JPH07330488A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPH07330488A
JPH07330488A JP12866594A JP12866594A JPH07330488A JP H07330488 A JPH07330488 A JP H07330488A JP 12866594 A JP12866594 A JP 12866594A JP 12866594 A JP12866594 A JP 12866594A JP H07330488 A JPH07330488 A JP H07330488A
Authority
JP
Japan
Prior art keywords
electrode
gas
hollow
blow
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12866594A
Other languages
Japanese (ja)
Other versions
JP3137532B2 (en
Inventor
Yoshiaki Takeuchi
良昭 竹内
Masayoshi Murata
正義 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06128665A priority Critical patent/JP3137532B2/en
Publication of JPH07330488A publication Critical patent/JPH07330488A/en
Application granted granted Critical
Publication of JP3137532B2 publication Critical patent/JP3137532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce thin films having high quality at a high speed with a plasma CVD apparatus used for thin film production of solar batteries, thin-film semiconductors, optical sensors, etc. CONSTITUTION:A ladder electrode 2 consisting of a hollow wire exists in a reaction vessel 1. The lower part of the hollow wire is provided with gas blow- off ports 4. The lower half peripheral surface of the hollow wire is provided with a grounding shield 3 covering these blow-off holes 4 by maintaining a specified spacing from the surface. Reactive gases are filled in the vessel 1 from the blow-off ports 4 of the ladder electrode 2. Glow discharge is generated when voltage is impressed to the electrode 2 via a matching device 6 from a high-frequency power source 5, by which plasma is formed atop the electrode and an amorphous thin film is formed on the surface of the substrate 9. The reactive gases flow in the part where the electromagnetic field intensity atop the electrode 2 is strong and the high-density plasma is generated. Depositing of the thin films in the blow-off holes is prevented by the grounding shield 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアモルファスシリコン太
陽電池、薄膜半導体、光センサ、半導体保護膜絶縁膜な
どを形成する化学蒸着型(Chemical Vapour Depositio
n, 以下CVDという)薄膜形成に用いられる高周波プ
ラズマCVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition method for forming amorphous silicon solar cells, thin film semiconductors, photosensors, semiconductor protective film insulating films, and the like.
n, hereinafter referred to as CVD) A high frequency plasma CVD apparatus used for thin film formation.

【0002】[0002]

【従来の技術】大面積のa−Si系薄膜を製造するため
に、従来より用いられているプラズマCVD装置の構成
を図6,図7を参照して説明する。この技術的手段は、
例えば、特願平3−5329号(特開平4−23678
1号)などに開示されている装置である。
2. Description of the Related Art The structure of a conventional plasma CVD apparatus for producing a large-area a-Si thin film will be described with reference to FIGS. This technical means
For example, Japanese Patent Application No. 3-5329 (JP-A-4-23678).
No. 1) and the like.

【0003】図6はプラズマCVD装置の断面図で、反
応容器1内には、グロー放電プラズマを発生させるため
の梯子状平面形コイル電極11(以下ラダー電極とい
う)が配置されている。このラダー電極11は図7の電
極平面図に示すように、2本の線材11a,11bに対
して垂直に数本の線材を梯子状に組み、接続した構造を
有し、外周部が四角形をなしている。図6に戻り、ラダ
ー電極11の電力供給点11a,11bには高周波電源
5から、例えば13.56MHz の高周波数の電力(Radi
o Frequency ;以下RF電力という)がインピーダンス
整合器6を介して供給される。
FIG. 6 is a sectional view of a plasma CVD apparatus. In the reaction vessel 1, a ladder-shaped planar coil electrode 11 (hereinafter referred to as a ladder electrode) for generating glow discharge plasma is arranged. As shown in the electrode plan view of FIG. 7, the ladder electrode 11 has a structure in which several wire rods are vertically assembled in a ladder shape with respect to the two wire rods 11a and 11b, and are connected to each other. I am doing it. Returning to FIG. 6, high-frequency power (Radi) of, for example, 13.56 MHz is supplied to the power supply points 11a and 11b of the ladder electrode 11 from the high-frequency power source 5.
Frequency (hereinafter referred to as RF power) is supplied through the impedance matching device 6.

