JP2002180257A - Plasma treatment apparatus, method of depositing thin film, and surface treatment apparatus - Google Patents

Plasma treatment apparatus, method of depositing thin film, and surface treatment apparatus

Info

Publication number
JP2002180257A
JP2002180257A JP2000383765A JP2000383765A JP2002180257A JP 2002180257 A JP2002180257 A JP 2002180257A JP 2000383765 A JP2000383765 A JP 2000383765A JP 2000383765 A JP2000383765 A JP 2000383765A JP 2002180257 A JP2002180257 A JP 2002180257A
Authority
JP
Japan
Prior art keywords
gas
space
ground electrode
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000383765A
Other languages
Japanese (ja)
Other versions
JP4273382B2 (en
Inventor
Yukimi Ichikawa
幸美 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000383765A priority Critical patent/JP4273382B2/en
Publication of JP2002180257A publication Critical patent/JP2002180257A/en
Application granted granted Critical
Publication of JP4273382B2 publication Critical patent/JP4273382B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-evacuated plasma treatment apparatus capable of depositing a high quality film by preventing the sticking of powder of a reaction product or a film on an electrode or the like and an abnormal rise of temperature of electrode or a base body, and a thin film depositing method and a surface treatment method using the apparatus. SOLUTION: The inside of an apparatus main body vessel 5 is separated into a 1st space and a 2nd space across a ground electrode 3, a high frequency electrode (or DC high voltage electrode) 4 facing the ground electrode is provided to form a discharge region in the 1st space and a mounting plate 13 for the base body, which faces the ground electrode and has a heating means, is provided in the 2nd space and the thin film is deposited on the surface of the base body 11 arranged in the 2nd space by supplying gas for discharge such as hydrogen to the 1st space to generate atomic hydrogen by the plasma discharge under a non-evacuated state, introducing the atomic hydrogen to the 2nd space through a plurality of gas holes 12 provided on the ground electrode and reacting with a semiconductor gas molecule supplied to the 2nd space.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマ処理に
よって、フィルム基板に非晶質シリコンや微結晶シリコ
ンゲルマニウム等の薄膜を形成して薄膜光電変換素子や
薄膜トランジスタなどの薄膜半導体の形成を行なう、あ
るいは、プラズマ処理によって高分子フィルムの表面処
理を行なうためのプラズマ処理装置と、この装置による
薄膜形成方法および表面処理方法に関する。
The present invention relates to a method of forming a thin film semiconductor such as a thin film photoelectric conversion element or a thin film transistor by forming a thin film of amorphous silicon or microcrystalline silicon germanium on a film substrate by plasma processing, or The present invention relates to a plasma processing apparatus for performing a surface treatment of a polymer film by a plasma processing, and a thin film forming method and a surface processing method using the apparatus.

【0002】[0002]

【従来の技術】現在、環境保護の立場から、クリーンな
エネルギーの研究開発が進められている。中でも、太陽
電池はその資源(太陽光)が無限であること、無公害で
あることから注目を集めている。
2. Description of the Related Art At present, research and development of clean energy are being promoted from the standpoint of environmental protection. Above all, solar cells are attracting attention because of their infinite resources (solar rays) and no pollution.

【0003】同一基板上に形成された複数の太陽電池素
子が、直列接続されてなる太陽電池(光電変換装置)の
代表例は、薄膜太陽電池である。
A typical example of a solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series is a thin film solar cell.

【0004】上記薄膜太陽電池用の薄膜半導体として
は、製造コストの観点から、特にシリコン系の非単結晶
薄膜であるアモルファスシリコン(a-Si)が使用され、プ
ラズマ放電によって薄膜形成がなされる。前記アモルフ
ァスシリコン(a-Si)やアモルファスシリコンゲルマニウ
ム(a-SiGe)等の合金膜を、プラズマ放電によって形成し
た薄膜半導体デバイスは、単結晶シリコンデバイスと比
較して、大面積に、低温で、安価に作成できることか
ら、電力用の大面積薄膜太陽電池以外に、ディスプレイ
用の薄膜トランジスタ(TFT)等への適用も期待され
ている。
As a thin film semiconductor for the thin film solar cell, amorphous silicon (a-Si), which is a silicon-based non-single-crystal thin film, is used from the viewpoint of manufacturing cost, and the thin film is formed by plasma discharge. A thin film semiconductor device in which an alloy film of the amorphous silicon (a-Si) or amorphous silicon germanium (a-SiGe) is formed by plasma discharge has a larger area, lower temperature, and lower cost than a single crystal silicon device. Therefore, application to thin-film transistors (TFTs) for displays and the like in addition to large-area thin-film solar cells for electric power is also expected.

【0005】上記プラズマ放電によって形成する薄膜
は、一般に、例えば下記のような装置により形成され
る。図7は、a-Si 薄膜太陽電池をプラズマ放電によっ
て形成する場合の成膜室の概略構造の一例を示し、特開
平8−250431号公報に記載された構造の一例を示
す。図7(a)、(b)はそれぞれ、成膜室の開放時お
よび封止時の概略断面図を示す。
The thin film formed by the plasma discharge is generally formed by, for example, the following apparatus. FIG. 7 shows an example of a schematic structure of a film forming chamber when an a-Si thin film solar cell is formed by plasma discharge, and shows an example of a structure described in Japanese Patent Application Laid-Open No. 8-250431. FIGS. 7A and 7B are schematic cross-sectional views when the film forming chamber is opened and sealed, respectively.

【0006】図7(a)に示すように、断続的に搬送さ
れてくる可撓性基板10の上下に函状の下部成膜部室壁
体34と上部成膜部室壁体35とを対向配置し、成膜室
の封止時には、下部成膜部室と上部成膜部室からなる独
立した処理空間を構成するようになっている。この例に
おいては、下部成膜部室は電源40に接続された高周波
電極(もしくは直流高圧電極)31を備え、上部成膜部
室は、ヒータ33を内蔵した接地電極32を備える。
As shown in FIG. 7 (a), a box-shaped lower film-forming section chamber wall 34 and an upper film-forming section chamber wall 35 are opposed to each other above and below a flexible substrate 10 conveyed intermittently. When the film forming chamber is sealed, an independent processing space including the lower film forming section chamber and the upper film forming section chamber is formed. In this example, the lower film-forming unit room includes a high-frequency electrode (or a DC high-voltage electrode) 31 connected to a power supply 40, and the upper film-forming unit room includes a ground electrode 32 having a built-in heater 33.

【0007】成膜時には、図7(b)に示すように、上
部成膜部室壁体35が下降し、接地電極32が基板10
を抑えて下部成膜部室壁体34の開口側端面に取付けら
れたシール部材50に接触させる。これにより、下部成
膜部室壁体34と基板10とから、排気管36に連通す
る気密に密閉された成膜空間60を形成する。上記のよ
うな成膜室において、高周波電極(もしくは直流高圧電
極)31へ電圧を印加することにより、プラズマを成膜
空間60に発生させ、図示しない導入管から導入された
原料ガスを分解して基板10上に膜を形成することがで
きる。
At the time of film formation, as shown in FIG. 7 (b), the upper film formation section chamber wall 35 descends, and the ground electrode 32 is
And is brought into contact with the seal member 50 attached to the opening-side end surface of the lower film-forming section chamber wall 34. As a result, an airtightly sealed film-forming space 60 communicating with the exhaust pipe 36 is formed from the lower film-forming section chamber wall 34 and the substrate 10. In the above-described film forming chamber, a plasma is generated in the film forming space 60 by applying a voltage to the high-frequency electrode (or the DC high-voltage electrode) 31 to decompose the raw material gas introduced from the introduction pipe (not shown). A film can be formed on the substrate 10.

【0008】薄膜形成用の原料ガスとしては、半導体薄
膜の種類によって異なるが、概ね、下記のような公知の
ガスまたはその一部混合ガスが、半導体ガスとして使用
される。即ち、シラン系(SiH4 , Si26など),
ゲルマン系(GeH4 など),ハイドロカーボン系(C
4 , C22 など)とシラン系ガスを混合したもの、
あるいはこれらのガスを水素や希ガスで希釈したガス、
PH3 ,B26 などのドーピングガスあるいはこれらの
ガスを水素や希ガスで希釈したガス等である。
The source gas for forming the thin film varies depending on the type of the semiconductor thin film, but generally the following known gas or a partially mixed gas thereof is used as the semiconductor gas. That is, silane (SiH 4 , Si 2 H 6 etc.),
Germanic type (GeH 4 etc.), hydrocarbon type (C
H 4, etc. C 2 H 2) and a mixture of silane gas,
Or a gas obtained by diluting these gases with hydrogen or a rare gas,
A doping gas such as PH 3 or B 2 H 6 or a gas obtained by diluting these gases with hydrogen or a rare gas.

