JP3546095B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment Download PDF

Info

Publication number
JP3546095B2
JP3546095B2 JP13159395A JP13159395A JP3546095B2 JP 3546095 B2 JP3546095 B2 JP 3546095B2 JP 13159395 A JP13159395 A JP 13159395A JP 13159395 A JP13159395 A JP 13159395A JP 3546095 B2 JP3546095 B2 JP 3546095B2
Authority
JP
Japan
Prior art keywords
gas
reaction vessel
gas supply
supply chamber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13159395A
Other languages
Japanese (ja)
Other versions
JPH08330235A (en
Inventor
康弘 山内
正義 村田
良昭 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13159395A priority Critical patent/JP3546095B2/en
Publication of JPH08330235A publication Critical patent/JPH08330235A/en
Application granted granted Critical
Publication of JP3546095B2 publication Critical patent/JP3546095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【産業上の利用分野】
本発明はアモルファスシリコン太陽電池、薄膜半導体、光センサー、半導体保護膜絶縁膜などを形成する化学蒸着(Chemical Vapour Deposition,本明細書では「CVD」という)型薄膜形成に用いられる高周波プラズマCVD装置に関する。
【0002】
【従来の技術】
大面積のa−Si系薄膜を製造するために、従来より用いられているプラズマCVD装置の構成の一例を図7および図8を参照して説明する。この技術的手段は、例えば特開平4−236781号などに開示されている装置である。
【0003】
図7はプラズマCVD装置の断面図で、反応容器(1)内には、グロー放電プラズマを発生させるための梯子状平面型コイル電極(2)(以下「ラダー電極」という)が配置されている。このラダー電極(2)は図8の電極平面図に示すように、2本の線材に対して垂直に複数本の線材を梯子状に組んで接続した構造を有し、外周部が四角形をなしている。図7のラダー電極(2)の電力供給点(2a)、(2b)には高周波電源(7)から、例えば13.56MHzの高周波数(Radio Frequency )の電力(以下「RF電力」という)がインピーダンス整合器(8)を介して供給される。
【0004】
反応容器(1)内には、図示しないボンベから反応ガス供給管(6)を介して、例えばモノシランと水素の混合ガスが供給される。反応容器(1)内のガスは排気管(9)を通して真空ポンプ(10)により反応容器(1)外へ排出される。薄膜を蒸着する基板(12)は、ラダー電極(2)と平行に設置され、図示しない基板ホルダーで基板加熱ヒータ(11)上に支持される。
【0005】
この装置を用いて以下のように薄膜を作製する。まず真空ポンプ(10)を駆動して反応容器(1)内を排気する。反応ガス供給管(6)を通して、例えばモノシランと水素の混合ガスを100〜200cc/min 程度の流量で供給し、反応容器(1)内の圧力を0.5〜1.0Torrに保ち、高周波電源(7)からインピーダンス整合器(8)を介してラダー電極(2)にRF電力を印加すると、ラダー電極(2)と反応容器(1)との空間および電極(2)の周囲の空間にグロー放電プラズマが発生する。発生したプラズマにより混合ガスが分解され、基板(12)の表面にa−Si膜が堆積する。
【0006】
【発明が解決しようとする課題】
前述の従来の装置は、ラダー電極(2)を用いることにより一般的に用いられている平行平板電極に比べ、高速・大面積の均一成膜が可能となっているが、次のような解決すべき課題があった。
【0007】
従来の方法では図9のSiH発光強度分布で示すように、反応ガス導入管(6)〜ラダー電極(2)〜基板(12)の間全体でプラズマが発生し、ガスを分解している。すなわちガス流れの上流になる反応ガス導入管(6)〜ラダー電極(2)間で原料ガスが分解・消費される。このためガス流れの下流になる基板(12)近傍では、分解生成物であるラジカルの濃度が増加し、次式に示す反応が進んで粉が発生しやすかった。
【0008】
SiH+e(電子) → SiH+H
SiH+SiH → Si
SiH+Si → Si
‥‥‥‥‥‥‥‥
SiH+Sin−1 2n → Si2(n+1)(粉)
生じた粉は基板(12)上に堆積生長する薄膜中に入り、膜質を低下させるばかりでなく、反応容器(1)の内壁や真空ポンプ内に付着して、装置稼動にも問題が生じていた。
【0009】
【課題を解決するための手段】
本発明者は、前記従来の課題を解決するために、反応容器と、この反応容器内に反応ガスを導入し排出する手段と、上記反応容器内に収容された複数本の線材からなる梯子状の平面型放電用電極と、この放電用電極にグロー放電用電力を供給する電源とを有し、上記反応容器内で上記放電用電極に対向して設置された基板の表面に非晶質薄膜を形成するプラズマCVD装置において、上記基板から上記放電用電極をへだてた反対側にガス供給室を設け、同ガス供給室の上記放電用電極に対向する壁を網状金属で形成するとともに、上記ガス供給室内にガス吹出し孔を有するガス導入管と、上記網状金属の壁と上記ガス吹出し孔との間を画する網状のガス分散板とを設けたことを特徴とするプラズマCVD装置を提案するものである。
【0010】
【作用】
本発明は前記構成を有し、基板から放電用電極をへだてた反対側にガス供給室を設け、同ガス供給室の上記放電用電極に対向する壁を網状金属で形成するとともに、上記ガス供給室内にガス吹出し孔を有するガス導入管を設けたので、反応ガスをガス供給室に導入することができる。そうすると反応ガスはガス供給室の網状金属の壁を透過して基板と放電用電極との間に直接供給され、排気される。その結果、反応ガスがプラズマ中に滞在する時間が短くなるから、過剰な反応を抑制することができ、したがって粉発生が抑制される。
【0011】
本発明ではまた、上記網状金属の壁と上記ガス吹出し孔との間を画する網状のガス分散板を設けたので、膜質・膜厚分布に重大な影響を与えるガス導入量の均一性が確保される。
【0012】
こうして、高速で高品質・大面積の均一成膜が可能となる。
【0013】
【実施例】
以下、本発明の実施例を図面に基づいて具体的に説明する。図1は本発明の一実施例に係わるプラズマCVD装置の構成を示す断面図、図2は図1におけるラダー電極を示す平面図、図3はこのラダー電極とガス供給室の関係を示す詳細断面図である。これらの図において、前記図7および図8により説明した従来のものと同様の部分については、冗長になるのを避けるため、同一の符号を付け詳しい説明を省く。
【0014】
本実施例においては、グロー放電プラズマを発生させるために線材を組上げて構成される梯子状平面型コイル(2)(以下「ラダー電極」という)が反応容器(1)内に配置されている。本実施例で使用されるラダー電極(2)も図2の平面図に示すように二本の線材に対し垂直に複数本の線材を接続して梯子状に組んだ構造を有し、外周部は四角形状をなしている。
【0015】
このラダー電極(2)を構成する線材の基板(12)と対向しない側、すなわち基板(12)からラダー電極をへだてた反対側(図2では下方)には、ガス供給室(4)が設けられている。そしてこのガス供給室(4)のラダー電極に対向する壁(図では天井壁)(3)は、アースシールド板として網状金属で形成されている。この網状金属の目開きの隙間は0.1〜1.0mm程度とし、成膜時の反応容器(1)内圧力における電子の平均自由行程以下であることが望ましい。また、ラダー電極(2)とアースシールド板(3)との間隔は0.5〜2mm程度とし、成膜時の反応容器(1)内圧力における電子の平均自由行程と同程度かそれ以下であることが望ましい。
【0016】
ガス供給室(4)内の下部には複数本のガス供給管(6)が設けられており、それらガス供給管(6)の1本1本に複数のガス吹出し孔(5)が設けられている。このガス吹出し孔(5)の径は0.2〜0.7mm、孔のピッチは10〜25mm程度であることが好ましい。このガス供給管(6)と網状金属の天井壁との間には、ガスを分散させる網状金属製のガス分散板(61)が、ガス供給室(4)内を上下に画するように配置される。このガス分散板(61)の金網の目開きの隙間は0.2〜0.7mmが望ましい。
【0017】
ラダー電極(2)の電力供給点(2a)、(2b)には、高周波電源(7)から、例えば13.56MHzの周波数のRF電力がインピーダンス整合器(8)を介して供給される。ガス供給室(4)の下部にはガス供給管(6)からガス吹出し孔(5)を経て例えばモノシランガスが供給され、網状金属で形成されたガス分散板(61)とアースシールド板(3)を透過して反応容器(1)内に送り出される。反応容器(1)内のガスは排気管(9)を通じて真空ポンプ(10)により排気される。薄膜を形成すべき基板(12)はラダー電極(2)と平行に設置され、図示しない基板ホルダにより基板加熱ヒータ(11)に支持される。
【0018】
このような装置において、以下のようにして薄膜を製作する。まず真空ポンプ(10)を駆動して反応容器(1)内を排気する。次にガス供給管(6)からガス吹出し孔(5)を介して、ガス供給室(4)内に例えばモノシランガスを20〜100cc/min 程度の流量で供給する。そうすると、このガスはガス分散板(61)、アースシールド板(3)を透過して反応容器(1)内に至る。反応容器(1)内の圧力を0.03〜0.2Torr程度に保ち、高周波電源(7)からインピーダンス整合器(8)を介してラダー電極(2)に高周波電力を印加すると、図4に示されるように、ラダー電極(2)と基板(12)の間にグロー放電プラズマが発生する。
【0019】
本実施例では図4に示すように、反応ガス(13)は基板(12)とラダー電極(2)の間で生成されたプラズマ中に供給される。プラズマはこの領域に発生し、基板(12)に対する薄膜の堆積には不必要な、電極線材の基板と対向していない部分(ラダー電極(2)と反応ガス供給管(6)との間)には発生しないから、過剰な反応が抑制され、粉の発生が抑制される。また、ガス吹出し孔(5)はプラズマにさらされず、膜が堆積しないから、ガス吹出し孔からガスが突出する勢いによる膜剥離がない。さらにアースシールド板(3)は網状金属で構成されているから、その表面積が大きく、同じ時間成膜に使用してもアースシールド板(3)に堆積する膜の厚さは薄くなって、アースシールド板からの膜剥離を抑制できる。したがって薄膜の高品質・高速成膜が可能となる。
【0020】
それを確認するために、下記条件で成膜実験を行なった。
【0021】
基板材料: 無アルカリガラス、
基板面積: 300×300mm、
基板温度: 250℃、
反応ガスおよび流量: SiH=70cc/分、
反応容器内圧力: 30 mTorr、
印加した高周波電力: 20W〜100W。
【0022】
こうして得られた成膜速度とプラズマ中の粉の数との関係を図5に、電子スピン共鳴法(以下「ESR」という)で測定した膜中欠陥密度と成膜速度の関係を図6に示す。
【0023】
図5に示されるように、高周波電力を増加し成膜速度を増加すると、従来はプラズマ中の粉の数が急増したが、本発明では元々の数が少なく、また成膜速度増加による粉の数の増加も小さくなる結果が得られた。このとき得られた欠陥密度は図6に示すように、成膜速度15Å/秒という高速成膜条件においても2.8×1015個/ccであり、高品質の膜であることが判った。また、高周波電力を若干下げ成膜速度を5Å/秒以下の条件で製作した薄膜の欠陥密度は、本実施例で使用したESRの測定下限界(1×1015個/cc)以下であり、非常に高品質の膜であることが判った。このように本実施例では、図3に示すアースシールド板(3)に網状金属材料を用いてアースシールド板(3)自体から反応ガスを透過供給することにより、15Å/秒という高速成膜速度で、かつ欠陥密度が2.8×1015個/cc以下の高品質のa−Si薄膜を製作できるものである。
【0024】
【発明の効果】
以上具体的に詳述したように、本発明においては放電用電極の基板と対向しない側に金属金網で製作したガス供給室を配置して反応ガスを導入し、基板と電極との間に直接反応ガスを供給するようにしたので、高速で高品質の非晶質薄膜を製造することができる。したがって、アモルファスシリコン太陽電池、薄膜半導体、光センサ、半導体保護膜などの製造分野で工業的価値が大きい。
【図面の簡単な説明】
【図1】図1は本発明の一実施例に係わるプラズマCVD装置の構成を示す断面図である。
【図2】図2は図1におけるラダー電極を示す平面図である。
【図3】図3は図1におけるラダー電極とガス供給室金網の関係を示す詳細断面図である。
【図4】図4は上記実施例におけるガス供給とプラズマ状態を示す図である。
【図5】図5は本発明の効果として成膜速度とプラズマ中の粉の数との関係を示す図である。
【図6】図6は本発明の効果として膜中の欠陥密度と成膜速度との関係を示す図である。
【図7】図7は従来のプラズマCVD装置の構成の一例を示す断面図である。
【図8】図8は図7におけるラダー電極を示す平面図である。
【図9】図9は従来のプラズマCVD装置におけるガス吹出し孔から基板までの間のSiH発光強度分布を示す図である。
【符号の説明】
(1) 反応容器
(2) ラダー電極