【0004】反応容器1内には、図示しないボンベから
反応ガス導入管12を介して、例えばモノシラン/水素
の混合ガスが供給される。反応容器1内のガスは排気管
7を通して真空ポンプ8により反応容器1外へ排気され
る。
A mixed gas of, for example, monosilane / hydrogen is supplied into the reaction vessel 1 from a cylinder (not shown) through a reaction gas introducing pipe 12. The gas in the reaction container 1 is exhausted to the outside of the reaction container 1 by the vacuum pump 8 through the exhaust pipe 7.

【0005】薄膜を蒸着する基板9はラダー電極11と
平行に設置され、図示しない基板ホルダにて基板加熱ヒ
ータ10上に支持される。
A substrate 9 on which a thin film is deposited is placed in parallel with a ladder electrode 11 and is supported on a substrate heater 10 by a substrate holder (not shown).

【0006】この装置を用いて以下のように薄膜を作製
する。まず、真空ポンプ8を駆動して反応容器1内を排
気する。反応ガス導入管12を通して、例えばモノシラ
ン/水素の混合ガスを100〜200CC/min 程度の
流量で供給し、反応容器1内の圧力を0.5〜1Torrに
保ち、高周波電源5からインピーダンス整合器6を介し
てラダー電極11にRF電力を印加するとラダー電極1
1と反応容器1との空間及び電極11の周囲にグロー放
電プラズマが発生する。発生したプラズマにより混合ガ
スが分解され、基板9表面にa−Si薄膜が堆積する。
Using this apparatus, a thin film is manufactured as follows. First, the vacuum pump 8 is driven to exhaust the inside of the reaction vessel 1. For example, a mixed gas of monosilane / hydrogen is supplied at a flow rate of about 100 to 200 CC / min through the reaction gas introduction pipe 12, the pressure in the reaction vessel 1 is maintained at 0.5 to 1 Torr, and the high frequency power supply 5 and the impedance matching device 6 are connected. When RF power is applied to the ladder electrode 11 via the
Glow discharge plasma is generated in the space between the electrode 1 and the reaction vessel 1 and around the electrode 11. The generated plasma decomposes the mixed gas to deposit an a-Si thin film on the surface of the substrate 9.

【0007】[0007]

【発明が解決しようとする課題】前述の従来の装置は、
ラダー電極11を用いることにより一般的に用いられて
いる平行平板型電極に比べ、高速・大面積均一成膜が可
能となっている。しかし以下の問題がある。
The above-mentioned conventional device is
The use of the ladder electrode 11 enables high-speed and large-area uniform film formation as compared with a generally used parallel plate type electrode. However, there are the following problems.

【0008】(1)図8は従来のラダー電極の電磁場強
度分布の図で、ラダー電極より5mmの位置における電磁
場強度を示している。図示のように、RF=50Wの低
電力域では、ほぼ一様な電磁場強度分布であるが、RF
=100Wの高電力域では、電極線材11上は強電磁場
であるのに対し、電極線材11間は50Wより弱電磁場
強度となる。発生するプラズマの密度は電磁場強度に比
例する。従ってRF=50Wと100Wを比べた場合、
電極線材11近傍では100Wの方がプラズマの密度が
高くなっているのに対して電極線材11間では50Wの
方が高くなる。従来の方法では、原料となるガスは大部
分は電極線材11上を通らず、線材11の間を通って供
給されるので、成膜速度は電極線材11間のプラズマ密
度に比例する。その結果、図9の成膜速度とRF電力と
の関係図に示すようにRF電力を増加していくと、成膜
速度は増加するが、あるRF電力値からは、前述のよう
に電極間のプラズマ密度が高くならないのでRF電力を
増加しても成膜速度が下がるようになり、それ以上の高
速成膜ができなかった。
(1) FIG. 8 is a diagram of the electromagnetic field intensity distribution of the conventional ladder electrode, showing the electromagnetic field intensity at a position 5 mm from the ladder electrode. As shown in the figure, in the low power region of RF = 50 W, the electromagnetic field intensity distribution is almost uniform.
In the high power region of 100 W, the electromagnetic field is strong on the electrode wire 11, but the electromagnetic field strength between the electrode wires 11 is weaker than 50 W. The density of the generated plasma is proportional to the electromagnetic field strength. Therefore, when comparing RF = 50W and 100W,
In the vicinity of the electrode wire rods 11, 100 W has a higher plasma density, whereas between the electrode wire rods 11, 50 W has a higher plasma density. In the conventional method, most of the raw material gas is supplied not through the electrode wire 11 but through between the wire 11, so that the film formation rate is proportional to the plasma density between the electrode wires 11. As a result, when the RF power is increased as shown in the relationship diagram between the film formation rate and the RF power in FIG. 9, the film formation rate increases, but from a certain RF power value, as described above, Since the plasma density of No. 1 did not increase, the film formation rate decreased even if the RF power was increased, and further high speed film formation was not possible.

【0009】(2)上記(1)の欠点を補うために、図
10のプラズマCVD装置の断面図に示すようにガス導
入管12をラダー電極11に近づけ、ガス導入管12の
ガス吹出孔12aより吹出すガス13を、電極線材11
近傍に供給するように改善をしている。しかしながらこ
の場合、図11のガス導入管断面図に示すように電極1
1近くにあるガス導入管12の上に分解したガス成分に
より厚く堆積したSiNx膜14が堆積し、ガス吹出孔
12aを塞ぐようになる。ガス吹出孔12a周囲に堆積
したSiNx膜14はガス13が吹出す勢いによりフレ
ーク15となって吹飛び、このフレーク15が基板9上
に付着することで基板9上に堆積する薄膜に微少な傷を
生じせしめ、成膜速度は向上しても膜質は悪化した。
(2) In order to make up for the drawback of (1) above, the gas introducing pipe 12 is brought close to the ladder electrode 11 as shown in the sectional view of the plasma CVD apparatus of FIG. The gas 13 blown out from the electrode wire rod 11
Improvements have been made to supply to nearby areas. However, in this case, as shown in the cross-sectional view of the gas introduction pipe of FIG.
The SiNx film 14 thickly deposited by the decomposed gas component is deposited on the gas introduction pipe 12 near 1 to close the gas outlet 12a. The SiNx film 14 deposited around the gas blowout holes 12a blows off into flakes 15 due to the force of the gas 13 blowing, and the flakes 15 adhere to the substrate 9 to cause minute scratches on the thin film deposited on the substrate 9. And the film quality deteriorated even though the film formation rate was improved.

【0010】本発明はこのような課題を解決することを
目的として、ラダー電極近辺にできるだけ反応ガスを吹
出させて電極上での高磁場強度によりプラズマ密度を高
め、高速成膜を行うと共に高品質の非晶質薄膜を製造す
ることのできるプラズマCVD装置を提供するものであ
る。
In order to solve the above problems, the present invention blows out a reaction gas as close to the ladder electrode as possible to increase the plasma density due to the high magnetic field strength on the electrode to perform high-speed film formation and high quality. The present invention provides a plasma CVD apparatus capable of producing the amorphous thin film.

【0011】[0011]

【課題を解決するための手段】そのため、本発明は反応
容器内で放電用電極と対向して基板を配置し、放電用電
極からグロー放電プラズマを発生させて基板上に非晶質
薄板を形成するプラズマCVD装置において、放電用電
極を中空線材で構成すると共に中空線材の空洞内にガス
を流して電極線材表面から反応ガスを吹出すような構成
として、電極とプラズマ形成用のガス流路とを一体化し
たプラズマCVD装置とする。
Therefore, according to the present invention, the substrate is arranged in the reaction vessel so as to face the discharge electrode, and glow discharge plasma is generated from the discharge electrode to form an amorphous thin plate on the substrate. In the plasma CVD apparatus, the discharge electrode is composed of a hollow wire, and a gas is caused to flow in the cavity of the hollow wire to blow out a reaction gas from the surface of the electrode wire. Is integrated into a plasma CVD apparatus.

【0012】即ち、本発明は、反応容器と、この反応容
器内に反応ガスを導入し、排出する手段と、前記反応容
器内に収容された放電用電極と、この放電用電極にグロ
ー放電用電力を供給する電源とを有し、前記反応容器内
で前記放電用電極と対向して設置した基板表面に非晶質
薄膜を形成するプラズマCVD装置において、前記放電
用電極は複数本の中空線材からなる梯子状の平面形に形
成し、同複数本の中空線材の前記基板に対向する面の裏
面となる位置にガス吹出孔を設けると共に、同ガス吹出
孔と間隙を保って同吹出孔を覆うアースシールドを設け
てなり、前記中空線材の空洞にガスを流し、前記吹出孔
から噴出させることにより放電用電極にガス導入部を一
体化したことを特徴とするプラズマCVD装置を提供す
る。
That is, the present invention provides a reaction vessel, a means for introducing and discharging a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and a discharge electrode for glow discharge. In a plasma CVD apparatus having a power supply for supplying electric power and forming an amorphous thin film on the surface of a substrate installed facing the discharge electrode in the reaction vessel, the discharge electrode has a plurality of hollow wires. Is formed in a ladder-like planar shape, and a gas blowout hole is provided at a position that is the back surface of the surface of the plurality of hollow wires facing the substrate, and the same blowout hole is formed with a gap maintained between the gas blowout holes. A plasma CVD apparatus comprising a grounding shield for covering, wherein a gas is flown into the cavity of the hollow wire and ejected from the blowout hole to integrate a gas introduction portion with the discharge electrode.

【0013】[0013]

【作用】本発明はこのような手段により、反応ガスは放
電用電極を構成する中空線材の空洞内を通り、ガス吹出
孔より流出して反応容器内を所定の圧力にする。電源よ
り放電用電極に電力を供給し、グロー放電プラズマを発
生させ、放電用電極と対向して配置した基板表面にプラ
ズマにより分解した非晶質の薄膜が形成される。この薄
膜形成過程において、ガス吹出孔は中空線材の基板に対
向する面の裏側となる面に設けられており、かつ、アー
スシールドで覆われているので、反応ガスは吹出孔から
アースシールドで導かれて中空線材の基板側の周面上部
で電磁場強度の高い領域に導かれて、この領域でプラズ
マが発生するので、ガス吹出孔周辺はプラズマにさらさ
れず、そのため吹出孔周辺に薄膜が堆積し、これにより
フレークが飛散して基板表面に傷を付けるようなことも
なく、高速、高品質の成膜を形成することができる。
According to the present invention, by such means, the reaction gas passes through the cavity of the hollow wire which constitutes the discharge electrode and flows out from the gas blowout hole to make the inside of the reaction vessel have a predetermined pressure. Electric power is supplied from the power source to the discharge electrode to generate glow discharge plasma, and an amorphous thin film decomposed by the plasma is formed on the surface of the substrate arranged facing the discharge electrode. In the process of forming this thin film, the gas blow-out hole is provided on the back surface of the surface of the hollow wire facing the substrate and is covered with the earth shield, so that the reaction gas is guided from the blow-out hole by the earth shield. The hollow wire is guided to an area where the electromagnetic field strength is high in the upper part of the peripheral surface on the substrate side, and plasma is generated in this area, so the area around the gas outlet is not exposed to the plasma, so a thin film accumulates around the outlet. As a result, it is possible to form a high-speed, high-quality film without the flakes being scattered and scratching the surface of the substrate.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明の一実施例に係るプラズマ
CVD装置の構成を示す断面図、図2は図1における中
空ラダー電極の平面図、図3はこの中空ラダー電極の詳
細な断面図、図4は中空ラダー電極の断面図で、ガス供
給とプラズマの状態を示す図、図5は成膜速度とRF電
極との関係を示す図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 is a sectional view showing the structure of a plasma CVD apparatus according to an embodiment of the present invention, FIG. 2 is a plan view of the hollow ladder electrode in FIG. 1, FIG. 3 is a detailed sectional view of the hollow ladder electrode, and FIG. FIG. 5 is a cross-sectional view of a hollow ladder electrode, showing a gas supply state and a plasma state, and FIG. 5 is a view showing a relationship between a film formation rate and an RF electrode.

【0015】以下、実施例をこれらの図面を参照し、詳
細に説明するが、従来の装置(図6)と同一の部材には
同一の番号を付している。反応容器1内にはグロー放電
プラズマを発生させるための円筒形中空線材を使用した
弟子状平面形コイル電極2(以下、中空ラダー電極とい
う)が配置されている。この中空ラダー電極2は図2の
平面図及び図3の断面図に示すように2本の中空線材2
a,2bに対して垂直に数本の中空線材を接続し、梯子
状に組んだ構造を有し、外周部が四角形状をなしてい
る。
Embodiments will be described in detail below with reference to these drawings. The same members as those in the conventional apparatus (FIG. 6) are designated by the same reference numerals. A disciple-shaped planar coil electrode 2 (hereinafter referred to as a hollow ladder electrode) using a cylindrical hollow wire for generating glow discharge plasma is arranged in the reaction vessel 1. This hollow ladder electrode 2 has two hollow wire rods 2 as shown in the plan view of FIG. 2 and the sectional view of FIG.
It has a structure in which several hollow wire rods are connected vertically to a and 2b and assembled in a ladder shape, and the outer peripheral portion has a quadrangular shape.

【0016】このラダー電極の寸法は反応容器の容量に
よるが、中空線材の長さは100〜1000mm、中空線
材間は10〜50mm、の範囲であり、中空線材の径は3
〜10mmが好ましい。
The size of this ladder electrode depends on the capacity of the reaction vessel, but the length of the hollow wire is 100 to 1000 mm, the distance between the hollow wires is 10 to 50 mm, and the diameter of the hollow wire is 3.
10 mm is preferable.

【0017】又、この中空線材の半周部分には、図3に
示すように、基板9に対向する中空線材の表面の裏面と
なる位置に一定の間隔を保って円弧状のアースシールド
3が設けられている。この電極とアースシールド3との
間隔は0.5〜2mm程度とし、成膜時の反応容器1内圧
力における電子の平均自由行程以下であることが望まし
い。各線材の空洞部は連通しており、又、この中空線材
にはアースシールド3と対向する位置に複数個のガス吹
出孔4が設けられ、中空線材の空洞部と連通している。
このガス吹出孔4の径は0.2〜0.7mm、孔の配列ピ
ッチは10〜25mm程度であることが好ましい。
Further, as shown in FIG. 3, a circular arc-shaped earth shield 3 is provided in a semi-circular portion of the hollow wire material at a position which is the back surface of the surface of the hollow wire material facing the substrate 9 with a constant interval. Has been. The distance between this electrode and the earth shield 3 is preferably about 0.5 to 2 mm and is preferably equal to or less than the mean free path of electrons at the internal pressure of the reaction container 1 during film formation. The hollow portion of each wire is in communication with each other, and a plurality of gas blowout holes 4 are provided in the hollow wire at a position facing the earth shield 3 so as to communicate with the hollow portion of the hollow wire.
It is preferable that the diameter of the gas outlet holes 4 is 0.2 to 0.7 mm and the arrangement pitch of the holes is about 10 to 25 mm.

【0018】中空ラダー電極2の電力供給点2a,2b
には、高周波電源5から、例えば13.56MHz の周波
数の電力がインピーダンス整合器6を介して供給され
る。また、中空ラダー電極2のガス供給点2Cには図示
を省略したガス供給管より、電気的に絶縁性の中空材を
介して中空ラダー電極2の空洞部へ、例えばモノシラン
/水素の混合ガスが供給され、ガス吹出孔4より反応容
器1内に送り出される。
Power supply points 2a, 2b of the hollow ladder electrode 2
A high-frequency power source 5 supplies electric power having a frequency of 13.56 MHz, for example, through the impedance matching device 6. In addition, at a gas supply point 2C of the hollow ladder electrode 2, a gas supply pipe (not shown) introduces a mixed gas of, for example, monosilane / hydrogen into a hollow portion of the hollow ladder electrode 2 through an electrically insulating hollow material. It is supplied and sent out into the reaction container 1 through the gas blowout hole 4.

【0019】なお、中空ラダー電極2を構成する中空線
材の断面形状は、楕円形であっても多角形であっても良
いが、その場合にはアースシールド3も中空線材表面と
の距離が一定となるように同一形状の楕円形、又は多角
形状とする必要がある。反応容器1内のガスは排気管7
を通して真空ポンプ8により排気される。
The hollow wire rod forming the hollow ladder electrode 2 may have an elliptical cross section or a polygonal cross section. In that case, the earth shield 3 has a constant distance from the hollow wire rod surface. Therefore, it is necessary to use the same elliptical shape or polygonal shape. Gas in the reaction vessel 1 is exhaust pipe 7
Through the vacuum pump 8.

【0020】薄膜を成形すべき基板9は、中空ラダー電
極2と平行に設置され、図示しない基板ホルダにより基
板加熱ヒータ10に支持される。
A substrate 9 on which a thin film is to be formed is placed in parallel with the hollow ladder electrode 2 and supported by a substrate heater 10 by a substrate holder (not shown).

【0021】この装置を用い、以下のようにして薄膜を
作製する。まず、真空ポンプ8を駆動して反応容器1内
を排気する。図示しないガス供給管より、ガス供給点2
Cから中空ラダー電極2の空洞部を介して、例えばモノ
シラン/水素の混合ガスを100〜200CC/min 程
度の流量で供給し、反応容器1内の圧力を0.5〜1To
rr程度に保ち、高周波電源5からインピーダンス整合器
6を介して中空ラダー電極2にRF電力を印加すると、
図4に示すように電極2のアースシールド3がない部分
の周囲にグロー放電プラズマが発生する。
Using this apparatus, a thin film is prepared as follows. First, the vacuum pump 8 is driven to exhaust the inside of the reaction vessel 1. Gas supply point 2 from a gas supply pipe (not shown)
A mixed gas of, for example, monosilane / hydrogen is supplied from C through the hollow portion of the hollow ladder electrode 2 at a flow rate of about 100 to 200 CC / min, and the pressure in the reaction vessel 1 is set to 0.5 to 1 To.
When the RF power is applied to the hollow ladder electrode 2 from the high frequency power source 5 through the impedance matching device 6 while maintaining about rr,
As shown in FIG. 4, glow discharge plasma is generated around the portion of the electrode 2 where the earth shield 3 is absent.

【0022】プラズマ密度は電極線材近傍で大きく、離
れる程小さくなるが、本発明では図4に示すように、ガ
ス21は常に最もプラズマ密度の高い領域に供給され、
高密度プラズマ20はこの領域に発生し、かつ、ガス吹
出孔4の近辺はプラズマが発生してないので、ガス吹出
孔4はプラズマにさらされず、膜が堆積しないので高品
質・高速成膜が可能となることが推測される。そこで下
記条件で成膜実験を行った。
The plasma density is large in the vicinity of the electrode wire and becomes smaller as the distance increases, but in the present invention, the gas 21 is always supplied to the region having the highest plasma density, as shown in FIG.
Since the high-density plasma 20 is generated in this region and no plasma is generated in the vicinity of the gas outlet 4, the gas outlet 4 is not exposed to the plasma and a film is not deposited, so that high quality and high speed film formation is possible. It is speculated that it will be possible. Therefore, a film forming experiment was conducted under the following conditions.

【0023】基板材料:ガラス、基板面積:300mm×
300mm、基板温度:250℃、反応ガス及び流量:S
iH4 =30CC/分、水素=120CC/分、反応容
器内圧力:1Torr、において印加する高周波電力を20
Wから100Wの範囲に設定した。成膜速度と高周波電
力との関係を図5に示す。
Substrate material: glass, substrate area: 300 mm x
300 mm, substrate temperature: 250 ° C., reaction gas and flow rate: S
iH 4 = 30 CC / min, hydrogen = 120 CC / min, reaction vessel pressure: 1 Torr, and high frequency power applied was 20.
It was set in the range of W to 100W. FIG. 5 shows the relationship between the film formation rate and the high frequency power.

【0024】図5に示されるように、高周波電力を増加
すると成膜速度は増加し、100Wの高周波電力にて1
4オングストローム/sec と非常に速い成膜速度が得ら
れた。このとき、得られた膜の欠陥密度を電子ピン共鳴
方法により測定したところ1.2×1015個/CCであ
り、高品質の膜であることがわかった。
As shown in FIG. 5, when the high frequency power is increased, the film forming rate is increased, and the high frequency power of 100 W
A very high deposition rate of 4 Å / sec was obtained. At this time, the defect density of the obtained film was measured by the electron pin resonance method and found to be 1.2 × 10 15 defects / CC, which proved to be a high quality film.

【0025】このように本実施例では、放電用電極とし
て図2及び図3に示す中空ラダー電極2を用いること
で、10〜15オングストローム/sec という高速成膜
速度で、かつ、高品質のa−Si薄膜を作製できるもの
である。
As described above, in this embodiment, by using the hollow ladder electrode 2 shown in FIGS. 2 and 3 as the discharge electrode, a high film formation rate of 10 to 15 angstrom / sec and high quality a -Si thin film can be produced.

【0026】[0026]

【発明の効果】以上、具体的に詳述したように、本発明
によれば、放電用電極として中空線材からなる電極を用
いることにより、中空線材の吹出口より反応ガスを吹出
し、電極近傍の電磁場強度が強い部分に反応ガスを供給
するようにしたので高速で高品質の非晶質薄膜を製造す
ることができる。従って、アモルファスシリコン太陽電
池、薄膜半導体、光センサ、半導体保護膜などの製造分
野で工業的価値が大きい。
As described in detail above, according to the present invention, by using the electrode made of a hollow wire as the discharge electrode, the reaction gas is blown out from the blowout port of the hollow wire and Since the reaction gas is supplied to the portion having a strong electromagnetic field strength, a high quality amorphous thin film can be manufactured at high speed. Therefore, it has great industrial value in the manufacturing field of amorphous silicon solar cells, thin film semiconductors, optical sensors, semiconductor protective films, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るプラズマCVD装置の
構成を示す断面図である。
FIG. 1 is a sectional view showing the configuration of a plasma CVD apparatus according to an embodiment of the present invention.

【図2】図1における中空ラダー電極の平面図である。FIG. 2 is a plan view of the hollow ladder electrode in FIG.

【図3】図1における中空ラダー電極の詳細な断面図で
ある。
3 is a detailed cross-sectional view of the hollow ladder electrode in FIG.

【図4】本発明の一実施例に係る中空ラダー電極の断面
図で、ガス供給とプラズマ発生の状態を示す。
FIG. 4 is a cross-sectional view of a hollow ladder electrode according to an embodiment of the present invention, showing a state of gas supply and plasma generation.

【図5】本発明の効果を示す図で、成膜速度とRF電力
との関係を図す。
FIG. 5 is a diagram showing the effect of the present invention, showing the relationship between the film formation rate and the RF power.

【図6】従来のプラズマCVD装置の断面図である。FIG. 6 is a sectional view of a conventional plasma CVD apparatus.

【図7】図6に示す従来のラダー電極の平面図である。FIG. 7 is a plan view of the conventional ladder electrode shown in FIG.

【図8】従来のラダー電極の電磁場強度分布を示す図で
ある。
FIG. 8 is a diagram showing an electromagnetic field intensity distribution of a conventional ladder electrode.

【図9】従来のプラズマCVD装置の成膜速度とRF電
力との関係を示す図である。
FIG. 9 is a diagram showing a relationship between a film formation rate and RF power of a conventional plasma CVD apparatus.

【図10】従来の改良型のプラズマCVD装置の断面図
である。
FIG. 10 is a cross-sectional view of a conventional improved plasma CVD apparatus.

【図11】従来のプラズマCVD装置におけるラダー電
極での膜堆積の状況を示す概念図である。
FIG. 11 is a conceptual diagram showing a situation of film deposition on a ladder electrode in a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 2 中空ラダー電極 3 アースシールド 4 ガス吹出孔 5 高周波電源 6 整合器 7 排気管 8 真空ポンプ 9 基板 20 高密度プラズマ 1 Reaction Vessel 2 Hollow Ladder Electrode 3 Earth Shield 4 Gas Outlet 5 High Frequency Power 6 Matching Machine 7 Exhaust Pipe 8 Vacuum Pump 9 Substrate 20 High Density Plasma

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応容器と、この反応容器内に反応ガス
を導入し、排出する手段と、前記反応容器内に収容され
た放電用電極と、この放電用電極にグロー放電用電力を
供給する電源とを有し、前記反応容器内で前記放電用電
極と対向して設置した基板表面に非晶質薄膜を形成する
プラズマCVD装置において、前記放電用電極は複数本
の中空線材からなる梯子状の平面形に形成し、同複数本
の中空線材の前記基板に対向する面の裏面となる位置に
ガス吹出孔を設けると共に、同ガス吹出孔と間隙を保っ
て同吹出孔を覆うアースシールドを設けてなり、前記中
空線材の空洞にガスを流し、前記吹出孔から噴出させる
ことにより放電用電極にガス導入部を一体化したことを
特徴とするプラズマCVD装置。
1. A reaction container, means for introducing and discharging a reaction gas into the reaction container, a discharge electrode housed in the reaction container, and glow discharge power supplied to the discharge electrode. In a plasma CVD apparatus having a power source and forming an amorphous thin film on the surface of a substrate installed in the reaction vessel so as to face the discharge electrode, the discharge electrode is a ladder formed of a plurality of hollow wires. Of the same number of hollow wire rods, the gas blow-out hole is provided at a position which is the back side of the surface facing the substrate of the plurality of hollow wire rods, and an earth shield which covers the blow-out hole while keeping a gap with the gas blow-out hole. A plasma CVD apparatus characterized in that a gas introduction part is integrated with a discharge electrode by causing a gas to flow into the cavity of the hollow wire and ejecting the gas from the blowout hole.
JP06128665A 1994-06-10 1994-06-10 Plasma CVD equipment Expired - Fee Related JP3137532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06128665A JP3137532B2 (en) 1994-06-10 1994-06-10 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06128665A JP3137532B2 (en) 1994-06-10 1994-06-10 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH07330488A true JPH07330488A (en) 1995-12-19
JP3137532B2 JP3137532B2 (en) 2001-02-26

Family

ID=14990421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06128665A Expired - Fee Related JP3137532B2 (en) 1994-06-10 1994-06-10 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP3137532B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189485B1 (en) 1998-06-25 2001-02-20 Anelva Corporation Plasma CVD apparatus suitable for manufacturing solar cell and the like
JP2008285763A (en) * 2008-07-28 2008-11-27 Mitsubishi Heavy Ind Ltd Electrode, and vacuum treatment system provided therewith
US7626135B2 (en) 2006-05-10 2009-12-01 Sub-One Technology, Inc. Electrode systems and methods of using electrodes
JP2015508565A (en) * 2012-01-27 2015-03-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Segmented antenna assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189485B1 (en) 1998-06-25 2001-02-20 Anelva Corporation Plasma CVD apparatus suitable for manufacturing solar cell and the like
US7626135B2 (en) 2006-05-10 2009-12-01 Sub-One Technology, Inc. Electrode systems and methods of using electrodes
JP2008285763A (en) * 2008-07-28 2008-11-27 Mitsubishi Heavy Ind Ltd Electrode, and vacuum treatment system provided therewith
JP2015508565A (en) * 2012-01-27 2015-03-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Segmented antenna assembly

Also Published As

Publication number Publication date
JP3137532B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
US5015330A (en) Film forming method and film forming device
KR19980087249A (en) Silicon oxide film, method for forming the same, and forming apparatus
KR20040034474A (en) Electronic device, production method thereof, and plasma process apparatus
EP1921178A1 (en) Film deposition of amorphous films by electron cyclotron resonance
JPH0766186A (en) Anisotropic depositing method of dielectric
JPH07330488A (en) Plasma cvd apparatus
JP3068604B2 (en) Plasma CVD equipment
JPH01298725A (en) Thin film formation, apparatus therefor, and semiconductor element
JP3426788B2 (en) Plasma CVD equipment
JP3310875B2 (en) Plasma CVD equipment
JPH024976A (en) Thin film formation
JP3372384B2 (en) Plasma CVD equipment
JP3653035B2 (en) Apparatus for forming carbon film on inner surface of plastic container and method for manufacturing inner surface carbon film-coated plastic container
JP3546095B2 (en) Plasma CVD equipment
JP3546200B2 (en) Plasma CVD apparatus and plasma CVD method
JPH1022279A (en) Inductive coupled plasma cvd device
JP2003247070A (en) Apparatus for depositing carbon film on inside surface of plastic vessel, and method for manufacturing plastic vessel with inside surface covered by carbon film
JPH05343338A (en) Plasma cvd apparatus
JP2646582B2 (en) Plasma CVD equipment
JP2798225B2 (en) High frequency plasma CVD equipment
JPS60258914A (en) Plasma cvd equipment
JP2924303B2 (en) Plasma vapor deposition equipment
JPH0633245A (en) Cvd device
JP2003077849A (en) Plasma processing apparatus
JPH0745539A (en) Plasma cvd device and electrode used for the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees