JP2646582B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP2646582B2
JP2646582B2 JP62262109A JP26210987A JP2646582B2 JP 2646582 B2 JP2646582 B2 JP 2646582B2 JP 62262109 A JP62262109 A JP 62262109A JP 26210987 A JP26210987 A JP 26210987A JP 2646582 B2 JP2646582 B2 JP 2646582B2
Authority
JP
Japan
Prior art keywords
sample
plasma cvd
reaction vessel
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62262109A
Other languages
Japanese (ja)
Other versions
JPH01104778A (en
Inventor
陽一 大西
幹男 竹林
健治 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62262109A priority Critical patent/JP2646582B2/en
Publication of JPH01104778A publication Critical patent/JPH01104778A/en
Application granted granted Critical
Publication of JP2646582B2 publication Critical patent/JP2646582B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラズマCVD(Chemical Vapor Depositio
n)法によって、薄膜を形成する方法に関するものであ
る。
The present invention relates to a plasma CVD (Chemical Vapor Depositio).
The present invention relates to a method for forming a thin film by the method n).

従来の技術 プラズマCVD方法は、真空容器内に試料を保持し、形
成すべき薄膜の組成元素を含む化合物ガスを供給しなが
ら、高周波エネルギによって、前記化合物ガスを励起
し、試料表面をそのプラズマ雰囲気に配置することによ
って、試料表面に薄膜を形成する方法である。この方法
は、プラズマの活性を利用しているため、室温から400
℃程度までの低温で膜形成を行うことができるという特
徴がある。
2. Description of the Related Art In a plasma CVD method, a sample gas is excited by high-frequency energy while a sample is held in a vacuum chamber and a compound gas containing a composition element of a thin film to be formed is supplied to the sample surface. This is a method of forming a thin film on the sample surface by disposing the thin film on the sample surface. Since this method utilizes the activity of plasma, it is 400
It is characterized in that the film can be formed at a low temperature of about ° C.

プラズマCVD法による薄膜形成上の課題は、形成薄膜
の膜質および膜厚分布の制御並びにピンホールやパーテ
ィクルの付着等の膜欠陥の問題である。また、生産面で
の課題は堆積速度の向上である。
The problems in forming a thin film by the plasma CVD method are the control of the film quality and the film thickness distribution of the formed thin film, and the problems of film defects such as pinholes and adhesion of particles. Another problem in production is improving the deposition rate.

従って、良質のプラズマCVD膜を均一に試料表面に形
成するためには、薄膜形成時の低温プラズマの分布およ
びその安定度,試料加熱分布並びに試料保持温度等のプ
ロセス条件に工夫が必要である。
Therefore, in order to uniformly form a high-quality plasma CVD film on the sample surface, it is necessary to devise the process conditions such as the distribution and stability of the low-temperature plasma when forming the thin film, the sample heating distribution, and the sample holding temperature.

以下図面を参照しながら、上述した従来のプラズマCV
D装置の一例について説明する。
The conventional plasma CV described above with reference to the drawings below.
An example of the D device will be described.

