JPH01246357A - Production of cubic boron nitride film - Google Patents

Production of cubic boron nitride film

Info

Publication number
JPH01246357A
JPH01246357A JP7382488A JP7382488A JPH01246357A JP H01246357 A JPH01246357 A JP H01246357A JP 7382488 A JP7382488 A JP 7382488A JP 7382488 A JP7382488 A JP 7382488A JP H01246357 A JPH01246357 A JP H01246357A
Authority
JP
Japan
Prior art keywords
target
substrate
boron nitride
reaction chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7382488A
Other languages
Japanese (ja)
Inventor
Nobuki Yamashita
信樹 山下
Tetsuyoshi Wada
哲義 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7382488A priority Critical patent/JPH01246357A/en
Publication of JPH01246357A publication Critical patent/JPH01246357A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily obtain cubic BN having superior hardness, high heat conductivity and high electric insulating property by sputtering a target with cyclotron resonance plasma generated in a reaction chamber and by impressing bias voltage on a substrate. CONSTITUTION:A reaction chamber 1 is pre-evacuated to a prescribed degree of vacuum, a gaseous N2-Ar mixture is fed into the chamber 1 and the internal pressure is kept at 7X10<-4>Torr. A substrate 7 is heated 9 to about 400 deg.C, a magnetic field is applied to the interior of the chamber 1 with a coil 10 and microwaves are introduced into the chamber 1 through a waveguide 5 to generate electron cyclotron resonance plasma between a substrate holder 6 and a target 3. High frequency power is impressed on a target holder 4 to generate self-bias and particles of the constituent material of the target 3 are emitted from the target 3 by a sputtering effect produced by the plasma. High frequency power is also impressed on the holder 6 to generate self-bias and a film of a desired thickness is formed on the substrate 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、硬質、高熱伝導性、高電気絶縁性に優れた立
方晶窒化ホウ素膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a cubic boron nitride film that is hard, has high thermal conductivity, and has excellent electrical insulation properties.

[従来の技術] 蓋化ホウ素は、大別すると常圧で容易に合成される軟質
で潤滑性の優れた六方晶窒化ホウ素(以下hBNと記す
)と、高温高圧で合成される硬質の立方晶窒化ホウ素(
以下CBNと記す)がある。この内CBNは、ダイヤモ
ンドに次いで高い硬度を有し、また高熱伝導性、高電気
絶縁性を有するため、CBNを被覆膜として基材の表面
に形成することが試みられている。
[Prior art] Boron capping can be roughly divided into soft hexagonal boron nitride (hBN), which is easily synthesized at normal pressure and has excellent lubricity, and hard cubic boron nitride, which is synthesized at high temperature and pressure. Boron nitride (
(hereinafter referred to as CBN). Among these, CBN has the second highest hardness after diamond, and also has high thermal conductivity and high electrical insulation properties, so attempts have been made to form CBN as a coating film on the surface of the base material.

従来、基材表面゛に窒化ホウ素被覆pAを形成する方法
としては、大別すると化学的蒸着法(CVD ;Che
mical Vapor Depositlon )に
よるものと、物理釣魚1i法(PVD ; Physi
cal Vapor Deposition)によるも
のがある。ここで、前者の方法としては、ハロダン化ホ
ウ素又は、シゲラン等のホウ化物と量系またはアンモニ
アとの反応ガス中で行うものがある。一方、後者の方法
としては、イオンビーム蒸着法がある。この方法は、例
えば、ジャーナル・オノ・バキューム・サイエンス伊ア
ンド・テクノロジー誌第A−1巻第323頁〜第325
頁(Journal of Vaacum 5cien
ce and TechnologyA−1(1983
,1)K記載の如く、カウフマン車イオン源を用い次の
ように行う。1ず、Jl容器内を予備排気して所定の減
圧状態にした後、ボラジン(85N、H6)の蒸気を導
入する。次いで、タングステンフィラメントよシ放出さ
れた電子をアノードに到達する前にがラジンの中性粒子
に衝突させイオン化させる。このようにして得たプラシ
ンイオンを加速器で加速しイオンビームを作シ、このイ
オンビームによって窒化ホウ素膜を作る。
Conventionally, methods for forming boron nitride coating pA on the surface of a substrate can be roughly divided into chemical vapor deposition (CVD) methods.
physical vapor depositlon) and the physical vapor deposition method (PVD; Physi
cal Vapor Deposition). Here, as the former method, there is a method carried out in a reaction gas of boron halide or a boride such as shigelan and ammonia. On the other hand, as the latter method, there is an ion beam evaporation method. This method is described, for example, in the Journal Ono Vacuum Science and Technology Vol. A-1, pp. 323-325.
Page (Journal of Vacum 5cien
ce and Technology A-1 (1983
, 1) As described in K, a Kauffman wheel ion source is used as follows. First, the inside of the Jl container is preliminarily evacuated to a predetermined reduced pressure state, and then borazine (85N, H6) vapor is introduced. Next, the electrons emitted from the tungsten filament collide with neutral particles of radin and are ionized before reaching the anode. The plasticine ions thus obtained are accelerated with an accelerator to create an ion beam, and a boron nitride film is created using this ion beam.