(3) ガス供給室金網
(4) ガス供給室
(5) ガス吹出し孔
(6) ガス導入管
(7) 高周波電源
(8) インピーダンス整合器
(9) ガス排気管
(10) 真空ポンプ
(11) 基板ヒータ
(12) 基板
(13) ガス流れ
(61) ガス分散板
[0001]
[Industrial applications]
The present invention relates to a high-frequency plasma CVD apparatus used for forming a chemical vapor deposition (Chemical Vapor Deposition, referred to as “CVD” in this specification) type thin film for forming an amorphous silicon solar cell, a thin film semiconductor, an optical sensor, a semiconductor protective film insulating film, and the like. .
[0002]
[Prior art]
An example of the configuration of a plasma CVD apparatus conventionally used to manufacture a large-area a-Si-based thin film will be described with reference to FIGS. This technical means is, for example, an apparatus disclosed in Japanese Patent Application Laid-Open No. 4-236681.
[0003]
FIG. 7 is a cross-sectional view of a plasma CVD apparatus, in which a ladder-like planar coil electrode (2) (hereinafter referred to as a "ladder electrode") for generating glow discharge plasma is disposed in a reaction vessel (1). . As shown in the electrode plan view of FIG. 8, the ladder electrode (2) has a structure in which a plurality of wires are vertically assembled and connected to two wires in a ladder shape, and the outer peripheral portion has a square shape. ing. At the power supply points (2a) and (2b) of the ladder electrode (2) in FIG. 7, for example, a high frequency (Radio Frequency) power of 13.56 MHz (hereinafter referred to as "RF power") from the high frequency power supply (7). It is supplied via an impedance matching device (8).
[0004]
In the reaction vessel (1), for example, a mixed gas of monosilane and hydrogen is supplied from a cylinder (not shown) via a reaction gas supply pipe (6). The gas in the reaction vessel (1) is exhausted out of the reaction vessel (1) by a vacuum pump (10) through an exhaust pipe (9). The substrate (12) for depositing a thin film is installed in parallel with the ladder electrode (2), and is supported on the substrate heater (11) by a substrate holder (not shown).