第2図に従来のプラズマCVD装置を示す。第2図にお
いて、1は真空状態の維持が可能な真空容器、2はプラ
ズマCVD膜が形成される試料、3は試料2を保持し、か
つ、内部に加熱用のヒータを有し、試料2を加熱するこ
とが可能な試料台、4は試料台3の内部に搭載されたヒ
ータ、5はヒータ4に交流電力を供給するための交流電
源、6は例えば400KHzの高周波電力が供給される電極、
7は周波数400KHzの高周波電源、8は真空容器1内の圧
力を大気圧以下の真空度に真空排気するための真空ポン
プ、9は真空容器1と真空ポンプ8の間を気密に接続す
る真空排気用のパイプ、10は真空容器1内の圧力を管内
抵抗を可変にし、すなわち真空ポンプ8の有効排気速度
を可変にして制御するバタフライバルブ、11はガス流量
制御装置を介して化合物ガスを真空容器1内に導入する
ためのガスノズルである。
FIG. 2 shows a conventional plasma CVD apparatus. In FIG. 2, 1 is a vacuum vessel capable of maintaining a vacuum state, 2 is a sample on which a plasma CVD film is formed, 3 is a sample which holds a sample 2 and has a heater for heating inside, 4 is a heater mounted inside the sample table 3, 5 is an AC power supply for supplying AC power to the heater 4, and 6 is an electrode to which high frequency power of, for example, 400 KHz is supplied. ,
7 is a high-frequency power supply having a frequency of 400 KHz, 8 is a vacuum pump for evacuating the pressure in the vacuum vessel 1 to a degree of vacuum lower than the atmospheric pressure, 9 is a vacuum exhaust for hermetically connecting the vacuum vessel 1 and the vacuum pump 8. 10 is a butterfly valve for controlling the pressure in the vacuum vessel 1 by changing the resistance in the pipe, that is, by making the effective pumping speed of the vacuum pump 8 variable, and 11 is a vacuum vessel for controlling the compound gas through the gas flow control device. 1 is a gas nozzle to be introduced into the inside.

以上のように構成されたプラズマCVD装置について、
以下その動作について説明する。
About the plasma CVD apparatus configured as described above,
The operation will be described below.

まず真空容器1内を真空ポンプ8により、50mTorr以
下の真空度まで真空排気した後、試料2表面に形成すべ
き薄膜の組成元素を含む化合物ガスをガスノズル11から
流量制御装置で制御しながら真空容器1内に導入する。
さらにバタフライバルブ10を操作し、薄膜形成条件であ
る圧力すなわち100〜400mTorrに真空容器1内を制御す
る。また試料2は試料台3によって300℃程度の温度に
加熱制御する。次に、電極6に周波数400KHzの高周波電
力を供給することによって、前記化合物ガスを励起し、
試料2表面をそのプラズマ雰囲気にさらすことによっ
て、試料2表面にプラズマCVD膜を形成する。
First, the inside of the vacuum vessel 1 is evacuated to a degree of vacuum of 50 mTorr or less by a vacuum pump 8, and then a compound gas containing a composition element of a thin film to be formed on the surface of the sample 2 is controlled from a gas nozzle 11 by a flow rate control device. Introduce into 1.
Further, the inside of the vacuum vessel 1 is controlled to a pressure which is a thin film forming condition, that is, 100 to 400 mTorr by operating the butterfly valve 10. The sample 2 is controlled to be heated to about 300 ° C. by the sample stage 3. Next, the compound gas is excited by supplying a high-frequency power having a frequency of 400 KHz to the electrode 6,
A plasma CVD film is formed on the surface of the sample 2 by exposing the surface of the sample 2 to the plasma atmosphere.

発明が解決しようとする問題点 しかしながら上記のような構成では下記の問題点を有
していた。
Problems to be Solved by the Invention However, the above configuration has the following problems.

すなわち、プラズマ発生時に、ガスノズル11のガスが
出る部分に異常放電が生じやすく、その結果、試料2の
表面に球状パーティクルが多数付着するという問題点を
有していた。
That is, when plasma is generated, abnormal discharge is likely to occur in a portion of the gas nozzle 11 where gas is emitted, and as a result, a large number of spherical particles adhere to the surface of the sample 2.

本発明は、上記問題点に鑑み、プラズマ発生時に、ガ
スノズル11のガス導入部分に異常放電が発生するのを防
止し、試料表面への球状パーティクルの付着を防止する
ことが可能なプラズマCVD装置を提供するものである。
In view of the above problems, the present invention provides a plasma CVD apparatus capable of preventing abnormal discharge from occurring in a gas introduction portion of a gas nozzle 11 at the time of plasma generation and preventing spherical particles from adhering to a sample surface. To provide.

