JPS6383270A - Production of diamond-like carbon film - Google Patents

Production of diamond-like carbon film

Info

Publication number
JPS6383270A
JPS6383270A JP22644286A JP22644286A JPS6383270A JP S6383270 A JPS6383270 A JP S6383270A JP 22644286 A JP22644286 A JP 22644286A JP 22644286 A JP22644286 A JP 22644286A JP S6383270 A JPS6383270 A JP S6383270A
Authority
JP
Japan
Prior art keywords
carbon
film
diamond
gaseous
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22644286A
Other languages
Japanese (ja)
Inventor
Keiji Hirabayashi
敬二 平林
Noriko Kurihara
栗原 紀子
Keiko Ikoma
生駒 圭子
Susumu Ito
進 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22644286A priority Critical patent/JPS6383270A/en
Publication of JPS6383270A publication Critical patent/JPS6383270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a superior-quality diamond-like carbon film which has high hardness and is excellent in insulating properties on an Si wafer by forming the activated species of carbon-contg. gas mixed with the activated species of gaseous H2 accelerated with an electric field in the vicinity of the base late of the Si wafer incorporated in a vacuum tank. CONSTITUTION:A base plate 12 of an Si wafer is fitted on a holder 13 thereof in a vacuum tank 1 and heated at 300-800 deg.C with a heater 14. Gaseous H2 is fed to a high-frequency coil 9 through an introduction pipe 7 from a gaseous H2 cylinder 6. Plasma discharge is caused between the high-frequency coil 9 and the holder 13 with a high-frequncy electric source 11 to form the activated species of gaseous H2 and also carbon-contg. gas such as CH4 is discharged through an introduction port 8 from a cylinder 4 and jetted on the base plate 12 together with the activated species of gaseous hydrogen. A diamond-like carbon film which has extremely high hardness and extremely small electric conductivity not more than 10<-11>OMEGA<-1>cm<-1> and is used for decoration, a workpiece and passivation of a semiconductor can be formed on the base plate 12 with excellent productivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、装飾用被膜、工作物品用被膜、電子デバイス
用被膜に利用されるタイヤセント状炭素膜の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a tire cent-shaped carbon film that is used as a decorative coating, a coating for workpieces, and a coating for electronic devices.

[従来の技術] ′タイヤセン1〜状炭素膜の製造方法の1つに低圧合成
法かあり、これまてに提案されている方法としては、熱
CVD法、プラズマCVD法(pCVD法)、イオンビ
ーム法(IB法)、イオンプレーテインク法(IP法)
等がある。
[Prior art] One of the methods for producing Tiasene 1-like carbon membranes is a low-pressure synthesis method, and methods that have been proposed so far include thermal CVD, plasma CVD (pCVD), and ion Beam method (IB method), ion plate ink method (IP method)
etc.

これ等の方法は、水素ガスをキャリアガスとして炭素含
有ガスを成膜空間に導入し600〜1300°C程度に
加熱した基体上に熱分解して成膜する(熱CVD法)か
又は前記の導入ガスを成膜空間中てプラズマ状態にして
炭素を含有する活性種(C)を生成し、該活性種又は該
活性種より派生して生成された他の活性種を基体表面に
衝突させて成膜する(PCVD法)、イオン化した炭素
又は炭素含有ガスの活性種を生成し、該活性種を電界に
より基体表面側に加速して衝突させることて成膜する(
IB法及びIP法)。
These methods include introducing a carbon-containing gas into a film formation space using hydrogen gas as a carrier gas, and forming a film by thermal decomposition on a substrate heated to about 600 to 1300°C (thermal CVD method), or the above-mentioned method. The introduced gas is brought into a plasma state in the film forming space to generate carbon-containing active species (C), and the active species or other active species derived from the active species are caused to collide with the surface of the substrate. To form a film (PCVD method), active species of ionized carbon or carbon-containing gas are generated, and the active species are accelerated and collided with the surface of the substrate using an electric field to form a film (PCVD method).
IB Law and IP Law).

この他に電子サイクロトロン共鳴法(ECR)によりタ
イヤセント状炭素膜を製造する方法かある。例えば、E
CRプラズマの吹き出し口に加速電圧をかけイオンを引
き出しダイヤモンド状炭素膜を製造する方法(特開6O
−103099)、ECRプラズマ発生室でタイヤテン
ト状炭素膜を製造する方法(特開60−103098)
、荷電粒子を間欠的に堆積室に差し向ける方法(48開
60−195092などか知られてる。
In addition to this, there is a method of manufacturing a tire-cent shaped carbon film by electron cyclotron resonance (ECR). For example, E
A method for producing a diamond-like carbon film by applying an accelerating voltage to the CR plasma outlet to draw out ions (Unexamined Japanese Patent Publication No. 6O
-103099), method for producing a tire tent-shaped carbon film in an ECR plasma generation chamber (JP 60-103098)
, a method of intermittently directing charged particles to a deposition chamber (48, 60-195092, etc. is known).

[解決すべき問題点] しかし乍ら、上記従来の方法においては、炭素含有ガス
と水素ガスとを混合状態て成膜空間に導入して、これ等
のガスを混合状態て同時に活性化し分解するのて、水素
ガスより生成される活性種(以後、「活性種(H)」と
表記し、励起分子、イオン種、ラジカル種を意味する。
[Problems to be Solved] However, in the conventional method described above, carbon-containing gas and hydrogen gas are introduced into the film forming space in a mixed state, and these gases are simultaneously activated and decomposed in the mixed state. Active species generated from hydrogen gas (hereinafter referred to as "active species (H)", meaning excited molecules, ion species, and radical species).

)と炭素含有活性種(以後、「活性種(C)」と表記し
、励起分子、イオン種、ラジカル種を意味する。)の生
成が同時に起きて仕舞い、夫々の活性種の生成割合及び
活性化度を独立に制御することか出来ず、膜設針の自由
度に可成りの制約がある。
) and carbon-containing active species (hereinafter referred to as "active species (C)", meaning excited molecules, ionic species, and radical species) occur simultaneously, and the production rate and activity of each active species It is not possible to independently control the degree of oxidation, and there are considerable restrictions on the degree of freedom of membrane installation needles.

熱CVD法、PCVD法の場合には、成膜中の真空度か
比較的低い為に、又、IB法やIP法の場合には、活性
種か生成する位置から成膜用の基体表面まての距離か長
い為に、生成した炭素含有活性種(C)か基体表面に到
達する前に該活性種同志が衝突して、ダイヤモンド状炭
素膜(sp’構造の炭素が主体として含有される炭素膜
)の成膜には、不都合な活性種か生成され、これか原因
てSP2構造、SP構造の炭素か主体として含有される
炭素膜(電気伝導度が高い、ビッカース硬度が低い)か
形成され易い。又、原料ガスの種類によっては、分子量
の大きな炭素含有活性種が生じ、該活性種が成膜用の基
体−1−に形成される膜表面に衝突して、膜表面をエツ
チングやスパツTタリングする為に成膜速度か抑制され
るという問題もある。
In the case of the thermal CVD method and PCVD method, the degree of vacuum during film formation is relatively low, and in the case of the IB method and IP method, the distance from the position where active species are generated to the substrate surface for film formation is Because of the long distance between the two, the generated carbon-containing active species (C) collide with each other before reaching the substrate surface, forming a diamond-like carbon film (mainly containing sp'-structured carbon). In the formation of a carbon film), undesirable active species are generated, and this causes the formation of a carbon film (high electrical conductivity, low Vickers hardness) that mainly contains SP2 structure or SP structure carbon. easy to be Also, depending on the type of raw material gas, carbon-containing active species with a large molecular weight are generated, and these active species collide with the film surface formed on the film-forming substrate -1-, causing etching and sputtering of the film surface. There is also the problem that the film formation rate is suppressed because of this.