[0005]
Using this apparatus, a thin film is produced as follows. First, the inside of the reaction vessel (1) is evacuated by driving the vacuum pump (10). For example, a mixed gas of monosilane and hydrogen is supplied at a flow rate of about 100 to 200 cc / min through the reaction gas supply pipe (6), the pressure in the reaction vessel (1) is maintained at 0.5 to 1.0 Torr, When RF power is applied from (7) to the ladder electrode (2) via the impedance matching device (8), glow is applied to the space between the ladder electrode (2) and the reaction vessel (1) and the space around the electrode (2). Discharge plasma is generated. The mixed gas is decomposed by the generated plasma, and an a-Si film is deposited on the surface of the substrate (12).
[0006]
[Problems to be solved by the invention]
The above-mentioned conventional apparatus enables high-speed and large-area uniform film formation by using the ladder electrode (2) as compared with a generally used parallel plate electrode. There were issues to be addressed.
[0007]
In the conventional method, as shown by the SiH emission intensity distribution in FIG. 9, plasma is generated in the entire space between the reaction gas introduction pipe (6), the ladder electrode (2), and the substrate (12) to decompose the gas. That is, the raw material gas is decomposed and consumed between the reaction gas introduction pipe (6) and the ladder electrode (2) which is upstream of the gas flow. For this reason, in the vicinity of the substrate (12) downstream of the gas flow, the concentration of the radical as a decomposition product increased, and the reaction represented by the following equation progressed, and powder was easily generated.
[0008]
SiH 4 + e (electron) → SiH 2 + H 2
SiH 2 + SiH 4 → Si 2 H 6
SiH 2 + Si 2 H 6 → Si 3 H 8
‥‥‥‥‥‥‥‥
SiH 2 + Si n-1 H 2n → Si n H 2 (n + 1) ( Powder)
The generated powder enters a thin film deposited and grown on the substrate (12), and not only deteriorates the film quality, but also adheres to the inner wall of the reaction vessel (1) and the inside of the vacuum pump, causing a problem in the operation of the apparatus. Was.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, the present inventor has proposed a reaction vessel, a means for introducing and discharging a reaction gas into and from the reaction vessel, and a ladder-like shape including a plurality of wires contained in the reaction vessel. A flat discharge electrode, and a power supply for supplying glow discharge power to the discharge electrode, and an amorphous thin film is formed on the surface of the substrate installed in the reaction vessel so as to face the discharge electrode. In the plasma CVD apparatus, a gas supply chamber is provided on the side opposite to the discharge electrode from the substrate, and a wall of the gas supply chamber facing the discharge electrode is formed of a mesh metal, and the gas A plasma CVD apparatus comprising: a gas introduction pipe having a gas outlet in a supply chamber; and a net-like gas dispersion plate defining a space between the mesh metal wall and the gas outlet. It is.
[0010]
[Action]
The present invention has the above-described structure, and a gas supply chamber is provided on the opposite side of the discharge electrode from the substrate, and a wall of the gas supply chamber facing the discharge electrode is formed of a mesh metal, and the gas supply chamber is provided with a gas supply chamber. Since the gas introduction pipe having the gas outlet is provided in the chamber, the reaction gas can be introduced into the gas supply chamber. Then, the reaction gas permeates through the mesh metal wall of the gas supply chamber, is directly supplied between the substrate and the discharge electrode, and is exhausted. As a result, the time during which the reaction gas stays in the plasma is shortened, so that an excessive reaction can be suppressed, and thus the generation of powder is suppressed.
[0011]
In the present invention, since a mesh-shaped gas dispersion plate is provided between the mesh-shaped metal wall and the gas blow-out hole, uniformity of gas introduction amount which has a significant effect on film quality and film thickness distribution is ensured. Is done.
[0012]
In this way, high-quality and large-area uniform film formation can be performed at high speed.
[0013]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a sectional view showing the configuration of a plasma CVD apparatus according to one embodiment of the present invention, FIG. 2 is a plan view showing a ladder electrode in FIG. 1, and FIG. 3 is a detailed section showing the relationship between the ladder electrode and a gas supply chamber. FIG. In these figures, the same parts as those of the related art described with reference to FIGS. 7 and 8 are denoted by the same reference numerals to avoid redundancy, and detailed description is omitted.