問題点を解決するための手段 上記問題点を解決するために、本発明のプラズマCVD
装置は、反応容器内に原料ガスを導入するためのガス供
給口と反応容器とを電気的に絶縁とすることを特徴とす
るものである。
Means for Solving the Problems In order to solve the above problems, the plasma CVD of the present invention
The apparatus is characterized in that a gas supply port for introducing a raw material gas into the reaction vessel is electrically insulated from the reaction vessel.

作用 本発明は上記した構成によって、プラズマCVD装置の
構成であるガス供給口と反応容器とを電気的に絶縁とす
ることにより、ガスノズルのガス吹き出し部分に電子又
はイオンの入射を防止することができるため、ガス吹き
出し部分での放電を防止することができる。その結果、
試料表面への球状パーティクルの発生付着を防止するこ
とができる。
Effect The present invention can prevent the injection of electrons or ions into the gas blowout portion of the gas nozzle by electrically insulating the gas supply port and the reaction vessel, which are the configuration of the plasma CVD apparatus, by the above-described configuration. Therefore, it is possible to prevent discharge at the gas blowing portion. as a result,
Generation and adhesion of spherical particles to the sample surface can be prevented.

実 施 例 以下本発明の一実施例のプラズマCVD装置について図
面を参照しながら説明する。
Embodiment Hereinafter, a plasma CVD apparatus according to an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例に用いるプラズマCVD装置
の概略断面図を示すものである。
FIG. 1 is a schematic sectional view of a plasma CVD apparatus used in an embodiment of the present invention.

第1図において、31は真空状態の維持が可能な真空容
器(反応容器)、32はプラズマCVD膜が形成される被加
工物としての試料、33は試料32を保持し、かつ、内部に
加熱装置を有し試料32を加熱することが可能なアース接
地された被加工物保持手段としての試料台、34は試料台
33の内部に搭載された加熱装置、35は交流電源、36は周
波数400KHzの高周波電力が供給される電極、37はガス流
量制御装置、38は周波数400KHzの高周波数電源、39は真
空容器31内の圧力を大気圧以下の真空度にするための真
空排気手段としての真空ポンプ、40は真空容器31と真空
ポンプ39との間を気密に接続する真空排気用のパイプ、
41は真空容器31内の圧力を制御するための圧力制御装
置、42は、反応容器31内に原料ガスを導入するための材
質がアルミニウムのガスノズル、43は絶縁物である。
In FIG. 1, 31 is a vacuum vessel (reaction vessel) capable of maintaining a vacuum state, 32 is a sample as a workpiece on which a plasma CVD film is formed, 33 is a sample that holds the sample 32, and is heated inside. A sample stage as a means for holding a grounded work piece having an apparatus and capable of heating the sample 32, 34 is a sample stage
33 is a heating device mounted inside, 35 is an AC power supply, 36 is an electrode to which high-frequency power of a frequency of 400 KHz is supplied, 37 is a gas flow control device, 38 is a high-frequency power supply of a frequency of 400 KHz, and 39 is a vacuum vessel 31 A vacuum pump as a vacuum pumping means for reducing the pressure of the air to a degree of vacuum equal to or lower than the atmospheric pressure, a vacuum pumping pipe 40 for hermetically connecting the vacuum vessel 31 and the vacuum pump 39,
41 is a pressure control device for controlling the pressure in the vacuum vessel 31, 42 is a gas nozzle made of aluminum for introducing the source gas into the reaction vessel 31, and 43 is an insulator.

以上のように構成されたプラズマCVD装置についてそ
の動作を説明する。
The operation of the plasma CVD apparatus configured as described above will be described.