【0009】ところで、従来の一般的な薄膜半導体の形
成方法においては、通常200Pa以下のガス圧、即
ち、大気圧より減圧した状態の下で、原料となるガスを
グロー放電で分解して堆積する、所謂、減圧プラズマC
VD法が用いられる。
By the way, in the conventional general method of forming a thin film semiconductor, a gas as a raw material is decomposed and deposited by glow discharge under a gas pressure of usually 200 Pa or less, that is, a pressure lower than the atmospheric pressure. So-called reduced pressure plasma C
The VD method is used.

【0010】これに対して、最近では、放電ギャップを
数百μmとし、非減圧下(大気圧もしくはゲージ圧で数
百Pa)で放電して、膜堆積を行う方法が着目され、研
究が行われている。
On the other hand, recently, a method of depositing a film by discharging under a non-reduced pressure (at several hundred Pa at atmospheric pressure or gauge pressure) with a discharge gap of several hundred μm has attracted attention and research has been conducted. Have been done.

【0011】この非減圧のプラズマ処理法の利点として
は、概ね下記が考えられる。即ち、大気圧を含む高い動
作ガス圧で膜堆積が可能であるため、装置の仕様が高真
空仕様である必要がなくなり、例えば,バルブや配管機
材,真空ポンプなども高価な高真空用のものを使用する
必要がない。また、大気圧近傍で動作させる場合には装
置容器そのものの強度に対する要求を、真空対応の装置
に比べて緩和することができ、装置全体の低コスト化が
図れる。
The advantages of the non-depressurized plasma processing method are generally as follows. In other words, since film deposition can be performed at a high operating gas pressure including the atmospheric pressure, the specifications of the apparatus do not need to be high vacuum specifications. For example, valves, piping equipment, vacuum pumps, etc. are expensive high vacuum ones. No need to use. Further, in the case of operating near the atmospheric pressure, the demand for the strength of the apparatus container itself can be relaxed as compared with a vacuum-compatible apparatus, and the cost of the entire apparatus can be reduced.

【0012】さらに、大気圧以上で動作させる場合に
は、ガスが高密度であるため、所定のガス供給源からガ
スをある一定時間流してやることにより、ポンプがなく
とも必要な純度のガス雰囲気が確保できるなど、製造プ
ロセスが簡略化できる利点もある。
Further, when operating at a pressure higher than the atmospheric pressure, since the gas has a high density, by flowing gas from a predetermined gas supply source for a certain period of time, a gas atmosphere of necessary purity can be obtained without a pump. There is also an advantage that the manufacturing process can be simplified, for example, it can be secured.

【0013】[0013]

【発明が解決しようとする課題】ところで、前述のよう
な非減圧のプラズマ処理を行なう場合には、下記のよう
な解決すべき課題がある。
However, when performing the above-mentioned non-decompression plasma processing, there are the following problems to be solved.

【0014】まず、前述のように、例えばシランのよう
な原料ガスを希釈ガスと共に放電させるために、プラズ
マ放電によって発生するラジカル種が選択できない、即
ち、高品質の膜を形成するための最適なラジカル種が選
択できない問題がある。
First, as described above, in order to discharge a raw material gas such as silane together with a diluent gas, radical species generated by plasma discharge cannot be selected, that is, an optimum type for forming a high-quality film. There is a problem that the radical species cannot be selected.

【0015】また、非減圧のプラズマ処理においては、
プラズマ処理の対象となる基板(以下、基体という。)
が放電により加熱される度合いが、ガス密度が高いの
で、減圧下の処理に比較してより高く、電極や基体の温
度上昇を抑制するための制御が難しい問題がある。
In the non-decompression plasma processing,
A substrate to be subjected to plasma processing (hereinafter, referred to as a base)
Since the gas is heated by electric discharge at a high gas density, the degree of heating is higher than that in the processing under reduced pressure, and there is a problem that it is difficult to control the temperature rise of the electrode and the substrate.

【0016】さらに、放電に接する電極や壁面に、気相
反応によって発生するシリコン系微粒子等の反応生成物
のパウダーや膜が付着し、この反応生成物が製膜上に剥
離・落下して製膜の品質を悪くする問題がある。
Further, a powder or a film of a reaction product such as silicon-based fine particles generated by a gas phase reaction adheres to an electrode or a wall surface in contact with the discharge, and the reaction product peels and falls on the film to produce a product. There is a problem of deteriorating the quality of the film.

【0017】この問題は、減圧プラズマCVD法でも発
生する問題であって、種々の対策が提案されているが、
非減圧の場合にはガス密度が高いので、この問題はより
重大である。
This problem is also a problem that occurs in the low pressure plasma CVD method, and various measures have been proposed.
This problem is more serious in the case of non-decompression, because of the higher gas density.

【0018】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、電極等への
反応生成物のパウダーや膜の付着と、電極や基体の異常
温度上昇を防止し、高品質の膜を形成することが可能な
非減圧のプラズマ処理装置と、同装置による薄膜形成方
法および表面処理方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to attach powder or a film of a reaction product to an electrode or the like, and to detect abnormal temperature of the electrode or the base. It is an object of the present invention to provide a non-decompressed plasma processing apparatus capable of forming a high-quality film while preventing a rise, and a thin film forming method and a surface processing method using the same.

【0019】[0019]

【課題を解決するための手段】前述の課題を解決するた
め、この発明のプラズマ処理装置においては、放電によ
りプラズマを生成する領域においては、製膜前駆体とな
るようなラジカルを発生させずに、水素を主体とした放
電により原子状水素を発生させ、この原子状水素を効率
よく製膜領域に輸送し、この製膜領域において、製膜用
の原料ガス分子と反応させて製膜前駆体を生成し、膜堆
積を行うことが可能なものとする。
In order to solve the above-mentioned problems, in the plasma processing apparatus of the present invention, in a region where plasma is generated by electric discharge, radicals which become a film forming precursor are not generated. Atomic hydrogen is generated by a discharge mainly composed of hydrogen, and this atomic hydrogen is efficiently transported to a film forming region, where it reacts with raw material gas molecules for film forming to form a film forming precursor. Is generated, and film deposition can be performed.

【0020】前記基本的技術思想を実施可能とするため
に、請求項1の発明においては、高周波電極(もしくは
直流高圧電極)と接地電極とからなる一対の電極を有
し、電圧を印加することにより、非減圧下で放電プラズ
マを生成し、プラズマ処理により基体表面に薄膜形成も
しくは基体の表面処理を行なうプラズマ処理装置であっ
て、装置本体容器内部を前記接地電極により、第1の空
間と第2の空間とに分離し、前記第1の空間には、前記
接地電極に対向して高周波電極(もしくは直流高圧電
極)を設けて放電領域を形成し、前記第2の空間には、
前記接地電極に対向して加熱手段を有する前記基体の載
置板を設けてなり、さらに、前記第1の空間および第2
の空間にはそれぞれ異なるガスを供給するガス供給口を
備え、前記第2の空間にはガス排出口を備え、かつ前記
接地電極には複数個のガス流通孔を備えてなるものとす
る。
In order to enable the basic technical idea to be implemented, the invention according to claim 1 has a pair of electrodes including a high-frequency electrode (or a DC high-voltage electrode) and a ground electrode, and applies a voltage. A plasma processing apparatus that generates a discharge plasma under non-pressure reduction and forms a thin film on the surface of the substrate or performs a surface treatment on the substrate by plasma processing. And a high-frequency electrode (or a DC high-voltage electrode) is provided in the first space to face the ground electrode to form a discharge region, and the second space includes:
A mounting plate for the base having a heating means facing the ground electrode, and further comprising a first space and a second space;
Are provided with gas supply ports for supplying different gases, the second space is provided with a gas discharge port, and the ground electrode is provided with a plurality of gas circulation holes.