[発明が解決しようとする課題」 従来、基材表面に窒化ホウ素からなる被俊層を形成する
方法の内、CVD法による方法は、単なる熱的な気相反
応であるため、軟質な六方晶窒化ホウ素からなる被覆層
しか形成されないという問題がめる。
[Problem to be solved by the invention] Among the conventional methods for forming an agglutinated layer made of boron nitride on the surface of a substrate, the CVD method is a simple thermal gas phase reaction, so it is difficult to form soft hexagonal crystal layers. A problem arises in that only a coating layer made of boron nitride is formed.

また、イオンビーム蒸着法による方法は、 CBNの含
有量が少ないため、CBN本来の硬さに比べ蓬かに比い
硬さのものになるという問題ヲ有する。
In addition, the ion beam evaporation method has a problem in that since the content of CBN is small, the material is harder than CBN itself.

本発明は上記事情に鑑みてなされたもので、硬質、高熱
伝導性、高電気絶縁性に優れた立方晶窒化ホウ系膜を極
めて容易に得ることができる立方晶窒化ホウ素膜の製造
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method for manufacturing a cubic boron nitride film that can extremely easily obtain a cubic boron nitride film that is hard, has high thermal conductivity, and has excellent electrical insulation properties. The purpose is to

[課題を解決するための手段] 本発明は、基材、及びホウ素又は窒化ホウ素成形体ター
ゲットを収容した反応室内に、窒素又は窒素を含む化合
物と希ガスの混合ガスを導入する行程と、前記反応室内
に電子サイクロトロン共鳴プラズマを発生させ、前記タ
ーゲットをスパッタリングをしながら前記基材にバイア
ス電圧を印加する行程とを具備することを要旨とする。
[Means for Solving the Problems] The present invention comprises a step of introducing nitrogen or a mixed gas of a compound containing nitrogen and a rare gas into a reaction chamber containing a substrate and a boron or boron nitride molded target; The method further comprises the step of generating electron cyclotron resonance plasma in a reaction chamber and applying a bias voltage to the base material while sputtering the target.

本発明において、上記窒素を含む化合物としてはアンモ
ニアが挙げられる。また、上記希ガスとしてはアルゴン
、ネオン、キセノン、ヘリウム等の一般的なものが挙げ
られる。
In the present invention, the nitrogen-containing compound includes ammonia. Further, the above-mentioned rare gases include common gases such as argon, neon, xenon, and helium.

また、本発明において基材にバイアス電圧全印加するの
は、ECRプラズマスパッタリングは減圧下での処理で
あシ、バイアスを掛け、分子を高速で衝突させることに
よって、高圧条件と同等な条件を作るためである。
In addition, in the present invention, the full bias voltage is applied to the base material because ECR plasma sputtering is a process under reduced pressure, and by applying a bias and colliding molecules at high speed, conditions equivalent to high pressure conditions are created. It's for a reason.

[作用コ 不発8Aにおいては、反応室内にス・ヤツタ粒子と原料
ガスから成る高純度で分解率の高い電子サイクロトロン
共鳴プラズマを作り、高速度で基材上に堆積させる。そ
の結果、硬質、高熱伝導性、高電気絶縁性に優れた立方
晶窒化ホウ素を極めて容易でかつ安全に得ることができ
る。
[In the case of 8A, high purity electron cyclotron resonance plasma with high decomposition rate is created in the reaction chamber, and is deposited on the substrate at high speed. As a result, cubic boron nitride having excellent hardness, high thermal conductivity, and high electrical insulation can be obtained extremely easily and safely.