又、熱CVD法やPCVD法の様に炭素含有活性種(C
)の生成と成膜とを同一の空間で行う場合には、該空間
を形成する真空堆積室の内壁面か煤等の付着により汚染
され、該汚染が原因て所期の目的とする膜特性を有する
成膜か出来ない、或はIB法の様に活性種の生成室と成
膜室とを分離した構造とした場合においても、矢張り活
性種生成室の内壁面の汚染は避けられない。この為、成
膜の都度真空堆積装置の内壁面の洗浄が必要となり生産
性及び量産性の点て問題かあった。
In addition, carbon-containing active species (C
) and film formation in the same space, the inner wall surface of the vacuum deposition chamber that forms the space may become contaminated with adhesion of soot, etc., and this contamination may cause the desired film properties to deteriorate. Even if it is not possible to form a film with a 100% active species, or if the active species generation chamber and film formation chamber are separated from each other as in the IB method, contamination of the inner wall surface of the active species generation chamber is unavoidable. . For this reason, it is necessary to clean the inner wall surface of the vacuum deposition apparatus every time a film is formed, which poses problems in terms of productivity and mass production.

ECR法においても一1―記の点は問題てあった。The ECR method also had problems with point 11.

[目 的] 本発明は、上記の点に鑑み成されたものてあって、従来
の問題点を解決出来るダイヤモンド状炭素膜の製造法を
提案することを主たる目的とする。
[Purpose] The present invention has been made in view of the above points, and its main purpose is to propose a method for manufacturing a diamond-like carbon film that can solve the conventional problems.

本発明の別のトI的はSP2構造及びsp構造の炭素の
含有を抑制し、sp’構造の炭素を主体として含有する
膜質な有し、電気伝導度か極めて小さくビッカース硬度
の高い炭素膜が容易に作成され得るダイヤモンド状炭素
膜の製造方法を提案することである。
Another feature of the present invention is to suppress the content of carbon in the SP2 structure and sp structure, and to produce a carbon film containing mainly carbon in the sp' structure, with extremely low electrical conductivity and high Vickers hardness. The object of the present invention is to propose a method for manufacturing a diamond-like carbon film that can be easily produced.

本発明の更に別の目的は、生産性・量産性に優れたダイ
ヤモンド状炭素膜の製造方法を提案することてもある。
Still another object of the present invention is to propose a method for manufacturing a diamond-like carbon film with excellent productivity and mass production.

[問題点を解決するための手段] 本発明の前記目的は、成膜用の基体が配されているr&
膜膜間間中、水素より生成される活性種を第一の導入手
段より電界加速して導入し、第二の導入手段より炭素含
有ガスを導入して成膜する事によって達成される。
[Means for Solving the Problems] The object of the present invention is to
This is achieved by introducing active species generated from hydrogen by accelerating an electric field through the first introduction means and introducing a carbon-containing gas through the second introduction means during the film formation.

[作 用] 上述した本発明のダイヤモンド状炭素膜の製造方法によ
れば、SP2構造及びSP構造の炭素の含有が従来にく
らべて極めて少なくSP′3構造の炭素が主体として含
有される炭素膜を従来に較べ高効率で再現性良く作成す
ることが出来、真空堆積装置自体の洗浄も従来の様にす
る必要はない。
[Function] According to the method for producing a diamond-like carbon film of the present invention described above, the content of carbon in the SP2 structure and the SP structure is extremely small compared to the conventional method, and the carbon film mainly contains carbon in the SP'3 structure. can be produced with higher efficiency and better reproducibility than in the past, and there is no need to clean the vacuum deposition apparatus itself as in the past.

更に作成される膜は、SP3構造の炭素を主体として含
有する膜質である為に、硬度の点においても従来法て作
成されるダイヤモンド状炭素膜と比べても勝るとも劣る
ことのない、且つ電気的品質も良好て電気伝導度も10
−”Ω−1c m ”’ 1以下と極めて小さいので装
飾用被膜、工作物品用被膜、半導体のパッシベーション
用膜、更には新規電子デバイスを構成する膜に適するも
のである。
Furthermore, since the film produced mainly contains carbon with an SP3 structure, it is comparable in hardness to diamond-like carbon films produced by conventional methods, and is also electrically resistant. Good quality and electrical conductivity of 10
-"Ω-1cm"' Since it is extremely small, less than 1, it is suitable for decorative coatings, coatings for workpieces, semiconductor passivation films, and even films constituting new electronic devices.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明によるダイヤモンド状炭素膜の製造方法は、前記
した点を特徴とするか、更に具体的に好適態様例として
示せば、水素ガスより生成される活性種(H)は、RF
放電、マイクロバ放電、DC放電、アーク放電、熱フィ
ラメント等の手段で生成される。該活性種(H)は電界
により加速されて基体表面に向かう。これとは別に炭素
含有ガスを別の導入手段の導入口より成膜室に導入する
。これにより、夫々が基体表面近傍て混合され、基体表
面にタイヤモント状炭素膜か生成される。
The method for producing a diamond-like carbon film according to the present invention is characterized by the above-mentioned points, and more specifically, as a preferred embodiment, the active species (H) generated from hydrogen gas is
It is generated by means such as electrical discharge, microbar discharge, DC discharge, arc discharge, and hot filament. The active species (H) are accelerated by the electric field and move toward the substrate surface. Separately from this, a carbon-containing gas is introduced into the film forming chamber through an inlet of another introduction means. As a result, the respective components are mixed near the surface of the substrate, and a tire-like carbon film is formed on the surface of the substrate.

その時の炭素含有活性種(C)の平均自由行程(見)が
炭素含有ガスの導入手段の導入口と基体と1     
の間の距離より長くなるように、真空堆積室の成膜中の
圧力が調整される。この圧力の調整は導入される活性種
(H)、炭素含有原料ガス夫々の流量、損気系の損気速
度等を制御することて実行される。
At that time, the mean free path (see) of the carbon-containing active species (C) is 1 between the inlet of the carbon-containing gas introduction means and the substrate.
The pressure in the vacuum deposition chamber during film formation is adjusted so that the distance between This pressure adjustment is carried out by controlling the introduced active species (H), the respective flow rates of the carbon-containing raw material gas, the gas loss rate of the gas loss system, and the like.

本発明においては、成膜用の基体に又は中間電極に一1
00vから一5KV程度の負の電界をかけることで前記
活性種(H)が加速される。中間電極は、金網やリンク
又は直線状金属などを用いることかできる。膜厚を均一
にするためには、11のこまかい金網を用いることか望
ましい。材質は、ステンレス、タングステン、タンタル
ナナなどを用いる。基板温度は、室温から1000°C
の範囲が望ましい。特には300から800℃か望まし
い。このようにすることによって、・プラスマを安定化
させ、均一な膜を形成する事がてきる。更に炭素含有ガ
スをパルス化することて、水素がスプラズマにより膜中
のsp、sp2混成炭素を取り除くことがてきる。本発
明に用いられる炭素含有ガスはCH4、C2Hs 、C
3Ha 、C6HI3などの鎖状及び脂環炭化水素、C
H2OH、C2H50Hなどのアルコール、CF4.C
2F6などのハロゲン化物あるいはアルデヒド、ケトン
や有機金属化合物などを単独であるいは2種以上を混合
して用いることかできる。
In the present invention, the substrate for film formation or the intermediate electrode may be
The active species (H) are accelerated by applying a negative electric field of about 00V to 15KV. For the intermediate electrode, a wire mesh, a link, a straight metal, or the like can be used. In order to make the film thickness uniform, it is desirable to use 11 fine wire meshes. The material used is stainless steel, tungsten, tantalum nana, etc. Substrate temperature ranges from room temperature to 1000°C
range is desirable. In particular, the temperature is preferably 300 to 800°C. By doing this, it is possible to stabilize the plasma and form a uniform film. Further, by pulsing the carbon-containing gas, sp and sp2 hybrid carbon in the film can be removed by hydrogen plasma. The carbon-containing gas used in the present invention is CH4, C2Hs, C
Chain and alicyclic hydrocarbons such as 3Ha, C6HI3, C
Alcohols such as H2OH and C2H50H, CF4. C
Halides such as 2F6, aldehydes, ketones, organometallic compounds, and the like can be used alone or in combination of two or more.

第1図、第2図に本発明の実施に用いた装置の例を示す
。第1図は、基板に電圧を印加した装置、第2図は、基
板と水素活性化源との間にステンレス製の金網を入れ、
これに電圧を印加した装置である。第1図、第2図共に
水素の活性化は、13.56MHzの高周波コイルを用
いてプラズマ化することで行う。図中1.16は真空槽
で主バツク2.17により真空排気ポンプに通している
。3.5.18.20は成膜に使用するガスのバルブで
ある。4.19は炭素含有ガスのボンベ、6.21は水
素ガスのボンベである。7.22は水素ガス導入口、8
.23は炭素含有ガス導入口である。11.26は13
.56MHzの高周波電源で9.24は高周波コイル1
O225で高周波のマツチングをとっている。12.2
7は基板、13.28は基板ホルダー、14.29は基
板加熱用ヒーター、15.31は電圧印加用直流電源、
30は金網の中間電極である。
FIG. 1 and FIG. 2 show an example of an apparatus used to carry out the present invention. Figure 1 shows an apparatus in which a voltage is applied to the substrate, and Figure 2 shows a device in which a stainless steel wire mesh is inserted between the substrate and the hydrogen activation source.
This is a device in which a voltage is applied. In both FIG. 1 and FIG. 2, hydrogen is activated by turning it into plasma using a 13.56 MHz high frequency coil. In the figure, 1.16 is a vacuum chamber, and the main bag 2.17 is connected to a vacuum pump. 3.5.18.20 are gas valves used for film formation. 4.19 is a carbon-containing gas cylinder, and 6.21 is a hydrogen gas cylinder. 7.22 is hydrogen gas inlet, 8
.. 23 is a carbon-containing gas inlet. 11.26 is 13
.. 9.24 is high frequency coil 1 with 56MHz high frequency power supply
High frequency matching is done with O225. 12.2
7 is a substrate, 13.28 is a substrate holder, 14.29 is a heater for heating the substrate, 15.31 is a DC power supply for voltage application,
30 is a wire mesh intermediate electrode.

以下に本発明の具体的実施例を示す。Specific examples of the present invention are shown below.

[実施例1] 大きさ1インチの円形シリコンウェハーを成膜の基板と
して第1図の装置の基板ホルダーに取り付け、表1の実
験条件て成膜を行なった。炭素含有ガスにはメタンを用
い、また基板とメタンガス導入口との距離は1.5cm
とした。
[Example 1] A circular silicon wafer having a size of 1 inch was attached to a substrate holder of the apparatus shown in FIG. 1 as a substrate for film formation, and film formation was performed under the experimental conditions shown in Table 1. Methane was used as the carbon-containing gas, and the distance between the substrate and the methane gas inlet was 1.5 cm.
And so.

表1 10時間の成膜時間で約9gmの炭素膜か基板」−に堆
積された。この炭素膜をX線回折により分析したところ
、ダイヤモンドの(111)、(220)、面と同定さ
せるピークか確認された。
Table 1 Approximately 9 gm of carbon film was deposited on the substrate in a 10 hour deposition time. When this carbon film was analyzed by X-ray diffraction, peaks identified as (111) and (220) planes of diamond were confirmed.

またビッカース硬度は4000kg/mm2.電気伝導
度はIQ−+1Ω−’cm−’であった。
Also, the Vickers hardness is 4000kg/mm2. The electrical conductivity was IQ-+1Ω-'cm-'.

[比較例1] 実施例1と同様の装置を用いて、メタンガスを水素ガス
と混合して、ガス導入ロアより導入して、他は実施例1
と同条件て成膜を行った(この際ガス導入口8は取り外
した。)。
[Comparative Example 1] Using the same apparatus as in Example 1, methane gas was mixed with hydrogen gas and introduced from the gas introduction lower, and the other conditions were as in Example 1.
Film formation was carried out under the same conditions as (at this time, the gas inlet 8 was removed).

10時間の成膜で約8pLmの炭素膜か基板上に堆積さ
れた。この炭素膜をX線回折により分析したところ、ダ
イヤモンドの(111)、(220)面とされるピーク
は確認されず、またビッカース硬度も2500 k g
 / m m ’となり、電気伝導度は1O−6Ω−’
cm−’となった。
Approximately 8 pLm of carbon film was deposited on the substrate in 10 hours of deposition. When this carbon film was analyzed by X-ray diffraction, peaks associated with the (111) and (220) planes of diamond were not confirmed, and the Vickers hardness was 2500 kg.
/ m m', and the electrical conductivity is 1O-6Ω-'
cm-'.

[比較例2] 実施例1と同様の装置を用いて、基板と炭素ガス導入口
との距離を、炭素含有ガス活性種の平均自由行程より長
い8cmとした。表2に実験条件を示す。
[Comparative Example 2] Using the same apparatus as in Example 1, the distance between the substrate and the carbon gas inlet was set to 8 cm, which was longer than the mean free path of the carbon-containing gas active species. Table 2 shows the experimental conditions.

表2 10時間の成膜により約8#Lmの炭素膜が基板上に堆
積された。この炭素膜をX線回折により分析したところ
、ダイヤモンドの(111)、(220)面とされるピ
ークは確認できず、またビッカース硬度も2800 k
 g / m m 2となり、電気伝導度は5xlO−
6Ω−’Cm−’となった。
Table 2 A carbon film of about 8 #Lm was deposited on the substrate after 10 hours of film formation. When this carbon film was analyzed by X-ray diffraction, peaks associated with the (111) and (220) planes of diamond could not be confirmed, and the Vickers hardness was 2800 k.
g/m m2, and the electrical conductivity is 5xlO-
It became 6Ω-'Cm-'.

[実施例2] 大きさ1インチの円形のシリコンウエノX−を第2図の
装置の基板ホルダーに取り付け1表3の実験条件で成膜
を行った。炭素含有ガスにはメタンを、また基板とメタ
ンガス導入口との距離は1゜5cm、中間電極と基板と
の距離は3.5cmとした。
[Example 2] A 1-inch circular silicon ueno Methane was used as the carbon-containing gas, and the distance between the substrate and the methane gas inlet was 1.5 cm, and the distance between the intermediate electrode and the substrate was 3.5 cm.

表3 10時間の成膜で約12gmの炭素膜が基板上に堆積さ
れた。この炭素膜をX線回折により分析したところ、ダ
イヤモンドの(111)、(220)面とされるピーク
が確認された。また/2゜ ビッカース硬度は4200 k g / m m 2で
電気伝導度はIQ−10Ω−’cm−’であった。
Table 3 Approximately 12 gm of carbon film was deposited on the substrate in 10 hours of deposition. When this carbon film was analyzed by X-ray diffraction, peaks corresponding to the (111) and (220) planes of diamond were confirmed. The /2° Vickers hardness was 4200 kg/mm 2 and the electrical conductivity was IQ-10Ω-'cm-'.

(発明の効果) 以上説明したように、炭素含有ガスを基板近傍で電界加
速された水素ガス活性種と混合して炭素含有ガスの活性
種を生成することにより、硬度が高く、絶縁性のよい良
質のダイヤモンド状炭素膜を作成することができた。具
体的には、水素ガス活性化部と、炭素含有ガス導入部分
を分けることにより、膜のエツチングが起こらず、成膜
速度が上がり、又、sp2混成軌道をもった炭素の生成
が抑制され、ダイヤモンド状炭素が基板上に堆積する。
(Effects of the Invention) As explained above, by mixing carbon-containing gas with active hydrogen gas species accelerated by an electric field near the substrate to generate active species of carbon-containing gas, the carbon-containing gas has high hardness and good insulation properties. We were able to create a high quality diamond-like carbon film. Specifically, by separating the hydrogen gas activation part and the carbon-containing gas introduction part, etching of the film does not occur, the film formation rate increases, and the generation of carbon with an sp2 hybrid orbital is suppressed. Diamond-like carbon is deposited on the substrate.

又、炭素含有ガス導入部を基板近傍にすることで、炭素
含有活性種の存在確率が上がり、良質のダイヤモンド状
炭素か基板上に堆積する。
Furthermore, by arranging the carbon-containing gas inlet near the substrate, the probability of existence of carbon-containing active species increases, and high-quality diamond-like carbon is deposited on the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明によるダイヤモンド状炭素膜
の製造装置である。 1.16  反応室 4.19  炭素含有ガス 6.21  水素ガス 7.22  水素ガス導入口 8.23  炭素含有ガス導入口 9.24  高周波コイル 11.26  高周波電源 12.27  基板 14.28  基板ホルダー 15.31  直流電源 30    中間電極
FIGS. 1 and 2 show an apparatus for manufacturing a diamond-like carbon film according to the present invention. 1.16 Reaction chamber 4.19 Carbon-containing gas 6.21 Hydrogen gas 7.22 Hydrogen gas inlet 8.23 Carbon-containing gas inlet 9.24 High-frequency coil 11.26 High-frequency power supply 12.27 Substrate 14.28 Substrate holder 15.31 DC power supply 30 intermediate electrode

Claims (1)

【特許請求の範囲】[Claims] 成膜用の基体が配されている成膜空間中に、水素より生
成される活性種を第一の導入手段より電界加速して導入
し、第二の導入手段より炭素含有ガスを導入して成膜す
る事を特徴とするダイヤモンド状炭素膜の製造方法。
An active species generated from hydrogen is introduced into a film forming space in which a film forming substrate is arranged by being accelerated by an electric field through a first introducing means, and a carbon-containing gas is introduced through a second introducing means. A method for producing a diamond-like carbon film, characterized by forming a film.
JP22644286A 1986-09-25 1986-09-25 Production of diamond-like carbon film Pending JPS6383270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22644286A JPS6383270A (en) 1986-09-25 1986-09-25 Production of diamond-like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22644286A JPS6383270A (en) 1986-09-25 1986-09-25 Production of diamond-like carbon film

Publications (1)

Publication Number Publication Date
JPS6383270A true JPS6383270A (en) 1988-04-13

Family

ID=16845170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22644286A Pending JPS6383270A (en) 1986-09-25 1986-09-25 Production of diamond-like carbon film

Country Status (1)

Country Link
JP (1) JPS6383270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478404B1 (en) * 2002-03-26 2005-03-23 한국화학연구원 Apparatus For Plasma Chemical Vapor Deposition And Methode of Forming Thin Layer Utilizing The Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478404B1 (en) * 2002-03-26 2005-03-23 한국화학연구원 Apparatus For Plasma Chemical Vapor Deposition And Methode of Forming Thin Layer Utilizing The Same

Similar Documents

Publication Publication Date Title
EP0253361B1 (en) Thin film forming device
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
JPH04228572A (en) Method for synthesizing hard boron nitride
WO2005028703A1 (en) Film-forming apparatus and film-forming method
US20040115364A1 (en) Method for the production of a functional coating by means of high-frequency plasma beam source
JP4416402B2 (en) Plasma device for forming functional layer and method for forming functional layer
CA2061302C (en) Method of making synthetic diamond film
JPS6383270A (en) Production of diamond-like carbon film
US11164742B2 (en) Selective deposition using methylation treatment
JPS6383271A (en) Production of diamond-like carbon film
JPH0420985B2 (en)
JP3246780B2 (en) Method and apparatus for forming hard carbon film
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS6379971A (en) Production of diamondlike carbon film
JPH05124825A (en) Mold having diamondlike thin film protection film
JP4210141B2 (en) Method for forming hard carbon nitride film
JP2646582B2 (en) Plasma CVD equipment
JPH031377B2 (en)
JPH0623437B2 (en) Method for producing carbon and boron nitride
JP3291274B2 (en) Carbon coating method
JP2995339B2 (en) How to make a thin film
JPS63241183A (en) Treatment of object
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd
JPS63118075A (en) Coating method by glow discharge
JPS6124466B2 (en)