【0021】上記構成によれば、放電空間と製膜前駆体
となるラジカルの生成空間とを分離し、高品質の製膜を
実現するためのラジカル種の生成を行うことができる。
また、放電による直接的な基体の加熱を避けることがで
きるので、電極や基体の異常温度上昇を防止することが
できる。さらに、放電領域にはシランなどの製膜前駆体
を発生するガスを用いないようにすることで、放電に接
する電極や壁面に膜やパウダーが付着するのを防ぐこと
ができる。
According to the above configuration, the discharge space and the radical generation space serving as a film forming precursor can be separated from each other, and radical species can be generated for realizing high quality film formation.
In addition, since direct heating of the substrate due to discharge can be avoided, abnormal temperature rise of the electrodes and the substrate can be prevented. Furthermore, by not using a gas that generates a film-forming precursor such as silane in the discharge region, it is possible to prevent the film or powder from adhering to the electrode or wall surface in contact with the discharge.

【0022】前記観点から、下記請求項2の発明が好ま
しい。即ち、請求項1に記載の処理装置において、前記
第1の空間に供給するガスは、水素または水素を希ガス
で希釈した放電用ガスとし、前記第2の空間に供給する
ガスは、シラン系,ゲルマン系ガス等の半導体ガスとす
る。
From the above viewpoint, the invention of the following claim 2 is preferable. That is, in the processing apparatus according to claim 1, the gas supplied to the first space is hydrogen or a discharge gas obtained by diluting hydrogen with a rare gas, and the gas supplied to the second space is a silane-based gas. And a semiconductor gas such as a germane-based gas.

【0023】上記のように、水素または水素を希ガスで
希釈した熱伝導率の高いガスを流しながら放電させるた
め、非減圧状態の放電で問題となる電極や基体温度の過
上昇を防ぐことができる。さらに放電領域にはシランな
どの製膜前駆体を発生するガスがないので、放電に接す
る電極や壁面に膜やパウダーが付着するのを防ぐことが
できる。
As described above, since the discharge is performed while flowing hydrogen or a gas having a high thermal conductivity obtained by diluting hydrogen with a rare gas, it is possible to prevent an excessive rise in the temperature of the electrode and the substrate which is a problem in non-depressurized discharge. it can. Furthermore, since there is no gas that generates a film-forming precursor such as silane in the discharge region, it is possible to prevent the film or powder from adhering to the electrode or wall surface in contact with the discharge.

【0024】また、上記発明の実施態様として、下記の
請求項3ないし6の発明が好適である。即ち、請求項1
または2に記載の処理装置において、前記第1の空間に
おける高周波電極(もしくは直流高圧電極)と接地電極
とは所定の間隔(D1)を有して略平行に配設し、ま
た、前記第2の空間における基体と接地電極とは所定の
間隔(D2)を有して略平行に配設してなり、さらに、
前記第2の空間用のガスが、前記基体と接地電極との空
隙を基体と略平行に流れるように、ガス供給口とガス排
出口とを設けてなるものとする(請求項3の発明)。こ
れにより、ガスの流れが合理的に構成できる。
Further, as the embodiments of the above invention, the following inventions 3 to 6 are preferable. That is, claim 1
Or the high-frequency electrode (or direct-current high-voltage electrode) and the ground electrode in the first space are disposed substantially in parallel with a predetermined interval (D1), and The base and the ground electrode in the space are arranged substantially in parallel with a predetermined distance (D2).
A gas supply port and a gas discharge port are provided so that the gas for the second space flows in a gap between the base and the ground electrode substantially in parallel with the base. . Thereby, the flow of the gas can be configured rationally.

【0025】さらに、前記請求項1に記載の処理装置に
おいて、前記接地電極におけるガス流通孔は、複数個の
円形状の孔とし、この孔を前記基体に対向して略均等に
分布させてなるものとすること(請求項4の発明)によ
り、均一に製膜できる。
Further, in the processing apparatus according to the first aspect, the gas flow holes in the ground electrode are a plurality of circular holes, and the holes are substantially evenly distributed so as to face the base. By doing so (the invention of claim 4), a uniform film can be formed.

【0026】さらにまた、前記請求項1ないし4のいず
れかに記載の処理装置において、前記基体の搬送装置を
備え、基体を搬送しながら前記プラズマ処理を行なう構
成とするものとすること(請求項5の発明)により、量
産性の向上が図れる。
Further, in the processing apparatus according to any one of claims 1 to 4, the apparatus may further include a transporting device for the substrate, wherein the plasma processing is performed while transporting the substrate. According to the fifth invention), the mass productivity can be improved.

【0027】また、請求項6の発明のように構成して
も、前記と同様に均一に製膜できかつ量産性の向上が図
れる。即ち、請求項5に記載の処理装置において、前記
接地電極におけるガス流通孔は、複数個のスリット状の
長孔とし、この長孔の長手方向を基体の搬送方向と直角
として前記基体に対向して前記長孔を略均等に分布させ
てなるものとする。
[0027] Further, even with the structure of the invention according to claim 6, a uniform film can be formed and the mass productivity can be improved in the same manner as described above. That is, in the processing apparatus according to claim 5, the gas flow holes in the ground electrode are formed as a plurality of slit-shaped long holes, and the longitudinal direction of the long holes is opposed to the base body at a right angle to the transport direction of the base body. Thus, the long holes are substantially uniformly distributed.

【0028】さらに、請求項5または6に記載の処理装
置において、前記基体表面のガスの流れ方向と基体の搬
送方向とを同一とし、前記接地電極におけるガス流通孔
は、流通口出口ガスの流通方向が基体の搬送方向に向く
ように傾斜させて設けること(請求項7の発明)によ
り、基体の搬送速度が、基体表面のガスの流れ速度に加
算され、ガス速度の重畳効果により、効率よくガスを流
すことができる。
Further, in the processing apparatus according to claim 5 or 6, the direction of gas flow on the surface of the substrate and the direction of transport of the substrate are the same, and the gas flow hole in the ground electrode is used to flow the gas at the flow outlet. By providing the substrate so as to be inclined so that the direction is directed to the transport direction of the substrate (the invention of claim 7), the transport speed of the substrate is added to the flow speed of the gas on the substrate surface, and the superposition effect of the gas velocities enables efficient Gas can flow.

【0029】さらにまた、膜質を向上させるために、所
謂、公知のホローカソード放電を実現可能とする観点か
ら、詳細は後述するが、下記請求項8の発明が好まし
い。即ち、請求項4または6に記載の処理装置におい
て、前記第1の空間における高周波電極(もしくは直流
高圧電極)を、前記接地電極におけるガス流通孔として
の円形状の孔またはスリット状の長孔と対応する複数の
分割された電極となし、この電極には放電電流調整用の
直列抵抗を接続してなるものとする。
Furthermore, in order to improve the film quality, from the viewpoint of realizing a so-called hollow cathode discharge, a detailed description will be given later, but the invention of claim 8 below is preferable. That is, in the processing apparatus according to claim 4 or 6, the high-frequency electrode (or the DC high-voltage electrode) in the first space is connected to a circular hole or a slit-shaped long hole as a gas flow hole in the ground electrode. It is assumed that there are a plurality of divided electrodes corresponding thereto, and a series resistance for adjusting discharge current is connected to this electrode.

【0030】次に、上記プラズマ処理装置により薄膜形
成する方法としては、下記請求項9ないし11の発明が
好適である。即ち、請求項1ないし8のいずれかに記載
のプラズマ処理装置によって基体表面に薄膜形成を行な
う方法であって、前記第1の空間に前記放電用ガスを供
給して、非減圧下でのプラズマ放電により原子状水素を
発生させ、この原子状水素を前記接地電極に設けた複数
個のガス流通孔から前記第2の空間に導入して、この第
2の空間に供給された前記半導体ガス分子と反応させ
て、前記第2の空間に配設された基体表面に薄膜を形成
する(請求項9の発明)。この薄膜形成方法により、前
述のように、電極等への反応生成物のパウダーや膜の付
着と、電極や基体の異常温度上昇を防止し、高品質の膜
を形成することができる。
Next, as a method of forming a thin film by the above-mentioned plasma processing apparatus, the following inventions 9 to 11 are preferable. That is, a method of forming a thin film on a substrate surface by the plasma processing apparatus according to any one of claims 1 to 8, wherein the discharge gas is supplied to the first space, and the plasma is generated under non-pressure reduction. Atomic hydrogen is generated by electric discharge, and the atomic hydrogen is introduced into the second space from a plurality of gas circulation holes provided in the ground electrode, and the semiconductor gas molecules supplied to the second space are introduced. To form a thin film on the surface of the substrate disposed in the second space (the invention of claim 9). As described above, this thin film forming method can prevent a powder or a film of a reaction product from adhering to an electrode or the like and prevent an abnormal rise in the temperature of the electrode or the base, thereby forming a high-quality film.

【0031】また、請求項3に記載のプラズマ処理装置
によって基体表面に薄膜形成を行なう方法であって、前
記高周波電極(もしくは直流高圧電極)と接地電極との
間隔(D1)と放電ガス圧力との積を100(Pa・c
m)以下とする(請求項10の発明)。これにより、安
定したグロー放電が得られる。
A method of forming a thin film on a substrate surface by the plasma processing apparatus according to claim 3, wherein a distance (D1) between the high-frequency electrode (or DC high-voltage electrode) and a ground electrode, a discharge gas pressure, Multiplied by 100 (Pa · c)
m) or less (the invention of claim 10). Thereby, a stable glow discharge can be obtained.

【0032】さらに、請求項8に記載のプラズマ処理装
置によって基体表面に薄膜形成を行なう方法であって、
前記接地電極におけるガス流通孔が円形状の孔の場合、
孔の直径を接地電極の厚さの半分以下とし、かつ前記直
径と放電ガス圧力との積を100(Pa・cm)以下と
し、前記接地電極におけるガス流通孔がスリット状の長
孔の場合、その幅を接地電極の厚さの半分以下とし、か
つ前記幅と放電ガス圧力との積を100(Pa・cm)
以下とする(請求項11の発明)。これにより、接地電
極のガス流通孔の孔の中に、局所的にプラズマが閉じ込
められて、所謂、ホローカソード放電が起こり、高品質
の膜が効率よく得られる。
A method for forming a thin film on a substrate surface by the plasma processing apparatus according to claim 8, further comprising:
When the gas flow hole in the ground electrode is a circular hole,
When the diameter of the hole is equal to or less than half the thickness of the ground electrode, and the product of the diameter and the discharge gas pressure is equal to or less than 100 (Pa · cm), and the gas flow hole in the ground electrode is a slit-shaped long hole, The width is set to half or less of the thickness of the ground electrode, and the product of the width and the discharge gas pressure is set to 100 (Pa · cm).
(The invention of claim 11). As a result, plasma is locally confined in the gas flow holes of the ground electrode, so-called hollow cathode discharge occurs, and a high-quality film can be efficiently obtained.

【0033】最後に、前記装置は、高分子フィルムの表
面処理などのプラズマ処理にも利用でき、下記請求項1
2の発明が、詳細は後述するように好適である。即ち、
請求項1に記載のプラズマ処理装置によって基体の表面
処理を行なう方法であって、前記第1の空間に酸素,希
ガスもしくは酸素を希ガスで希釈したガスを供給して、
非減圧下でプラズマ放電させ、この放電ガスを前記接地
電極に設けた複数個のガス流通孔から前記第2の空間に
導入し、この第2の空間に配設された基体表面に照射す
ることにより、基体の表面処理を行なう。
Finally, the apparatus can be used for plasma treatment such as surface treatment of a polymer film.
The second invention is suitable as described in detail below. That is,
A method for performing a surface treatment of a substrate by the plasma processing apparatus according to claim 1, wherein oxygen, a rare gas, or a gas obtained by diluting oxygen with a rare gas is supplied to the first space,
Plasma discharge under non-reduced pressure, introducing the discharge gas into the second space through a plurality of gas flow holes provided in the ground electrode, and irradiating the surface of the base provided in the second space. Performs the surface treatment of the substrate.

【0034】[0034]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下に述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0035】図1ないし図6は、本発明の実施例に関わ
る概略構成図であり、図1,2および6は、装置の全体
構成に関わるそれぞれ異なる実施例を示し、図3ないし
5は、接地電極におけるガス流通孔のそれぞれ異なる実
施例を示す。
FIGS. 1 to 6 are schematic structural diagrams according to an embodiment of the present invention. FIGS. 1, 2 and 6 show different embodiments relating to the overall configuration of the apparatus, and FIGS. Different embodiments of the gas flow holes in the ground electrode are shown.

【0036】図1に示す装置は、第1の実施例を示す概
略構成図で、装置本体容器5の内部を接地電極3によ
り、第1の空間1と第2の空間2とに分離し、前記第1
の空間1には、接地電極3に対向して高周波電極(もし
くは直流高圧電極)4を設けて放電領域を形成し、前記
第2の空間2には、接地電極3に対向して加熱手段とし
てのヒータ9を有する基体の載置板13を設けた構成と
している。また、第1の空間1および第2の空間2には
それぞれ異なるガスを供給するガス供給口6および7を
設け、第2の空間2にはガス排出口8を設けている。さ
らに、接地電極3は、複数個のガス流通孔12を備え
る。
The device shown in FIG. 1 is a schematic structural view showing a first embodiment. The inside of a device main body container 5 is separated into a first space 1 and a second space 2 by a ground electrode 3. The first
In the space 1, a high-frequency electrode (or a DC high-voltage electrode) 4 is provided opposite to the ground electrode 3 to form a discharge region. In the second space 2, a heating means is provided opposite to the ground electrode 3. Is provided with a base mounting plate 13 having the heater 9 described above. The first space 1 and the second space 2 are provided with gas supply ports 6 and 7 for supplying different gases, respectively, and the second space 2 is provided with a gas outlet 8. Further, the ground electrode 3 includes a plurality of gas flow holes 12.

【0037】上記構成において、プラズマ処理の対象と
なる基体11は、前記ヒータ9によって温度制御可能な
載置板13の上に載置される。第1の空間1におけるガ
ス供給口6からガスを供給し、前記電極3および4間に
直流,乃至は交流電源15から電力を供給し、グロー放
電を発生させる。放電により生成されたラジカルやイオ
ンなどの活性種は、接地電極3に開けられたガス流通孔
12を通して、第2の空間2に供給され、ガス供給口7
から供給される原料ガスと反応し、基体11への膜堆積
を行い、ガス排気口8から排気される。
In the above configuration, the substrate 11 to be subjected to the plasma processing is mounted on the mounting plate 13 whose temperature can be controlled by the heater 9. Gas is supplied from the gas supply port 6 in the first space 1 and power is supplied between the electrodes 3 and 4 from the DC or AC power supply 15 to generate glow discharge. Active species such as radicals and ions generated by the discharge are supplied to the second space 2 through the gas flow holes 12 formed in the ground electrode 3, and are supplied to the gas supply port 7.
Reacts with the raw material gas supplied from the substrate, deposits a film on the substrate 11, and is exhausted from the gas exhaust port 8.

【0038】シリコン系やシリコンに炭素,ゲルマニウ
ムを混ぜた薄膜を基体11の上に堆積させるためには、
水素,あるいは水素をHeやArなどの希ガスで希釈したも
のをガス供給口6から供給し、放電により原子状水素
(水素ラジカル)やイオンなどの活性種を発生させ、ガ
ス流通孔12を通して第2の空間2に供給する。第2の
空間2ではガス供給口7からシラン系(SiH4 , Si
26など)ガスや,ゲルマン系(GeH4など)ガス,
ハイドロカーボン系(CH4 , C22など)ガスとシラ
ン系ガスを混合したもの,あるいはこれらのガスをH2
や希ガスで希釈したガスを導入し、ガス流通孔12を通
して供給される活性種と第2の空間2で反応させる。そ
の結果生成される製膜前駆体が基体に堆積し、膜が形成
される。
In order to deposit a thin film of silicon or silicon mixed with carbon and germanium on the substrate 11,
Hydrogen or hydrogen diluted with a rare gas such as He or Ar is supplied from a gas supply port 6 to generate active species such as atomic hydrogen (hydrogen radicals) and ions by electric discharge. 2 to the space 2. In the second space 2, a silane (SiH 4 , Si
2, etc. H 6) or gas, Germanic (such as GeH 4) gas,
A mixture of a hydrocarbon-based (CH 4 , C 2 H 2, etc.) gas and a silane-based gas, or a mixture of these gases with H 2
A gas diluted with an inert gas or a rare gas is introduced, and reacts with the active species supplied through the gas flow holes 12 in the second space 2. The resulting film-forming precursor deposits on the substrate, forming a film.

【0039】接地電極3に設けられるガス流通孔12の
孔形状は、図3に示すような円形状の孔21だけでな
く、よりガスの透過率を上げたメッシュ状、あるいは図
4に示すような複数個のスリット状の長孔22などを用
いることができる。スリット状の長孔を用いる場合に
は、スリットの長手方向と直角な方向に基体と接地電極
の相対的な位置を変化させながら製膜を行うことによ
り、大きな基体の上に均一な膜堆積を行うことが容易に
できる。具体的には、接地電極,あるいは基体を置いた
載置板を往復運動させたり、また、量産処理の場合には
一般に、基体を搬送しながら製膜を行う。
The hole shape of the gas flow hole 12 provided in the ground electrode 3 is not limited to the circular hole 21 as shown in FIG. 3, but also a mesh shape with a higher gas permeability, or as shown in FIG. A plurality of slit-shaped long holes 22 and the like can be used. When a slit-shaped long hole is used, the film is formed while changing the relative position of the base and the ground electrode in a direction perpendicular to the longitudinal direction of the slit, so that a uniform film is deposited on a large base. Easy to do. Specifically, the grounding electrode or the mounting plate on which the substrate is placed is reciprocated, and in the case of mass production processing, film formation is generally performed while transporting the substrate.

【0040】さらに、ガス流通孔は、ガス流通孔を基体
の製膜面に対して直角に開けるのではなく、図5に示す
ように、基体表面を流れるガスの下流方向に向くように
ガス流通孔を傾斜させた傾斜孔23とすることにより、
基体表面のガス流速を大きくすることができ、効率よく
ガスを流すことが可能となる。
Further, as shown in FIG. 5, the gas flow holes are not opened at right angles to the film forming surface of the substrate, but are directed to the downstream direction of the gas flowing on the substrate surface. By forming the inclined hole 23 in which the hole is inclined,
The gas flow velocity on the substrate surface can be increased, and the gas can flow efficiently.

【0041】図2は、図1とは異なる装置の実施例を示
し、前述のように、基体43を搬送しながら製膜を行う
ために、巻出しロール41と巻取りロール42を含む搬
送装置を備えるものである。その他の構成は、図1の装
置と同等であるので、説明を省略する。
FIG. 2 shows an embodiment of an apparatus different from that of FIG. 1. As described above, a transport apparatus including an unwinding roll 41 and a take-up roll 42 in order to form a film while transporting the substrate 43. It is provided with. Other configurations are the same as those of the apparatus shown in FIG.

【0042】図1および図2に示すプラズマ処理装置に
おいては、共に、第1の空間1における高周波電極(も
しくは直流高圧電極)4と接地電極3とは所定の間隔
(D1)を有して略平行に配設され、また、第2の空間
2における基体11または43と接地電極3とは所定の
間隔(D2)を有して略平行に配設され、さらに、第2
の空間用のガスが、基体と接地電極との空隙を基体と略
平行に流れるように、ガス供給口7とガス排出口8とを
設けている。
In the plasma processing apparatus shown in FIGS. 1 and 2, the high-frequency electrode (or DC high-voltage electrode) 4 and the ground electrode 3 in the first space 1 are substantially spaced apart from each other by a predetermined distance (D1). The base 11 or 43 and the ground electrode 3 in the second space 2 are disposed substantially in parallel with a predetermined interval (D2).
The gas supply port 7 and the gas discharge port 8 are provided so that the space gas flows through the gap between the base and the ground electrode substantially in parallel with the base.

【0043】上記構成において、製膜処理に当たって
は、放電領域にガス供給口7から供給される原料ガスが
流入するのを防ぐために、放電領域におけるガス圧を数
百Pa(ゲージ圧)にして、拡散によるガス侵入を抑え
ると共に、第1の空間1から第2の空間2ヘガスが一方
向に流れるように、各ガス供給口からのガス供給量を調
整する。この場合、非減圧条件下で電極間に安定なグロ
ー放電を立てるためには、ガス圧pと電極間隔D1の積
を、100(Pa・cm)以下に保つ必要がある。
In the above structure, in the film forming process, the gas pressure in the discharge region is set to several hundred Pa (gauge pressure) in order to prevent the raw material gas supplied from the gas supply port 7 from flowing into the discharge region. The amount of gas supplied from each gas supply port is adjusted so that gas intrusion due to diffusion is suppressed and gas flows from the first space 1 to the second space 2 in one direction. In this case, the product of the gas pressure p and the electrode interval D1 needs to be kept at 100 (Pa · cm) or less in order to establish a stable glow discharge between the electrodes under non-pressure reduction conditions.

【0044】図6は、図1及び図2とはさらに異なる実
施例を示し、前述のように、第1の空間1における高周
波電極(もしくは直流高圧電極)を、接地電極3におけ
るガス流通孔12としての円形状の孔またはスリット状
の長孔と対応する複数の分割電極52となし、この分割
電極52には放電電流調整用の直列抵抗53を接続して
なるものである。
FIG. 6 shows an embodiment different from FIGS. 1 and 2, in which the high-frequency electrode (or DC high-voltage electrode) in the first space 1 is connected to the gas flow hole 12 in the ground electrode 3 as described above. And a plurality of divided electrodes 52 corresponding to a circular hole or a slit-shaped elongated hole, and a series resistor 53 for adjusting discharge current is connected to the divided electrodes 52.

【0045】上記装置の場合、放電ガスとガス流通孔1
2の大きさを適当な条件にして放電させると、陰極暗部
や負グロー部がガス流通孔の中に閉じ込められる,所謂
ホローカソード放電が起こる。接地電極3に対向する陽
極を分割して設置し、各々に接続されている直列抵抗5
3を調整することにより、各放電間の電流のバランスを
制御することができる。
In the case of the above apparatus, the discharge gas and the gas flow holes 1
When the discharge is performed under appropriate conditions with the size of 2, the so-called hollow cathode discharge occurs in which the cathode dark part and the negative glow part are confined in the gas flow holes. The anode facing the ground electrode 3 is divided and installed, and the series resistors 5 connected to each are connected.
By adjusting 3, the current balance between the discharges can be controlled.

【0046】数百Pa(ゲージ圧)の高ガス圧条件下で
ホローカソード放電を実現するためには、円形のガス流
通孔の場合はその直径をdとし、スリット状のガス流通
孔の場合はスリツトの短い方の幅をdとすると、電極の
厚さを2d以上とし、かつこのdとガス圧との積を10
0(Pa・cm)以下に保つことにより、安定なホロー
カソード放電が実現できる。
In order to realize hollow cathode discharge under high gas pressure conditions of several hundred Pa (gauge pressure), the diameter of a circular gas flow hole is d, and the diameter of a slit gas flow hole is d. Assuming that the shorter width of the slit is d, the thickness of the electrode is 2d or more, and the product of d and the gas pressure is 10
By keeping the pressure at 0 (Pa · cm) or less, stable hollow cathode discharge can be realized.

【0047】以上は薄膜堆積の場合の実施例について述
べたが、前記装置は高分子フィルムの表面処理などにも
利用できる。高分子フィルム表面に活性種や光を照射す
ることにより、高分子フィルムの表面の接着性や親水性
が変化することが知られている。例えば、図2に示す装
置により、表面処理を行いたい高分子フィルムを搬送
し、ガスとして、酸素や希ガス,あるいは酸素を希ガス
で希釈した混合ガスを、第1の空間1におけるガス供給
口6から流して非減圧下でプラズマ放電させ、この放電
ガスを接地電極に設けた複数個のガス流通孔12から第
2の空間2に導入し、この第2の空間に配設された基体
表面に照射することにより、所望の表面処理が実現でき
る。
Although the embodiment in the case of thin film deposition has been described above, the above apparatus can also be used for surface treatment of a polymer film. It is known that by irradiating the polymer film surface with active species or light, the adhesiveness or hydrophilicity of the polymer film surface changes. For example, by using the apparatus shown in FIG. 2, a polymer film to be subjected to surface treatment is transported, and oxygen, a rare gas, or a mixed gas obtained by diluting oxygen with a rare gas is supplied as a gas to a gas supply port in the first space 1. 6, and discharge the plasma under non-pressure reduction, and introduce this discharge gas into the second space 2 through the plurality of gas flow holes 12 provided in the ground electrode, and the surface of the base provided in the second space By irradiating the surface, a desired surface treatment can be realized.

【0048】[0048]

【発明の効果】前述のように、この発明によれば、高周
波電極(もしくは直流高圧電極)と接地電極とからなる
一対の電極を有し、電圧を印加することにより、非減圧
下で放電プラズマを生成し、プラズマ処理により基体表
面に薄膜形成もしくは基体の表面処理を行なうプラズマ
処理装置であって、装置本体容器内部を前記接地電極に
より、第1の空間と第2の空間とに分離し、前記第1の
空間には、前記接地電極に対向して高周波電極(もしく
は直流高圧電極)を設けて放電領域を形成し、前記第2
の空間には、前記接地電極に対向して加熱手段を有する
前記基体の載置板を設けてなり、さらに、前記第1の空
間および第2の空間にはそれぞれ異なるガスを供給する
ガス供給口を備え、前記第2の空間にはガス排出口を備
え、かつ前記接地電極には複数個のガス流通孔を備えて
なるものとし、上記装置によって、前記第1の空間に水
素等の放電用ガスを供給して、非減圧下でのプラズマ放
電により原子状水素を発生させ、この原子状水素を前記
接地電極に設けた複数個のガス流通孔から前記第2の空
間に導入して、この第2の空間に供給された半導体ガス
分子と反応させて、前記第2の空間に配設された基体表
面に薄膜を形成することにより、あるいは、上記装置に
よって、前記第1の空間に酸素,希ガスもしくは酸素を
希ガスで希釈したガスを供給して、非減圧下でプラズマ
放電させ、この放電ガスを前記接地電極に設けた複数個
のガス流通孔から前記第2の空間に導入し、この第2の
空間に配設された基体表面に照射することにより、基体
の表面処理を行なうことにより、電極等への反応生成物
のパウダーや膜の付着と、電極や基体の異常温度上昇を
防止し、高品質の膜を形成することが可能な非減圧のプ
ラズマ処理装置と、同装置による薄膜形成方法および表
面処理方法が実現できる。非減圧プラズマ処理の課題を
解決したこの発明の実施により、従来の減圧プラズマ処
理に比較して、装置全体の低コスト化と製造プロセスの
簡略化が図れる。
As described above, according to the present invention, a pair of electrodes consisting of a high-frequency electrode (or a DC high-voltage electrode) and a ground electrode is provided. A plasma processing apparatus for forming a thin film on a substrate surface or performing a surface treatment of the substrate by plasma processing, wherein the inside of the apparatus main body container is separated into a first space and a second space by the ground electrode, A high-frequency electrode (or a DC high-voltage electrode) is provided in the first space so as to face the ground electrode to form a discharge region.
Is provided with a mounting plate of the base having a heating means opposed to the ground electrode, and a gas supply port for supplying different gases to the first space and the second space, respectively. The second space is provided with a gas outlet, and the ground electrode is provided with a plurality of gas flow holes. A gas is supplied to generate atomic hydrogen by plasma discharge under non-pressure reduction, and this atomic hydrogen is introduced into the second space from a plurality of gas flow holes provided in the ground electrode, By reacting with the semiconductor gas molecules supplied to the second space to form a thin film on the surface of the substrate provided in the second space, or by the above-described apparatus, oxygen, Noble gas or oxygen diluted with noble gas The discharge gas is supplied to the second space through a plurality of gas flow holes provided in the ground electrode, and the discharge gas is disposed in the second space. By irradiating the surface of the substrate, the surface of the substrate is treated, thereby preventing powder or a film of a reaction product from adhering to an electrode or the like and preventing an abnormal temperature rise of the electrode or the substrate and forming a high quality film. It is possible to realize a non-decompressed plasma processing apparatus capable of performing the method, a thin film forming method and a surface processing method using the plasma processing apparatus. By implementing the present invention that solves the problem of the non-pressure-reduced plasma processing, the cost of the entire apparatus can be reduced and the manufacturing process can be simplified as compared with the conventional reduced-pressure plasma processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のプラズマ処理装置の実施例の概略構
成図
FIG. 1 is a schematic configuration diagram of an embodiment of a plasma processing apparatus of the present invention.

【図2】図1とは異なるこの発明のプラズマ処理装置の
実施例の概略構成図
FIG. 2 is a schematic configuration diagram of an embodiment of the plasma processing apparatus of the present invention different from FIG.

【図3】この発明に関わる接地電極におけるガス流通孔
の一例を示す図
FIG. 3 is a diagram showing an example of a gas flow hole in a ground electrode according to the present invention.

【図4】図3とは異なるガス流通孔の一例を示す図FIG. 4 is a view showing an example of a gas flow hole different from FIG. 3;

【図5】図3とはさらに異なるガス流通孔の一例を示す
FIG. 5 is a diagram showing an example of a gas flow hole different from FIG. 3;

【図6】図1とはさらに異なるこの発明のプラズマ処理
装置の実施例の概略構成図
FIG. 6 is a schematic configuration diagram of an embodiment of the plasma processing apparatus of the present invention, which is further different from FIG.

【図7】従来のプラズマ放電による成膜装置の一例を示
す図
FIG. 7 is a diagram showing an example of a conventional film forming apparatus using plasma discharge.

【符号の説明】[Explanation of symbols]

1:第1の空間、2:第2の空間、3:接地電極、4:
高周波電極(もしくは直流高圧電極)、5:装置本体容
器、6,7:ガス供給口、8:ガス排出口、9:加熱手
段、11,43:基体、12:ガス流通孔、13:基体
の載置板、15:電源、21:円形状の孔、22:スリ
ット状の長孔、23:傾斜孔、41:巻出しロール、4
3:巻取りロール、52:分割電極、53:直列抵抗。
1: first space, 2: second space, 3: ground electrode, 4:
High-frequency electrode (or DC high-voltage electrode), 5: apparatus main body container, 6, 7: gas supply port, 8: gas outlet, 9: heating means, 11, 43: base, 12: gas flow hole, 13: base Mounting plate, 15: power supply, 21: circular hole, 22: slit-shaped long hole, 23: inclined hole, 41: unwinding roll, 4
3: take-up roll, 52: split electrode, 53: series resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05H 1/46 H01L 31/04 V Fターム(参考) 4G075 AA30 BC04 CA13 CA15 DA01 EB42 EC21 FA01 4K030 AA05 AA06 BA24 BA30 BB04 EA06 EA11 FA01 FA03 JA03 JA09 KA15 KA30 LA16 5F045 AA08 AB04 AB05 AC01 AC16 AC17 AE29 BB15 DP03 DP04 DP22 EF05 EF20 EH04 EH14 EK07 5F051 AA04 AA05 CA16 CA23 CA24 CA35 GA05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H05H 1/46 H01L 31/04 VF term (Reference) 4G075 AA30 BC04 CA13 CA15 DA01 EB42 EC21 FA01 4K030 AA05 AA06 BA24 BA30 BB04 EA06 EA11 FA01 FA03 JA03 JA09 KA15 KA30 LA16 5F045 AA08 AB04 AB05 AC01 AC16 AC17 AE29 BB15 DP03 DP04 DP22 EF05 EF20 EH04 EH14 EK07 5F051 AA04 AA05 CA16 CA23 CA24 CA35 GA05

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 高周波電極(もしくは直流高圧電極)と
接地電極とからなる一対の電極を有し、電圧を印加する
ことにより、非減圧下で放電プラズマを生成し、プラズ
マ処理により基体表面に薄膜形成もしくは基体の表面処
理を行なうプラズマ処理装置であって、 装置本体容器内部を前記接地電極により、第1の空間と
第2の空間とに分離し、前記第1の空間には、前記接地
電極に対向して高周波電極(もしくは直流高圧電極)を
設けて放電領域を形成し、前記第2の空間には、前記接
地電極に対向して加熱手段を有する前記基体の載置板を
設けてなり、 さらに、前記第1の空間および第2の空間にはそれぞれ
異なるガスを供給するガス供給口を備え、前記第2の空
間にはガス排出口を備え、かつ前記接地電極には複数個
のガス流通孔を備えてなることを特徴とするプラズマ処
理装置。
1. A plasma processing apparatus comprising: a pair of electrodes consisting of a high-frequency electrode (or a DC high-voltage electrode) and a ground electrode; applying a voltage to generate a discharge plasma under non-reduced pressure; What is claimed is: 1. A plasma processing apparatus for forming or surface-treating a substrate, wherein the inside of an apparatus main body container is separated into a first space and a second space by the ground electrode, and the first space includes the ground electrode. A discharge region is formed by providing a high-frequency electrode (or a DC high-voltage electrode) in opposition to the device, and a mounting plate of the base having heating means is provided in the second space in opposition to the ground electrode. Further, the first space and the second space each have a gas supply port for supplying a different gas, the second space has a gas discharge port, and the ground electrode has a plurality of gases. With a circulation hole The plasma processing apparatus characterized by comprising.
【請求項2】 請求項1に記載の処理装置において、前
記第1の空間に供給するガスは、水素または水素を希ガ
スで希釈した放電用ガスとし、前記第2の空間に供給す
るガスは、シラン系,ゲルマン系ガス等の半導体ガスと
することを特徴とするプラズマ処理装置。
2. The processing apparatus according to claim 1, wherein the gas supplied to the first space is hydrogen or a discharge gas obtained by diluting hydrogen with a rare gas, and the gas supplied to the second space is A plasma processing apparatus using a semiconductor gas such as a silane-based gas or a germane-based gas.
【請求項3】 請求項1または2に記載の処理装置にお
いて、前記第1の空間における高周波電極(もしくは直
流高圧電極)と接地電極とは所定の間隔(D1)を有し
て略平行に配設し、また、前記第2の空間における基体
と接地電極とは所定の間隔(D2)を有して略平行に配
設してなり、さらに、前記第2の空間用のガスが、前記
基体と接地電極との空隙を基体と略平行に流れるよう
に、ガス供給口とガス排出口とを設けてなることを特徴
とするプラズマ処理装置。
3. The processing apparatus according to claim 1, wherein the high-frequency electrode (or the DC high-voltage electrode) and the ground electrode in the first space are arranged substantially in parallel with a predetermined distance (D1). The base and the ground electrode in the second space are disposed substantially in parallel with a predetermined distance (D2), and the gas for the second space is provided in the second space. A gas supply port and a gas discharge port so as to flow in a gap between the electrode and the ground electrode substantially in parallel with the substrate.
【請求項4】 請求項1に記載の処理装置において、前
記接地電極におけるガス流通孔は、複数個の円形状の孔
とし、この孔を前記基体に対向して略均等に分布させて
なることを特徴とするプラズマ処理装置。
4. The processing apparatus according to claim 1, wherein the gas flow holes in the ground electrode are formed as a plurality of circular holes, and the holes are substantially uniformly distributed facing the substrate. A plasma processing apparatus characterized by the above-mentioned.
【請求項5】 請求項1ないし4のいずれかに記載の処
理装置において、前記基体の搬送装置を備え、基体を搬
送しながら前記プラズマ処理を行なう構成とすることを
特徴とするプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, further comprising a transfer device for the substrate, wherein the plasma processing is performed while the substrate is being transported.
【請求項6】 請求項5に記載の処理装置において、前
記接地電極におけるガス流通孔は、複数個のスリット状
の長孔とし、この長孔の長手方向を基体の搬送方向と直
角として前記基体に対向して前記長孔を略均等に分布さ
せてなることを特徴とするプラズマ処理装置。
6. The processing apparatus according to claim 5, wherein the gas flow hole in the ground electrode is a plurality of slit-shaped long holes, and the longitudinal direction of the long holes is perpendicular to the transport direction of the substrate. A plasma processing apparatus characterized in that the long holes are substantially uniformly distributed in opposition to the above.
【請求項7】 請求項5または6に記載の処理装置にお
いて、前記基体表面のガスの流れ方向と基体の搬送方向
とを同一とし、前記接地電極におけるガス流通孔は、流
通口出口ガスの流通方向が基体の搬送方向に向くように
傾斜させて設けることを特徴とするプラズマ処理装置。
7. The processing apparatus according to claim 5, wherein the direction of gas flow on the surface of the substrate and the direction of transport of the substrate are the same, and the gas flow holes in the ground electrode flow through the flow port outlet gas. A plasma processing apparatus characterized by being provided so as to be inclined so that the direction is directed to the transport direction of the substrate.
【請求項8】 請求項4または6に記載の処理装置にお
いて、前記第1の空間における高周波電極(もしくは直
流高圧電極)を、前記接地電極におけるガス流通孔とし
ての円形状の孔またはスリット状の長孔と対応する複数
の分割された電極となし、この電極には放電電流調整用
の直列抵抗を接続してなることを特徴とするプラズマ処
理装置。
8. The processing apparatus according to claim 4, wherein the high-frequency electrode (or direct-current high-voltage electrode) in the first space is formed as a circular hole or a slit-shaped gas flow hole in the ground electrode. A plasma processing apparatus comprising: a plurality of divided electrodes corresponding to elongated holes; and a series resistor for adjusting discharge current connected to the electrodes.
【請求項9】 請求項1ないし8のいずれかに記載のプ
ラズマ処理装置によって基体表面に薄膜形成を行なう方
法であって、前記第1の空間に前記放電用ガスを供給し
て、非減圧下でのプラズマ放電により原子状水素を発生
させ、この原子状水素を前記接地電極に設けた複数個の
ガス流通孔から前記第2の空間に導入して、この第2の
空間に供給された前記半導体ガス分子と反応させて、前
記第2の空間に配設された基体表面に薄膜を形成するこ
とを特徴とする薄膜形成方法。
9. A method for forming a thin film on a surface of a substrate by using the plasma processing apparatus according to claim 1, wherein the discharge gas is supplied to the first space, and the pressure is not reduced. Atomic hydrogen is generated by the plasma discharge in the above, and the atomic hydrogen is introduced into the second space from a plurality of gas flow holes provided in the ground electrode, and is supplied to the second space. A method of forming a thin film, comprising reacting with a semiconductor gas molecule to form a thin film on a surface of a substrate provided in the second space.
【請求項10】 請求項3に記載のプラズマ処理装置に
よって基体表面に薄膜形成を行なう方法であって、前記
高周波電極(もしくは直流高圧電極)と接地電極との間
隔(D1)と放電ガス圧力との積を100(Pa・c
m)以下とすることを特徴とする薄膜形成方法。
10. A method for forming a thin film on a substrate surface by the plasma processing apparatus according to claim 3, wherein a distance (D1) between the high-frequency electrode (or DC high-voltage electrode) and a ground electrode, a discharge gas pressure, and the like. Multiplied by 100 (Pa · c)
m) A thin film forming method characterized by the following.
【請求項11】 請求項8に記載のプラズマ処理装置に
よって基体表面に薄膜形成を行なう方法であって、 前記接地電極におけるガス流通孔が円形状の孔の場合、
孔の直径を接地電極の厚さの半分以下とし、かつ前記直
径と放電ガス圧力との積を100(Pa・cm)以下と
し、 前記接地電極におけるガス流通孔がスリット状の長孔の
場合、その幅を接地電極の厚さの半分以下とし、かつ前
記幅と放電ガス圧力との積を100(Pa・cm)以下
とすることを特徴とする薄膜形成方法。
11. A method for forming a thin film on a surface of a substrate by the plasma processing apparatus according to claim 8, wherein the gas flow hole in the ground electrode is a circular hole.
When the diameter of the hole is equal to or less than half the thickness of the ground electrode, and the product of the diameter and the discharge gas pressure is equal to or less than 100 (Pa · cm), and the gas flow hole in the ground electrode is a slit-shaped long hole, A method for forming a thin film, wherein the width is set to be equal to or less than half the thickness of the ground electrode, and the product of the width and the discharge gas pressure is equal to or less than 100 (Pa · cm).
【請求項12】 請求項1に記載のプラズマ処理装置に
よって基体の表面処理を行なう方法であって、前記第1
の空間に酸素,希ガスもしくは酸素を希ガスで希釈した
ガスを供給して、非減圧下でプラズマ放電させ、この放
電ガスを前記接地電極に設けた複数個のガス流通孔から
前記第2の空間に導入し、この第2の空間に配設された
基体表面に照射することにより、基体の表面処理を行な
うことを特徴とする表面処理方法。
12. A method for performing a surface treatment on a substrate by using the plasma processing apparatus according to claim 1, wherein
The space is supplied with oxygen, a rare gas, or a gas obtained by diluting oxygen with a rare gas, and plasma discharge is performed under non-pressure reduction. The discharge gas is supplied to the second electrode through a plurality of gas flow holes provided in the ground electrode. A surface treatment method comprising: introducing a substrate into a space; and irradiating the surface of the substrate provided in the second space with a surface of the substrate.
JP2000383765A 2000-12-18 2000-12-18 Plasma processing apparatus and thin film forming method Expired - Lifetime JP4273382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000383765A JP4273382B2 (en) 2000-12-18 2000-12-18 Plasma processing apparatus and thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000383765A JP4273382B2 (en) 2000-12-18 2000-12-18 Plasma processing apparatus and thin film forming method