「実施例」 以下、本発明の一実施例について説明する。まず、本発
明に用いる反応装置について第1図を参照して説明する
“Example” An example of the present invention will be described below. First, the reaction apparatus used in the present invention will be explained with reference to FIG.

図中1は、ガス導入管2を有する反応室でl)、真空容
器となっている。この反応室1の一端部にはターゲット
3を取りつけた水冷されたターゲット電極4が取シつけ
てあシ、またその中心部には導波管5が接続されている
。また、前記反応室1の他端部には基材ホルダー6が取
シクけである。この基材ホルダー6の先端部には、被処
理体としての基材7が取9つけられるようになっている
。前記基材ホルダー6には、ヒータ電源8に接続したヒ
ータ9が内蔵されている。また、前記導波管5、基材ホ
ルダー6を囲む用にして磁界印加用コイル10が設けら
れている。更に、前記ターゲット電極4及び基板ホルダ
ー6はそれぞれマツチングボックス11を介して高周波
電源12に接続されている。なお、図中13は反応室1
内に取シ付けられた真空ゲージ14はシールドである。
In the figure, 1 is a reaction chamber having a gas introduction pipe 2, which is a vacuum container. A water-cooled target electrode 4 with a target 3 attached thereto is attached to one end of the reaction chamber 1, and a waveguide 5 is connected to the center thereof. Further, a substrate holder 6 can be taken out at the other end of the reaction chamber 1. At the tip of this substrate holder 6, a substrate 7 as an object to be processed is attached. The substrate holder 6 has a built-in heater 9 connected to a heater power source 8. Further, a magnetic field applying coil 10 is provided to surround the waveguide 5 and the substrate holder 6. Further, the target electrode 4 and the substrate holder 6 are each connected to a high frequency power source 12 via a matching box 11. In addition, 13 in the figure is reaction chamber 1.
A vacuum gauge 14 mounted within is a shield.

本実施例では、上記構成の反応装*t−用いて基材7上
にCBN Mを形成する。まず、Siウェハからなる基
材7を基材ホルダー6に取シ付ける。またターゲット電
極にはhBN成形成形体タードツト3シ付ける。次に、
反応室1内を10”Torr以下の減圧状態になるよう
に予備排気した後、ガス導入管2から内部に輩累とアル
ゴンの混合ガス(蟹索50%〕を10 SCCMの流量
で導入し、内部圧力を7 X 10  Torrに維持
する。次いで、基材7の温度が400℃になるようにヒ
ータ9で加熱する。
In this example, CBN M is formed on the base material 7 using the reaction device *t- having the above configuration. First, the base material 7 made of a Si wafer is attached to the base material holder 6. Additionally, three hBN molded product tar dots are attached to the target electrode. next,
After preliminarily evacuating the inside of the reaction chamber 1 to a reduced pressure state of 10" Torr or less, a mixed gas of argon and argon (50% carbon dioxide) was introduced into the interior from the gas introduction pipe 2 at a flow rate of 10 SCCM, The internal pressure is maintained at 7×10 Torr.Then, the base material 7 is heated with a heater 9 so that the temperature thereof becomes 400°C.

次に、磁界印加用コイル10によシ反応室1内に磁界を
印加し、マイクロK (2,450)lz )を専波官
5を介して反応狛に導入し、基板ホルダー6、ターグツ
ト3間に電子サイクロトロン共鳴プラズマを発生させる
。また、ターゲットホルダー4には高周波電力(13,
566)’を印加レセルフパイアス(−3kv )を発
生させ、電子サイクロトロン共鳴プラズマによってもた
らされるスパッタリング効果によりターゲット3よシ構
成物質のスパッタ粒子を放出させる。更に、基板ホルダ
ー6には同様に高周波電力(13,56MHz )を印
加し、セルフバイアス(−0,5kV )を発生させる
。このようにして基材7上に厚さ1μmの被膜を形成す
る。
Next, a magnetic field is applied in the reaction chamber 1 by the magnetic field application coil 10, and the micro K (2,450)lz) is introduced into the reaction chamber via the waveguide 5, and the substrate holder 6 and the target 3 are During this period, an electron cyclotron resonance plasma is generated. In addition, the target holder 4 is equipped with high frequency power (13,
566)' is applied to generate a self-pump (-3 kv), and the sputtered particles of the constituent material of the target 3 are emitted by the sputtering effect brought about by the electron cyclotron resonance plasma. Further, high frequency power (13.56 MHz) is similarly applied to the substrate holder 6 to generate a self-bias (-0.5 kV). In this way, a film with a thickness of 1 μm is formed on the base material 7.

このように、本発明によれば、81ウエハからなる基材
7及びhBN成形成形体タードツト3容した反応室1内
に窒素とアルゴンの混合ガスを導入した後、前記反応室
1内に電子サイクロトロン共鳴プラズマを発生させ、前
記ターゲット3をスフ9ツタリングしながら前記基材7
にバイアス電圧を印加することによう、硬質、高熱伝導
性、高電気絶縁性に優れた立方晶窒化ホウ素膜を極めて
容易でかつ安全に得ることができる。事実、上述の如く
得られた被覆を赤外線吸収スペクトル分析によシ真べた
結果、立方晶固有の105h〜1付近の波数の吸収が認
められるが、六方晶による1 350cm−’及び78
0 an−’付近の吸収は認められない。また、高速電
子線回折装置による電子線回折環図形からも、形感され
た膜は立方晶窒化ホウ素の多結晶体膜であることが確認
された。
As described above, according to the present invention, after introducing a mixed gas of nitrogen and argon into the reaction chamber 1 containing the base material 7 consisting of 81 wafers and 3 hBN molded compacts, an electron cyclotron is introduced into the reaction chamber 1. Resonant plasma is generated, and while the target 3 is tumbled, the base material 7 is
By applying a bias voltage to the substrate, a cubic boron nitride film having excellent hardness, high thermal conductivity, and high electrical insulation properties can be obtained extremely easily and safely. In fact, as a result of infrared absorption spectroscopy analysis of the coating obtained as described above, absorption at wave numbers around 105h to 1, which is characteristic of cubic crystals, was observed, but absorption at wave numbers around 1,350 cm-' and 78 cm due to hexagonal crystals was observed.
Absorption near 0 an-' is not observed. Furthermore, it was confirmed from the electron beam diffraction ring pattern using a high-speed electron diffraction device that the film formed was a polycrystalline film of cubic boron nitride.

ナオ、上記実施例ではhBN成形成形体ターフドを用い
た場合について述べたが、これに限らずホウ素成形体タ
ーケ9ットを用いてもよい。
In the above embodiment, a case was described in which the hBN molded product turfed was used, but the present invention is not limited to this, and a boron molded product turfed may be used.

また、上記実施例では窒素とアルコゝンの混合ガスを用
いた場合について述べたが、窒素を含む化合物(例えば
アンモニア)と布ガスの混合ガス等を用いてもよい。
Further, in the above embodiment, a case was described in which a mixed gas of nitrogen and alcoin was used, but a mixed gas of a nitrogen-containing compound (for example, ammonia) and cloth gas, etc. may also be used.

[発明の効果] 以上詳述した如く本発明にかかる里方晶鼠化ホウ素膜の
製造方法によれば、硬質、高熱伝導性、高電気絶縁性に
優れた立方晶窒化ホウ素族を極めて容易に安全に得るこ
とのできるものである。
[Effects of the Invention] As described in detail above, according to the method for producing a saturonic boron nitride film according to the present invention, a cubic boron nitride group having excellent hardness, high thermal conductivity, and high electrical insulation properties can be produced very easily. It is something that can be obtained safely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る反応装置の説明図であ
る。 1・・・反応嵐、2・・・ガ′ス導入管、3・・・ター
ゲット、4・・・ターグツ)it(極、5・・・導波管
、6・・・基材ホルダー、?・・・基材、8・・・ヒー
タ電源、9・・・ヒータ、10・・・磁界印加用コイル
、11・・・マツチングボックス、12・・・高周波電
源、13−゛・真空ダーツ。
FIG. 1 is an explanatory diagram of a reaction apparatus according to an embodiment of the present invention. 1...Reaction storm, 2...Gas introduction tube, 3...Target, 4...Targutsu) it (pole, 5...Waveguide, 6...Substrate holder, ? ... Base material, 8 ... Heater power supply, 9 ... Heater, 10 ... Coil for applying magnetic field, 11 ... Matching box, 12 ... High frequency power supply, 13-゛. Vacuum dart.

Claims (1)

【特許請求の範囲】[Claims] 基材、及びホウ素又は窒化ホウ素成形体ターゲットを収
容した反応室内に、窒素又は窒素を含む化合物と希ガス
の混合ガスを導入する行程と、前記反応室内に電子サイ
クロトロン共鳴プラズマを発生させ、前記ターゲットを
スパッタリングをしながら前記基材にバイアス電圧を印
加する行程とを具備することを特徴とする立方晶窒化ホ
ウ素膜の製造方法。
A step of introducing a mixed gas of nitrogen or a compound containing nitrogen and a rare gas into a reaction chamber containing a base material and a boron or boron nitride compact target, and generating an electron cyclotron resonance plasma in the reaction chamber to remove the target. A method for producing a cubic boron nitride film, comprising the step of applying a bias voltage to the base material while sputtering.
JP7382488A 1988-03-28 1988-03-28 Production of cubic boron nitride film Pending JPH01246357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7382488A JPH01246357A (en) 1988-03-28 1988-03-28 Production of cubic boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7382488A JPH01246357A (en) 1988-03-28 1988-03-28 Production of cubic boron nitride film

Publications (1)

Publication Number Publication Date
JPH01246357A true JPH01246357A (en) 1989-10-02

Family

ID=13529288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7382488A Pending JPH01246357A (en) 1988-03-28 1988-03-28 Production of cubic boron nitride film

Country Status (1)

Country Link
JP (1) JPH01246357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834021A (en) * 1987-12-14 1989-05-30 Rca Licensing Corporation Apparatus for controlling the distribution of evaporated material onto a surface
JPH03211268A (en) * 1990-01-12 1991-09-17 Toyo Kohan Co Ltd Low-pressure synthesizing method of cubic boron nitride
US6153061A (en) * 1998-03-02 2000-11-28 Auburn University Method of synthesizing cubic boron nitride films
CN104152850A (en) * 2014-07-03 2014-11-19 苏州大学 Preparation method of doped-type porous SiCOH film with low dielectric constant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device
JPS6277454A (en) * 1985-09-30 1987-04-09 Ulvac Corp Formation of cubic boron nitride film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device
JPS6277454A (en) * 1985-09-30 1987-04-09 Ulvac Corp Formation of cubic boron nitride film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834021A (en) * 1987-12-14 1989-05-30 Rca Licensing Corporation Apparatus for controlling the distribution of evaporated material onto a surface
JPH03211268A (en) * 1990-01-12 1991-09-17 Toyo Kohan Co Ltd Low-pressure synthesizing method of cubic boron nitride
US6153061A (en) * 1998-03-02 2000-11-28 Auburn University Method of synthesizing cubic boron nitride films
CN104152850A (en) * 2014-07-03 2014-11-19 苏州大学 Preparation method of doped-type porous SiCOH film with low dielectric constant

Similar Documents

Publication Publication Date Title
US5462776A (en) Conversion of fullerenes to diamonds
JPS63210275A (en) Method for removing unnecessary carbon matter in apparatus for producing carbon
JPH0566359B2 (en)
JPH01246357A (en) Production of cubic boron nitride film
JPH0568541B2 (en)
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH03122266A (en) Production of thin nitride film
JPH0420985B2 (en)
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0543393A (en) Method for preparing carbon material
JP2680574B2 (en) Method for producing cubic boron nitride film
JPH01104763A (en) Production of thin metal compound film
JPS6247472A (en) Formation of cubic boron nitride film
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPH0317274A (en) Film formation
JP2687468B2 (en) Thin film forming equipment
JPS63310795A (en) Vapor phase synthesis method for diamond by microwave plasma jet
JPH0361371A (en) Thin film forming device
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JPS63169387A (en) Formation of thin film
JPH05147908A (en) Production of cubic boron nitride powder
JP2739286B2 (en) Plasma processing method
JP2715277B2 (en) Thin film forming equipment
JPH01103988A (en) Production of hard film by ion cyclotron resonance method
JP2769977B2 (en) Plasma processing method