まず真空容器31内を真空ポンプ39によって30mTorr以
下の真空止まで真空排気した後、試料32表面に形成すべ
き薄膜の組成元素を含む化合物ガス、すなわち、モノシ
ラン(SiH4)、アンモニア(NH3)、窒素(N2)の混合
ガスを各々400SCCM,500SCCM,1600SCCMのガス流量で、ガ
ス流量制御装置37を介し、ガスノズル42より真空容器31
内に導入し、かつ真空容器31内の圧力を圧力制御装置41
により300mTorrに保持する。
First, the inside of the vacuum vessel 31 is evacuated to a vacuum of 30 mTorr or less by a vacuum pump 39, and then a compound gas containing a composition element of a thin film to be formed on the surface of the sample 32, that is, monosilane (SiH 4 ), ammonia (NH 3 ) And a mixed gas of nitrogen (N 2 ) at a gas flow rate of 400 SCCM, 500 SCCM, and 1600 SCCM, respectively, through a gas flow control device 37 and a gas nozzle 42 through a vacuum vessel 31.
And the pressure in the vacuum vessel 31 is controlled by the pressure control device 41.
To keep it at 300 mTorr.

また試料32は試料台33によって300℃の温度に加熱制
御する。
The sample 32 is controlled to be heated to a temperature of 300 ° C. by the sample stage 33.

次に電極36に高周波数電源38より周波数400KHzの高周
波電力を供給することによって、試料32を含む空間に低
温プラズマを発生させる。
Next, high-frequency power having a frequency of 400 KHz is supplied to the electrode 36 from the high-frequency power supply 38 to generate low-temperature plasma in the space including the sample 32.

以上の結果、試料32上に屈折率1.997±0.03、膜厚バ
ラツキ±4%以内の窒化シリコン膜を形成することがで
き、試料32上に付着する粒径0.5μm以上のパーティク
ル数も200個/6″ウエハ以内にすることができた。
As a result, a silicon nitride film having a refractive index of 1.997 ± 0.03 and a thickness variation of within ± 4% can be formed on the sample 32, and the number of particles having a particle diameter of 0.5 μm or more adhering on the sample 32 is 200 / It could be within 6 ″ wafer.

ところで、本発明の効果を明確にするため、以下の実
験を行った。すなわち、ガスノズル42を反応容器31と電
気的に絶縁した場合、ガスノズル42をアース接地した場
合、ガスノズル42に直流電圧を供給した場合について、
ガスノズル42のガス吹き出し穴部の異常放電の目視結
果、試料32表面に付着する0.5μm以上のパーティクル
数をレーザー表面検査装置で測定した結果等を調べた。
By the way, in order to clarify the effect of the present invention, the following experiment was performed. That is, when the gas nozzle 42 is electrically insulated from the reaction vessel 31, when the gas nozzle 42 is grounded, and when a DC voltage is supplied to the gas nozzle 42,
Visual results of abnormal discharge at the gas blowing hole of the gas nozzle 42, the number of particles of 0.5 μm or more adhering to the surface of the sample 32 measured by a laser surface inspection device, and the like were examined.

実験結果を表1に示す。 Table 1 shows the experimental results.

表1から明らかなように、ガスノズル42をフロート電
位に保持した時にかぎり、ガス吹き出し部分は異常放電
が見られず、パーティクル数も他に比べ大巾に抑制する
ことができる。
As is evident from Table 1, only when the gas nozzle 42 is maintained at the float potential, no abnormal discharge is observed in the gas blowing portion, and the number of particles can be significantly suppressed as compared with the others.

また、第3図は、ガスノズル42を反応容器と電気的に
絶縁し、窒化シリコン膜を約8000Å堆積し、その表面を
SEMにより観察したものである。球状のパーティクルは
見られていない。
FIG. 3 shows that the gas nozzle 42 is electrically insulated from the reaction vessel, a silicon nitride film is deposited about 8000 mm, and the surface is
Observed by SEM. No spherical particles are seen.

一方、第4図は、ガスノズル42をアース接地し、窒化
シリコン膜を同様のプロセス条件で、窒化シリコン膜を
約8000Å堆積し、その表面をSEMによる観察したもので
ある。この場合、粒径2〜5μmのパーティクルが多数
観察できた。
On the other hand, FIG. 4 is a view in which the gas nozzle 42 is grounded to ground, a silicon nitride film is deposited under the same process conditions, a silicon nitride film is deposited at about 8000 °, and the surface is observed by SEM. In this case, many particles having a particle size of 2 to 5 μm could be observed.

また、窒化シリコン膜内にうまっているものも見ら
れ、プラズマCVD中、すなわち、プラズマを発生中に付
着し、その粒径を成したものと思われる。言いかえれば
ガスノズル42のガス吹き出し部分で生じる異常放電によ
り、パーティクルのもとになる核が作られ、気相成長に
よってその球状を増し、プラズマCVD中に試料32表面に
付着するものと推察される。
In addition, some particles are found to be buried in the silicon nitride film, and it is considered that the particles adhered during plasma CVD, that is, during generation of plasma, and formed the particle size. In other words, it is speculated that the abnormal discharge generated at the gas blowing portion of the gas nozzle 42 creates a nucleus that is a source of particles, increases its spherical shape by vapor phase growth, and adheres to the surface of the sample 32 during plasma CVD. .

以上のように本実施例によれば、反応容器31内に原料
ガスを導入するためのガスノズル42を反応容器と電気的
に絶縁することにより、ガス吹き出し部分に異常放電が
発生するのを防止し、膜欠陥の非常に少ないプラズマCV
D膜を得ることができる。
As described above, according to the present embodiment, the gas nozzle 42 for introducing the raw material gas into the reaction vessel 31 is electrically insulated from the reaction vessel, thereby preventing the occurrence of abnormal discharge in the gas blowing portion. Plasma CV with very few film defects
D film can be obtained.

発明の効果 本発明によれば、反応容器31内に原料ガスを導入する
ためのガスノズルを反応容器と電気的に絶縁することに
よって、ガスノズルのガス吹き出し部分に異常放電が発
生するのを防止し、その結果、プラズマCVD中試料表面
に球状パーティクルが付着するのを防止することによっ
て、膜欠陥の非常に少ないプラズマCVD膜を得ることが
できる。
According to the present invention, a gas nozzle for introducing a source gas into the reaction vessel 31 is electrically insulated from the reaction vessel, thereby preventing an abnormal discharge from being generated in a gas blowing portion of the gas nozzle. As a result, a plasma CVD film with very few film defects can be obtained by preventing spherical particles from adhering to the sample surface during plasma CVD.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例におけるプラズマCVD装置の
概略構成図、第2図は従来のプラズマCVD装置の概略構
成図、第3図は本発明の一実施例におけるガスノズルを
用いて試料表面に窒化シリコン膜を形成した時の結晶構
造を示す電子顕微鏡写真、第4図はアース接地したガス
ノズルを用いて試料表面に窒化シリコン膜を形成した時
の結晶構造を示す電子顕微鏡写真である。 31……真空容器、33……試料台、34……加熱装置、35…
…交流電源、36……電極、37……ガス流量制御装置、38
……高周波電源、39……真空ポンプ、40……パイプ、41
……圧力制御装置、42……ガスノズル。
FIG. 1 is a schematic configuration diagram of a plasma CVD apparatus in one embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a conventional plasma CVD apparatus, and FIG. 3 is a sample surface using a gas nozzle in one embodiment of the present invention. FIG. 4 is an electron micrograph showing a crystal structure when a silicon nitride film is formed on the sample, and FIG. 4 is an electron micrograph showing a crystal structure when a silicon nitride film is formed on the sample surface using a grounded gas nozzle. 31 ... Vacuum container, 33 ... Sample table, 34 ... Heating device, 35 ...
... AC power supply, 36 ... Electrode, 37 ... Gas flow control device, 38
…… High frequency power supply, 39 …… Vacuum pump, 40 …… Pipe, 41
…… Pressure control device, 42 …… Gas nozzle.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空状態の維持が可能な金属製の反応容器
と、前記反応容器内に原料ガスを導入するためのガス供
給口と、前記反応容器内を減圧雰囲気にするための排気
手段と、プラズマCVD膜を少なくとも一方の表面に堆積
させる試料を保持する試料保持手段と、試料を熱制御す
るための加熱手段と、前記反応容器内を所定の圧力に保
持するための圧力制御手段と、少なくとも試料を含む空
間に低温プラズマを発生させる電極と、前記電極に高周
波電力を供給し、低温プラズマを発生させるためのプラ
ズマ発生手段とを有し、前記ガス供給口と前記反応容器
とを電気的に絶縁してなるプラズマCVD装置。
1. A metal reaction vessel capable of maintaining a vacuum state, a gas supply port for introducing a raw material gas into the reaction vessel, and an exhaust means for reducing the pressure inside the reaction vessel to a reduced pressure. A sample holding means for holding a sample for depositing a plasma CVD film on at least one surface, a heating means for thermally controlling the sample, and a pressure control means for holding the inside of the reaction vessel at a predetermined pressure, An electrode for generating low-temperature plasma at least in a space containing the sample; and a plasma generating means for supplying high-frequency power to the electrode to generate low-temperature plasma, wherein the gas supply port and the reaction vessel are electrically connected. Plasma CVD equipment with insulation.
JP62262109A 1987-10-16 1987-10-16 Plasma CVD equipment Expired - Lifetime JP2646582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262109A JP2646582B2 (en) 1987-10-16 1987-10-16 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262109A JP2646582B2 (en) 1987-10-16 1987-10-16 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH01104778A JPH01104778A (en) 1989-04-21
JP2646582B2 true JP2646582B2 (en) 1997-08-27

Family

ID=17371162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262109A Expired - Lifetime JP2646582B2 (en) 1987-10-16 1987-10-16 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2646582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752235B2 (en) * 1990-06-26 1998-05-18 株式会社東芝 Semiconductor substrate manufacturing method
US20060151117A1 (en) 2003-04-18 2006-07-13 Hitachi Kokusai Electronic Inc. Semiconductor producing device and semiconductor producing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223216A (en) * 1983-05-31 1984-12-15 Toshiba Corp Amorphous silicon film forming device
JPS60114577A (en) * 1983-11-26 1985-06-21 Matsushita Electric Ind Co Ltd Chemical treating device

Also Published As

Publication number Publication date
JPH01104778A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US5712000A (en) Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
JPS63210099A (en) Preparation of diamond film
TWI577820B (en) Means for improving MOCVD reaction method and improvement method thereof
JP2646582B2 (en) Plasma CVD equipment
JP2000260721A (en) Cvd system, cvd method and method of cleaning the cvd system
JPH06244175A (en) Method and device for manufacturing insulating film
KR100885690B1 (en) A method of producing a diamond film and a diamond film produced thereby
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JPS60147113A (en) Manufacture of silicon film
JPH0119467B2 (en)
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH0237963A (en) Electrical heating member
JP2537822B2 (en) Plasma CVD method
JPH0777198B2 (en) Plasma CVD method
JP2023158864A (en) Power supply device and film deposition apparatus
JPH07330488A (en) Plasma cvd apparatus
JPH07110996B2 (en) Plasma CVD equipment
JPH01246357A (en) Production of cubic boron nitride film
JPH031377B2 (en)
JPH06101458B2 (en) Plasma vapor deposition equipment
JPS61256640A (en) Plasma chemical vapor deposition apparatus
JPH01230781A (en) Formation of thin film and device therefor
JPH05147908A (en) Production of cubic boron nitride powder
JPH0133935B2 (en)
JPS61260623A (en) Plasma vapor growth equipment