Publications (2)

Publication Number Publication Date
JP2002180257A true JP2002180257A (en) 2002-06-26
JP4273382B2 JP4273382B2 (en) 2009-06-03

Family

ID=18851360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000383765A Expired - Lifetime JP4273382B2 (en) 2000-12-18 2000-12-18 Plasma processing apparatus and thin film forming method

Country Status (1)

Country Link
JP (1) JP4273382B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006211A (en) * 2001-09-27 2004-01-08 Sekisui Chem Co Ltd Plasma treatment device
JP2005108482A (en) * 2003-09-29 2005-04-21 E Square:Kk Plasma surface treatment device
JP2005333096A (en) * 2003-06-25 2005-12-02 Sekisui Chem Co Ltd Surface processing device and method
WO2008132901A1 (en) * 2007-04-19 2008-11-06 Sekisui Chemical Co., Ltd. Plasma processing apparatus
JP2009503781A (en) * 2005-07-26 2009-01-29 ピーエスエム インコーポレイティド Injection type plasma processing apparatus and method
JP2009506915A (en) * 2005-09-06 2009-02-19 ピーエスエム インコーポレイティド Mobile mold cleaning apparatus and mold cleaning method
JP2010153610A (en) * 2008-12-25 2010-07-08 Hiroshima Univ Semiconductor manufacturing device, method of manufacturing germanium dot, and method of manufacturing semiconductor memory using the same
JP2010157483A (en) * 2009-01-05 2010-07-15 Samsung Electro-Mechanics Co Ltd Plasma generating apparatus
US8105440B2 (en) 2001-01-22 2012-01-31 Canon Anelva Corporation Method of cleaning a CVD device
JP2013004405A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Surface treatment apparatus and surface treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177142A (en) * 1992-12-08 1994-06-24 Sony Corp Fabrication of transistor
JPH0745539A (en) * 1993-07-29 1995-02-14 Nissin Electric Co Ltd Plasma cvd device and electrode used for the same
JPH0830968A (en) * 1993-07-20 1996-02-02 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JPH08167596A (en) * 1994-12-09 1996-06-25 Sony Corp Plasma treatment device, plasma treatment method, and manufacture of semiconductor device
JPH11219919A (en) * 1998-02-02 1999-08-10 Sony Corp Method for forming metal film and semiconductor device, and manufacture of the same
JP2000058465A (en) * 1998-05-29 2000-02-25 Mitsubishi Heavy Ind Ltd Plasma chemical vapor deposition equipment
JP2000192246A (en) * 1998-10-16 2000-07-11 Sekisui Chem Co Ltd Production of functionally gradient material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177142A (en) * 1992-12-08 1994-06-24 Sony Corp Fabrication of transistor
JPH0830968A (en) * 1993-07-20 1996-02-02 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JPH0745539A (en) * 1993-07-29 1995-02-14 Nissin Electric Co Ltd Plasma cvd device and electrode used for the same
JPH08167596A (en) * 1994-12-09 1996-06-25 Sony Corp Plasma treatment device, plasma treatment method, and manufacture of semiconductor device
JPH11219919A (en) * 1998-02-02 1999-08-10 Sony Corp Method for forming metal film and semiconductor device, and manufacture of the same
JP2000058465A (en) * 1998-05-29 2000-02-25 Mitsubishi Heavy Ind Ltd Plasma chemical vapor deposition equipment
JP2000192246A (en) * 1998-10-16 2000-07-11 Sekisui Chem Co Ltd Production of functionally gradient material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8105440B2 (en) 2001-01-22 2012-01-31 Canon Anelva Corporation Method of cleaning a CVD device
JP2004006211A (en) * 2001-09-27 2004-01-08 Sekisui Chem Co Ltd Plasma treatment device
JP2005333096A (en) * 2003-06-25 2005-12-02 Sekisui Chem Co Ltd Surface processing device and method
JP4579522B2 (en) * 2003-09-29 2010-11-10 株式会社イー・スクエア Plasma surface treatment equipment
JP2005108482A (en) * 2003-09-29 2005-04-21 E Square:Kk Plasma surface treatment device
JP2009503781A (en) * 2005-07-26 2009-01-29 ピーエスエム インコーポレイティド Injection type plasma processing apparatus and method
JP2009506915A (en) * 2005-09-06 2009-02-19 ピーエスエム インコーポレイティド Mobile mold cleaning apparatus and mold cleaning method
WO2008132901A1 (en) * 2007-04-19 2008-11-06 Sekisui Chemical Co., Ltd. Plasma processing apparatus
JPWO2008132901A1 (en) * 2007-04-19 2010-07-22 積水化学工業株式会社 Plasma processing equipment
JP4647705B2 (en) * 2007-04-19 2011-03-09 積水化学工業株式会社 Plasma processing equipment
JP2010153610A (en) * 2008-12-25 2010-07-08 Hiroshima Univ Semiconductor manufacturing device, method of manufacturing germanium dot, and method of manufacturing semiconductor memory using the same
JP2010157483A (en) * 2009-01-05 2010-07-15 Samsung Electro-Mechanics Co Ltd Plasma generating apparatus
JP2013004405A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Surface treatment apparatus and surface treatment method

Also Published As

Publication number Publication date
JP4273382B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
TW455912B (en) Method and apparatus for film deposition
US20090004363A1 (en) Plasma enhanced chemichal vapor deposition apparatus and method
US20090023274A1 (en) Hybrid Chemical Vapor Deposition Process Combining Hot-Wire CVD and Plasma-Enhanced CVD
JP5378416B2 (en) Plasma processing equipment
JP5089669B2 (en) Thin film forming equipment
JP2002180257A (en) Plasma treatment apparatus, method of depositing thin film, and surface treatment apparatus
EP2256782B1 (en) Plasma deposition source and method for depositing thin films
JP2000109979A (en) Surface treatment method by dc arc discharge plasma
JP2001214277A (en) Deposited film deposition system and deposited film deposition method
JPS62203328A (en) Plasma cvd apparatus
JPH0576173B2 (en)
JPH0737818A (en) Method and device for plasma cvd film formation
JP2000243712A (en) Film forming method and device
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
WO2019227192A1 (en) Process reactor for plasma-enhanced chemical deposition of thin film coatings and vacuum apparatus
JP3968649B2 (en) Thin film forming method and apparatus
JP5691740B2 (en) Plasma processing equipment
JP2004031701A (en) Cat-pecvd method, film formed using the same, thin film device equipped with the film, and film processing system
JP2008513978A (en) Plasma enhanced CVD apparatus and method
JP3261795B2 (en) Plasma processing equipment
JP2004056062A (en) Cat-PECVD (CATALYTIC PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION) METHOD, FILM FORMED USING THE SAME, AND THIN FILM DEVICE EQUIPPED WITH THE FILM
JPH10312965A (en) Plasma chemical deposition system
JP2003347224A (en) Cat-PECVD DEVICE AND FILM TREATMENT SYSTEM EQUIPPED WITH THE SAME
JPS6338581A (en) Functional deposited film forming device
JP2515329B2 (en) Thin film formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4