[0014]
In the present embodiment, a ladder-like planar coil (2) (hereinafter referred to as a "ladder electrode") formed by assembling wires to generate glow discharge plasma is disposed in a reaction vessel (1). The ladder electrode (2) used in the present embodiment also has a structure in which a plurality of wires are connected vertically to two wires and assembled in a ladder shape as shown in the plan view of FIG. Has a square shape.
[0015]
A gas supply chamber (4) is provided on the side of the wire constituting the ladder electrode (2) which is not opposed to the substrate (12), that is, on the side opposite to the ladder electrode from the substrate (12) (downward in FIG. 2). Have been. The wall (the ceiling wall in the figure) (3) of the gas supply chamber (4) facing the ladder electrode is formed of a mesh metal as an earth shield plate. It is desirable that the gap between the openings of the mesh metal is about 0.1 to 1.0 mm and is equal to or less than the mean free path of electrons at the internal pressure of the reaction vessel (1) during film formation. The distance between the ladder electrode (2) and the earth shield plate (3) is about 0.5 to 2 mm, and is equal to or less than the mean free path of electrons at the internal pressure of the reaction vessel (1) during film formation. Desirably.
[0016]
A plurality of gas supply pipes (6) are provided at a lower portion in the gas supply chamber (4), and a plurality of gas blowing holes (5) are provided in each of the gas supply pipes (6). ing. It is preferable that the diameter of the gas blowing hole (5) is 0.2 to 0.7 mm and the pitch of the holes is about 10 to 25 mm. Between the gas supply pipe (6) and the mesh metal ceiling wall, a gas distribution plate (61) made of a mesh metal for dispersing gas is arranged so as to vertically define the inside of the gas supply chamber (4). Is done. The gap between the openings of the wire mesh of the gas dispersion plate (61) is desirably 0.2 to 0.7 mm.
[0017]
To the power supply points (2a) and (2b) of the ladder electrode (2), for example, RF power of a frequency of 13.56 MHz is supplied from the high frequency power supply (7) via the impedance matching device (8). At the lower part of the gas supply chamber (4), for example, a monosilane gas is supplied from a gas supply pipe (6) through a gas blowing hole (5), and a gas dispersion plate (61) formed of a mesh metal and an earth shield plate (3). And is sent out into the reaction vessel (1). The gas in the reaction vessel (1) is exhausted by a vacuum pump (10) through an exhaust pipe (9). A substrate (12) on which a thin film is to be formed is placed in parallel with the ladder electrode (2), and is supported by a substrate heater (11) by a substrate holder (not shown).
[0018]
In such an apparatus, a thin film is manufactured as follows. First, the inside of the reaction vessel (1) is evacuated by driving the vacuum pump (10). Next, for example, a monosilane gas is supplied into the gas supply chamber (4) at a flow rate of about 20 to 100 cc / min from the gas supply pipe (6) through the gas blowing hole (5). Then, this gas passes through the gas dispersion plate (61) and the earth shield plate (3) and reaches the inside of the reaction vessel (1). When the pressure in the reaction vessel (1) is maintained at about 0.03 to 0.2 Torr and high-frequency power is applied to the ladder electrode (2) from the high-frequency power supply (7) via the impedance matching device (8), FIG. As shown, a glow discharge plasma is generated between the ladder electrode (2) and the substrate (12).
[0019]
In the present embodiment, as shown in FIG. 4, the reaction gas (13) is supplied into the plasma generated between the substrate (12) and the ladder electrode (2). Plasma is generated in this region, and is not necessary for depositing a thin film on the substrate (12), and the portion of the electrode wire not facing the substrate (between the ladder electrode (2) and the reaction gas supply pipe (6)). Does not occur, excessive reaction is suppressed, and generation of powder is suppressed. Further, since the gas outlet (5) is not exposed to the plasma and the film is not deposited, there is no film peeling due to the force of the gas projecting from the gas outlet. Further, since the earth shield plate (3) is made of a net-like metal, its surface area is large and the thickness of the film deposited on the earth shield plate (3) becomes thin even if it is used for film formation for the same time. Film peeling from the shield plate can be suppressed. Therefore, high quality and high speed film formation of a thin film becomes possible.
[0020]
To confirm this, a film formation experiment was performed under the following conditions.
[0021]
Substrate material: non-alkali glass,
Substrate area: 300 x 300 mm,
Substrate temperature: 250 ° C,
Reaction gas and flow rate: SiH 4 = 70 cc / min,
Reaction vessel pressure: 30 mTorr,
High frequency power applied: 20 W to 100 W.
[0022]
FIG. 5 shows the relationship between the thus-formed film forming speed and the number of powders in the plasma, and FIG. 6 shows the relationship between the defect density in the film measured by the electron spin resonance method (hereinafter referred to as “ESR”) and the film forming speed. Show.
[0023]
As shown in FIG. 5, when the high-frequency power is increased to increase the film formation rate, the number of powders in the plasma has increased sharply in the past, but in the present invention, the original number was small, and The results showed that the increase in the number was small. As shown in FIG. 6, the defect density obtained at this time was 2.8 × 10 15 defects / cc even under a high-speed film forming condition of a film forming speed of 15 ° / sec, indicating that the film was a high-quality film. . Further, the defect density of the thin film manufactured under the condition that the high-frequency power is slightly lowered and the film forming rate is 5 ° / sec or less is below the lower limit of measurement of ESR (1 × 10 15 / cc) used in the present embodiment. It turned out to be a very high quality membrane. As described above, in the present embodiment, by using a net-like metal material for the earth shield plate (3) shown in FIG. And a high-quality a-Si thin film having a defect density of 2.8 × 10 15 defects / cc or less.
[0024]
【The invention's effect】
As specifically described in detail above, in the present invention, a gas supply chamber made of a metal wire mesh is arranged on the side of the discharge electrode that does not face the substrate to introduce a reaction gas, and the reaction gas is directly introduced between the substrate and the electrode. Since the reaction gas is supplied, a high-quality amorphous thin film can be manufactured at high speed. Therefore, it has great industrial value in the fields of manufacturing amorphous silicon solar cells, thin film semiconductors, optical sensors, semiconductor protective films, and the like.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a configuration of a plasma CVD apparatus according to one embodiment of the present invention.
FIG. 2 is a plan view showing a ladder electrode in FIG.
FIG. 3 is a detailed cross-sectional view showing a relationship between a ladder electrode and a wire mesh of a gas supply chamber in FIG.
FIG. 4 is a diagram showing gas supply and a plasma state in the embodiment.
FIG. 5 is a diagram showing a relationship between a film forming speed and the number of powders in plasma as an effect of the present invention.
FIG. 6 is a diagram showing a relationship between a defect density in a film and a film forming speed as an effect of the present invention.
FIG. 7 is a sectional view showing an example of a configuration of a conventional plasma CVD apparatus.
FIG. 8 is a plan view showing a ladder electrode in FIG. 7;
FIG. 9 is a diagram showing a SiH emission intensity distribution from a gas outlet to a substrate in a conventional plasma CVD apparatus.
