is expected that extremely high quality thin films can be deposited in that weak plasma. Ru.

(発明の目的) 本発明はこの理想を実現し、電子温度を高め、気体の励
起、解離、イオン化等を有効、活発にすると共に、これ
を十分安定させ、弱い放電プラズマの中にて良質の薄膜
を作成することのできる薄膜作成装置を提供することを
目的とする。
(Objective of the invention) The present invention realizes this ideal, increases the electron temperature, makes gas excitation, dissociation, ionization, etc. effective and active, and also sufficiently stabilizes the excitation, dissociation, ionization, etc. of gas, and makes it possible to achieve high quality in weak discharge plasma. It is an object of the present invention to provide a thin film forming apparatus capable of forming thin films.

(発明の構成) 本発明は、反応容器内に、主、従、二つの連通したプラ
ズマ室を用意し、主たるプラズマ室で強い安定した主た
るプラズマを発生維持するとともに、そのプラズマを従
たるプラズマ室に導き出して、従たるプラズマ室の弱い
プラズマを安定に維持せし肋この従たるプラズマ室内に
設置した基板上に所定の薄膜を堆積させることで上記目
的を達成したものである。
(Structure of the Invention) The present invention provides two connected plasma chambers, a main and a sub-chamber, in a reaction vessel, generates and maintains a strong and stable main plasma in the main plasma chamber, and transfers the plasma to the sub-plasma chamber. The above objective is achieved by deriving the method to stably maintain the weak plasma in the secondary plasma chamber and depositing a predetermined thin film on the substrate placed in the secondary plasma chamber.

(実施例) 以下、図に基いて、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の一実施例であって、第5図に対応する
部材には同一符号を付しており、高周波電源5から気密
封止用の絶縁体16を通してホローカソード型高周波印
加電極19に高周波電圧が印加されている。21は電極
19のシールド板である。プラズマ8が安定に維持され
かつプラズマ8が広がらないよう主たるプラズマ室80
をシールドし、かつ、主たるプラズマ室80から有効に
従たるプラズマ8°を従たるプラズマ室81にむらなく
引き出すために、グリッド22が設けられている。本実
施例ではこ〜分4゛リッド22として、接地電位に保た
れたメツシュを用いている。
FIG. 1 shows an embodiment of the present invention, in which members corresponding to those in FIG. A high frequency voltage is applied to 19. 21 is a shield plate for the electrode 19. The main plasma chamber 80 is designed so that the plasma 8 is maintained stably and does not spread.
A grid 22 is provided to shield the main plasma chamber 80 and evenly draw out the secondary plasma 8° from the primary plasma chamber 80 to the secondary plasma chamber 81. In this embodiment, a mesh maintained at a ground potential is used as the four-dimensional lid 22.

従たるプラズマ室81内のプラズマは低密度でかつ光も
弱(所謂ウィークプラズマとなるが、ここには主たるプ
ラズマ室80内の高い密度のプラズマが継続して導出さ
れ補給されるため、放電は0.5 Torr以下の圧力
でも十分に安定に維持される。
The plasma in the secondary plasma chamber 81 has a low density and weak light (so-called weak plasma), but since the high-density plasma in the main plasma chamber 80 is continuously drawn out and replenished, the discharge does not occur. Sufficient stability is maintained even at pressures below 0.5 Torr.

グリッド22は”前述のように、専ら主たるプラズマ8
の閉じ込めと、従たるプラズマ8”の引出しおよび閉じ
込めをその任務とする。従って、グリッド22としては
、本実施例に示したメツシュのみならず、丸棒を組合わ
せた形状や平板に穴をあけた形状等様々の形状が可能で
ある。その選択によって従たるプラズマ8゛の均一性、
安定性を増、ずことが可能となる。また、グリッド22
に印加される電位も同様に、その形状に応じてコントロ
ールされるのが望ましく、時には浮遊電位状態にしたグ
リッドがすぐれた効果を発揮する。
As mentioned above, the grid 22 exclusively contains the main plasma 8.
Its mission is to confine the plasma 8" and extract and confine the plasma 8".Therefore, the grid 22 can be formed not only by the mesh shown in this embodiment, but also by a combination of round bars or by drilling holes in a flat plate. Various shapes are possible, such as the shape of
This makes it possible to increase stability. Also, grid 22
Similarly, it is desirable that the potential applied to the grid be controlled according to its shape, and sometimes a floating potential grid is effective.

所定の気体は9の方向からバルブ11を通してリング状
の吹き出し用のパイプ18の内側に多数設けられた小孔
から反応容器1内に供給され充満する。なお、この所定
の気体は、ニードルバルブ32により導入流量の微調整
が可能である。基板ホルダー3は絶縁物17で反応容器
1に取りつけられており、浮遊電位に保たれるかまたは
必要に応じ、スイッチ23を用いて接地電位にしたり、
あるいは電源24の出力電圧をこれに印加する。
A predetermined gas is supplied from the direction 9 through the valve 11 into the reaction vessel 1 through a large number of small holes provided inside the ring-shaped blow-off pipe 18, and the reaction vessel 1 is filled with the gas. Note that the flow rate of this predetermined gas introduced can be finely adjusted using the needle valve 32. The substrate holder 3 is attached to the reaction vessel 1 with an insulator 17, and is kept at a floating potential or, if necessary, set to a ground potential using a switch 23.
Alternatively, the output voltage of the power supply 24 is applied thereto.

26は荒引き用真空ポンプであり荒引きバルブ25を通
して反応容器1内を荒引きすることができる。27はメ
インバルブであり、28は高真空用真空ポンプである。
Reference numeral 26 denotes a vacuum pump for rough evacuation, which allows rough evacuation of the inside of the reaction vessel 1 through a rough evacuation valve 25. 27 is a main valve, and 28 is a high vacuum pump.

この高真空用ポンプ28としては、拡散ポンプ、ターボ
分子ポンプ、クライオポンプ等のポンプが用いられる。
As this high vacuum pump 28, a pump such as a diffusion pump, a turbomolecular pump, or a cryopump is used.

31は放電トリガであり、商用交流電圧ACI00■が
プラグ34.スイッチ33を通してfオントランス29
に導入され、ネオントランス29で得られた高電圧が絶
縁物15を貫通して反応容器1内に導入され、主放電の
放電トリガとして働く。
31 is a discharge trigger, and the commercial AC voltage ACI00■ is connected to the plug 34. f on transformer 29 through switch 33
The high voltage obtained by the neon transformer 29 is introduced into the reaction vessel 1 through the insulator 15, and serves as a discharge trigger for the main discharge.

第1図の構成の装置によれば、基板温度300℃で、導
入気体としてSiH,(分圧2.0X10−3Torr
)  、 NH3(分圧6,0XIO−3)(従って全
圧8゜0xlO−3Torr)  を選び、高周波電源
5に13.56 M Hz200Wの高周波電力を選ん
だ場合、5xlO−1Torrまでの低い圧力でも安定
した放電が得られ、Si基板7上に極めて優れた膜質の
窒化シリコン薄膜を得ることができた。
According to the apparatus having the configuration shown in FIG.
), NH3 (partial pressure 6,0XIO-3) (therefore, total pressure 8゜0xlO-3Torr), and if a high frequency power of 13.56 MHz 200W is selected as the high frequency power source 5, even at a low pressure of 5xlO-1Torr. A stable discharge was obtained, and a silicon nitride thin film of extremely excellent quality could be obtained on the Si substrate 7.

この窒化シリコン膜と第5図の従来型のプラズマCVD
装置で作成した窒化シリコン膜(SiH。
This silicon nitride film and the conventional plasma CVD method shown in FIG.
A silicon nitride film (SiH.

10 SCCM、  N 1(320SCCM、  N
280 SC(:M、  基板300℃)との赤外吸収
スペクトルを第2図に併記して示す。(1)は第1図の
装置で作成した膜の赤外吸収スペクトルであり、(2)
は従来型の第5図のプラズマCVD装置で作成した膜の
赤外吸収スペクトルである。なお、両者の膜の屈折率は
ともに2゜00で同じであった。
10 SCCM, N 1 (320 SCCM, N
The infrared absorption spectrum of 280 SC (:M, substrate 300°C) is also shown in FIG. (1) is the infrared absorption spectrum of the film prepared with the apparatus shown in Figure 1, and (2)
is an infrared absorption spectrum of a film produced using the conventional plasma CVD apparatus shown in FIG. Note that both films had the same refractive index of 2°00.

窒化シリコン膜では、5i−H結合およびN−H結合の
存在は膜質低下の原因となることが知られているが、本
実施例により作成した膜(1)は1180am−’の吸
収強度の比較によりN−H結合の含有量が可成り少なく
なっていることが推定される。この膜質の向上は、作動
圧力が低くなったために電子温度が上昇し、NH3の分
解が進んだためと考えられる。
In a silicon nitride film, it is known that the presence of 5i-H bonds and N-H bonds causes deterioration in film quality, but the film (1) prepared in this example has a comparison of absorption intensity of 1180 am-'. It is estimated that the content of N--H bonds is considerably reduced. This improvement in film quality is thought to be due to the lower operating pressure, which caused the electron temperature to rise and the decomposition of NH3 to progress.

更に第1図の装置では、導入ガスをSiH4のみとした
場合、a−3i:H膜中のHの含有量の非常に少ない膜
が得られるという優れた実験結果も確認されている。本
発明の他の実施例を第3図に示した。第1図に対応する
部材には同一符号を付しである。35はマグネット製の
高周波印加電極であり、この部分で生ずるマグネトロン
放電は高真空下で放電を維持する効果が著しい。安定な
放電が維持される圧力領域は、先述のグリッド22の電
位形状のほか、このマグネットの強度によっても異なる
が、たとえば、かなり粗雑な開放的グリッド22を用い
た場合でも、マグネット表面が約1000ガウスの磁束
密度の場合5xlO−3Torr付近の圧力に至るまで
安定した放電が得られることが確認されている。
Furthermore, in the apparatus shown in FIG. 1, excellent experimental results have been confirmed that when the introduced gas is only SiH4, an a-3i:H film with a very low H content can be obtained. Another embodiment of the invention is shown in FIG. Components corresponding to those in FIG. 1 are given the same reference numerals. Reference numeral 35 denotes a high frequency application electrode made of a magnet, and the magnetron discharge generated in this part has a remarkable effect of maintaining the discharge under high vacuum. The pressure range in which stable discharge is maintained varies depending on the potential shape of the grid 22 described above as well as the strength of the magnet, but for example, even if a fairly rough open grid 22 is used, the magnet surface is It has been confirmed that in the case of Gaussian magnetic flux density, stable discharge can be obtained up to pressures around 5xlO-3 Torr.

この第3図の装置で得られる堆積膜の膜質は、前記の第
1図のホローカソード型高周波印加電極を用いる実施例
と同様の傾向を示し、従来技術によって作成した膜の膜
質よりもはるかに良好の膜が得られた。
The quality of the deposited film obtained with the apparatus shown in FIG. 3 shows the same tendency as in the example using the hollow cathode type high-frequency application electrode shown in FIG. A good film was obtained.

更に、本発明の実施例を第4図に示す。第1図。Further, an embodiment of the present invention is shown in FIG. Figure 1.

第3図に対応する部材には同一の符号を付している。こ
の実施例は第1図に示した実施例の改良型であり7所定
の気体の一部あるいは全部を矢印9゜の如くバルブ11
゛またはニードルバルブ32″を通してホロ−カソード
型高周波印加電極19内部の主放電部に直接導入する構
成をもつ。この直接導入気体の濃厚2な強い主放電によ
って、その気体の励起、解離、また電離をより一層有効
に行うものである。
Components corresponding to those in FIG. 3 are given the same reference numerals. This embodiment is an improved version of the embodiment shown in FIG.
It has a structure in which the directly introduced gas is directly introduced into the main discharge part inside the hollow cathode type high frequency application electrode 19 through the needle valve 32. This will make it even more effective.

更に、第4図の装置を改良として、その電極部に第3図
に示したマグネット製の高周波印加電極35を用いるも
のもすぐれた効果を示した。
Furthermore, an improved version of the device shown in FIG. 4, in which the high-frequency applying electrode 35 made of a magnet shown in FIG. 3 was used in the electrode portion, also showed excellent effects.

なお、これら第1図、第3図、第4図の実施例の他にも
、放電電極の形状、構造、グリッドの形状、励磁の態様
を変えて0.5 Torr以下の圧力領域において安定
な主たるプラズマを発生させ、かつ、この発生部より、
従たるプラズマを導き出してこの従たるプラズマにより
基板上に膜を堆積させる装置は様々に構成できる。本発
明は上記実施例の各構造にとられれるものではない。
In addition to the embodiments shown in Figs. 1, 3, and 4, the shape and structure of the discharge electrode, the shape of the grid, and the mode of excitation were changed to create a structure that is stable in a pressure region of 0.5 Torr or less. Generate the main plasma, and from this generation part,
The apparatus for directing the secondary plasma and depositing the film on the substrate with the secondary plasma can be configured in a variety of ways. The present invention is not limited to each structure of the above embodiments.

(発明の効果) 本発明は以上説明した通りであって、薄膜製造プロセス
において極めて良質の薄膜を生成するものである。本発
明が半導体製造装置および他の成膜装置に寄与するとこ
ろは大きく、工業上有為の発明ということができる。
(Effects of the Invention) As explained above, the present invention produces extremely high quality thin films in a thin film manufacturing process. The present invention greatly contributes to semiconductor manufacturing equipment and other film forming equipment, and can be said to be an industrially useful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の一実施例を示した図である
。 第2図は従来プラズマCVD装置により作成した膜の赤
外吸収スペクトルと、本発明による高真空プラズマCV
D装置により作成した膜の赤外吸収スペクトルを示した
図である。 第3図、第4図は本発明の他の実施例を示した図である
。 第5図は従来のプラズマCVD装置を示した図である。 1   反応容器、 3   基板ホルダー、 5   高周波電源、 6 − ヒーター、 7 ° 基板、 8   主たるプラズマ、 8゛   従たるプラズマ、 22    グリッド、 80   主たるプラズマ室、 81   従たるプラズマ室。 特許出願人  日電アネルバ株式会社 FIG、2
FIG. 1 shows an embodiment of the apparatus according to the invention. Figure 2 shows the infrared absorption spectrum of a film created using a conventional plasma CVD device and the high vacuum plasma CVD method of the present invention.
FIG. 3 is a diagram showing an infrared absorption spectrum of a film produced by apparatus D. FIGS. 3 and 4 are diagrams showing other embodiments of the present invention. FIG. 5 is a diagram showing a conventional plasma CVD apparatus. 1 reaction vessel, 3 substrate holder, 5 high frequency power supply, 6 - heater, 7 ° substrate, 8 main plasma, 8 ° secondary plasma, 22 grid, 80 main plasma chamber, 81 secondary plasma chamber. Patent applicant: Nichiden Anelva Co., Ltd. FIG. 2

Claims (6)

【特許請求の範囲】[Claims] (1)所定の気体を反応容器内に導入し、放電によって
生ずる該気体のプラズマを用いて薄膜を作成する薄膜作
成装置において、5×10^−^1Torr以下の圧力
の主たるプラズマ室で安定した主たるプラズマ放電を発
生維持するとともに、そのプラズマを従たるプラズマ室
に導き出してこの従たるプラズマ放電を維持せしめ、該
従たるプラズマ室に設置した基板上に所定の薄膜を堆積
させることを特徴とする薄膜作成装置。
(1) In a thin film production device that introduces a specified gas into a reaction vessel and creates a thin film using the plasma of the gas generated by electric discharge, the main plasma chamber has a stable pressure of 5 x 10^-^1 Torr or less. It is characterized by generating and maintaining a main plasma discharge, guiding the plasma to a secondary plasma chamber to maintain this secondary plasma discharge, and depositing a predetermined thin film on a substrate placed in the secondary plasma chamber. Thin film creation device.
(2)該主たるプラズマ放電がホローカソード放電およ
び/またはマグネトロン放電である。特許請求の範囲第
1項記載の薄膜作成装置。
(2) The main plasma discharge is a hollow cathode discharge and/or a magnetron discharge. A thin film forming apparatus according to claim 1.
(3)該主たるプラズマ室に直接的に、該所定の気体の
少なくとも一部を導入したことを特徴とする特許請求の
範囲第1または2項記載の薄膜作成装置。
(3) The thin film forming apparatus according to claim 1 or 2, characterized in that at least a portion of the predetermined gas is introduced directly into the main plasma chamber.
(4)該反応容器内で該主たるプラズマ室および/また
は該従たるプラズマ室を区切る壁としてグリッドを用い
たことを特徴とする特許請求の範囲第1、2、または3
項記載の薄膜作成装置。
(4) Claims 1, 2, or 3, characterized in that a grid is used as a wall that partitions the main plasma chamber and/or the secondary plasma chamber within the reaction vessel.
The thin film forming apparatus described in .
(5)該グリッドの電位を所定値に制御したことを特徴
とする特許請求の範囲第4項記載の薄膜作成装置。
(5) The thin film forming apparatus according to claim 4, wherein the potential of the grid is controlled to a predetermined value.
(6)該グリッドの電位を浮遊電位にしたことを特徴と
する特許請求の範囲第4項記載の薄膜作成装置。
(6) The thin film forming apparatus according to claim 4, wherein the potential of the grid is a floating potential.
JP15106484A 1984-07-20 1984-07-20 Thin film forming apparatus Pending JPS6130040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15106484A JPS6130040A (en) 1984-07-20 1984-07-20 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15106484A JPS6130040A (en) 1984-07-20 1984-07-20 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPS6130040A true JPS6130040A (en) 1986-02-12

Family

ID=15510510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15106484A Pending JPS6130040A (en) 1984-07-20 1984-07-20 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPS6130040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018291A1 (en) * 2006-08-11 2008-02-14 Mitsubishi Heavy Industries, Ltd. Plasma processing method and plasma processing apparatus
WO2010055190A1 (en) * 2008-11-17 2010-05-20 Consejo Superior De Investigaciones Científicas (Csic) Plasma reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018291A1 (en) * 2006-08-11 2008-02-14 Mitsubishi Heavy Industries, Ltd. Plasma processing method and plasma processing apparatus
US7972946B2 (en) 2006-08-11 2011-07-05 Mitsubishi Heavy Industries, Ltd. Plasma treatment method and plasma treatment device
WO2010055190A1 (en) * 2008-11-17 2010-05-20 Consejo Superior De Investigaciones Científicas (Csic) Plasma reactor
ES2359054A1 (en) * 2008-11-17 2011-05-18 Consejo Superior De Investigaciones Cientificas (Csic) Plasma reactor

Similar Documents

Publication Publication Date Title
US5454903A (en) Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization
US4816113A (en) Method of eliminating undesirable carbon product deposited on the inside of a reaction chamber
US5300460A (en) UHF/VHF plasma for use in forming integrated circuit structures on semiconductor wafers
US4808258A (en) Plasma processing method and apparatus for carrying out the same
US5085727A (en) Plasma etch apparatus with conductive coating on inner metal surfaces of chamber to provide protection from chemical corrosion
US6069092A (en) Dry etching method and semiconductor device fabrication method
US20010048981A1 (en) Method of processing substrate
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
JPH0219471A (en) Method for forming membrane
JPH06112171A (en) Improvement of selectivity for etching of oxide on nitride
TWI621732B (en) Method for forming sealing film and device for manufacturing sealing film
JP2764575B2 (en) Radical control method
JP2764524B2 (en) Radical control device
KR100518615B1 (en) Method for treating surface of substrate and method for etching
JPH02167891A (en) Gas-phase synthetic device of diamond film
JPS6130040A (en) Thin film forming apparatus
JPH09172005A (en) Method of etching oxide by plasma, which can show high selectivity for nitride
JP3530788B2 (en) Microwave supplier, plasma processing apparatus and processing method
JPH0558072B2 (en)
JPH0521983B2 (en)
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH0614522B2 (en) Surface treatment method and surface treatment apparatus
JPS6383271A (en) Production of diamond-like carbon film
JPH07273089A (en) Apparatus and method for plasma treatment
JP3277552B2 (en) ECR plasma CVD method