[Explanation of symbols]
(1) Reaction vessel (2) Ladder electrode (3) Gas supply chamber wire mesh (4) Gas supply chamber (5) Gas outlet (6) Gas inlet pipe (7) High frequency power supply (8) Impedance matching device (9) Gas Exhaust pipe (10) Vacuum pump (11) Substrate heater (12) Substrate (13) Gas flow (61) Gas dispersion plate

Claims (1)

反応容器と、この反応容器内に反応ガスを導入し排出する手段と、上記反応容器内に収容された複数本の線材からなる梯子状の平面型放電用電極と、この放電用電極にグロー放電用電力を供給する電源とを有し、上記反応容器内で上記放電用電極に対向して設置された基板の表面に非晶質薄膜を形成するプラズマCVD装置において、上記基板から上記放電用電極をへだてた反対側にガス供給室を設け、同ガス供給室の上記放電用電極に対向する壁を網状金属で形成するとともに、上記ガス供給室内にガス吹出し孔を有するガス導入管と、上記網状金属の壁と上記ガス吹出し孔との間を画する網状のガス分散板とを設けたことを特徴とするプラズマCVD装置。A reaction vessel, means for introducing and discharging a reaction gas into and from the reaction vessel, a ladder-shaped flat discharge electrode made of a plurality of wires accommodated in the reaction vessel, and glow discharge to the discharge electrode. A plasma CVD apparatus having a power supply for supplying electric power for forming an amorphous thin film on a surface of a substrate provided opposite to the discharge electrode in the reaction vessel. A gas supply chamber is provided on the opposite side of the gas supply chamber, a wall of the gas supply chamber facing the discharge electrode is formed of a mesh metal, and a gas introduction pipe having a gas blowing hole in the gas supply chamber; A plasma CVD apparatus, comprising: a net-shaped gas dispersion plate that defines a space between a metal wall and the gas outlet.
JP13159395A 1995-05-30 1995-05-30 Plasma CVD equipment Expired - Fee Related JP3546095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13159395A JP3546095B2 (en) 1995-05-30 1995-05-30 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13159395A JP3546095B2 (en) 1995-05-30 1995-05-30 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH08330235A JPH08330235A (en) 1996-12-13
JP3546095B2 true JP3546095B2 (en) 2004-07-21

Family

ID=15061689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13159395A Expired - Fee Related JP3546095B2 (en) 1995-05-30 1995-05-30 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP3546095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844274B2 (en) 1998-06-25 2006-11-08 独立行政法人産業技術総合研究所 Plasma CVD apparatus and plasma CVD method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989279B2 (en) * 1991-01-21 1999-12-13 三菱重工業株式会社 Plasma CVD equipment
JP3259453B2 (en) * 1993-07-29 2002-02-25 日新電機株式会社 Electrode used for plasma CVD apparatus and plasma CVD apparatus
US5589002A (en) * 1994-03-24 1996-12-31 Applied Materials, Inc. Gas distribution plate for semiconductor wafer processing apparatus with means for inhibiting arcing

Also Published As

Publication number Publication date
JPH08330235A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
JPH0357190B2 (en)
JP3249356B2 (en) Plasma chemical vapor deposition equipment
JP5378416B2 (en) Plasma processing equipment
JP3546095B2 (en) Plasma CVD equipment
JP3426788B2 (en) Plasma CVD equipment
JPH0576173B2 (en)
JP2002180257A (en) Plasma treatment apparatus, method of depositing thin film, and surface treatment apparatus
JP3310875B2 (en) Plasma CVD equipment
JP3068604B2 (en) Plasma CVD equipment
JP3372384B2 (en) Plasma CVD equipment
JP3137532B2 (en) Plasma CVD equipment
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JPH06295866A (en) Plasma reaction system
JP2630089B2 (en) Microwave plasma processing equipment
JPH0797690A (en) Plasma cvd device
JP2798225B2 (en) High frequency plasma CVD equipment
JPH05343338A (en) Plasma cvd apparatus
JP2010073970A (en) Apparatus and method for forming thin film
JPH0622203B2 (en) Amorphous semiconductor thin film generator
JPS59219927A (en) Plasma cvd device
JPH0633245A (en) Cvd device
JPH11251248A (en) Manufacture of silicon alloy film
JPS60258914A (en) Plasma cvd equipment
JPH01279757A (en) Plasma treatment apparatus
JPS63274125A (en) High frequency application electrode structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees