JPS62159419A - Apparatus for forming amorphous semiconductor thin film - Google Patents

Apparatus for forming amorphous semiconductor thin film

Info

Publication number
JPS62159419A
JPS62159419A JP61001024A JP102486A JPS62159419A JP S62159419 A JPS62159419 A JP S62159419A JP 61001024 A JP61001024 A JP 61001024A JP 102486 A JP102486 A JP 102486A JP S62159419 A JPS62159419 A JP S62159419A
Authority
JP
Japan
Prior art keywords
gas
cathodes
thin film
plasma
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61001024A
Other languages
Japanese (ja)
Other versions
JPH0622203B2 (en
Inventor
Hiroshi Sakai
博 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61001024A priority Critical patent/JPH0622203B2/en
Publication of JPS62159419A publication Critical patent/JPS62159419A/en
Publication of JPH0622203B2 publication Critical patent/JPH0622203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance the doping efficiency by independently supplying a doping gas for forming an amorphous silicon film separately from a silane gas of a main material gas. CONSTITUTION:A DC discharge is generated by power supplied from a power source 12 between enamelled cathodes 9 made of a hollow cylindrical metal and a mesh anode 11 to generate a plasma 10. Gas to the cathodes 9 is supplied from independent material gas inlet tubes 7 through insulator connecting tubes 17 into the cathodes 9. The supplied gas is efficiently ionized in the high density negative glow plasma 10 generated in the cathodes, and deposited on a substrate 3.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、化合物ガスをグロー放電を用いたプラズマ反
応により分解して基体上に堆積させるアモルファス半導
体薄膜生成装置に関する。
The present invention relates to an amorphous semiconductor thin film production device in which a compound gas is decomposed by a plasma reaction using glow discharge and deposited on a substrate.

【従来技術とその問題点】[Prior art and its problems]

第2図に、半導体原料ガスをグロー放電を用いたプラズ
マ反応により分解し、半導体膜を堆積させるために従来
用いられている代表的な生成装置を示す、以下、モノシ
ラン(SiL)ガスによりアモルファスシリコン半導体
薄膜を作成する場合を例にとり説明を行う、真空排気系
に排気管8を介して接続された反応室6内に原料ガスで
あるモノシランあるいはモノシランと水素の混合ガスを
導入管7より導入し、I Torr前後の減圧下で電極
1゜2間にグロー放電を生起させる。その結果、放電プ
ラズマ中では高速電子の衝突によりモノシランや水素の
活性種が生成され、これらがヒータ4により加熱される
下部電橋2の上に置かれた基板3の上に堆積して半導体
薄膜が生成される。 こうして作成された半導体薄膜の特性は、放電プラズマ
の性質に大きぐ依存する。プラズマ生成には直’ac以
下DCと書く)電圧印加方式と高周波(以下RFと書く
)電圧印加方式とがあるが、現在は絶縁物基板をi8i
上においても一様なプラズマが得られることなどの利点
からRF印加方式が主に用いられている。しかし、RF
放電内では入力パワー以外のプラズマの人為的制御がl
l!I難であること、及びプラズマの物理的性質を評価
する研究方法が理論的にも実験的にも十分には確立され
ていないという問題点がある。従って、一つの生成装置
においである膜質の半導体薄膜を成長させるための最適
放電条件は別の生成装置に適用することが困難である。 さらに、第2図のような構造の生成装置では、p形ある
いはn形のアモルファスシリコン膜を得るための例えば
p形の場合B ! +1 & 、  n形の場合PH。 などのドーピングガス、あるいはa −3iC: H1
l!やa −3iGe: HIIなどのa −3t合金
薄膜を生成するためのCJx+ GeH4などの化合物
原料ガスは、主原料ガスの5IH4と混合されて導入管
7を介して反応室6に導入される。従って分解エネルギ
ーの異なる各種のガスが同一の導入管より反応室に導か
れ、同一のプラズマグロー放電条件のもとて分解。 生成されるため、各原料ガスが必ずしも各々最適条件で
分解されず、最適のp形及びn形アモルファスシリコン
膜あるいはアモルファス合金膜が得られないという欠点
があった。
Figure 2 shows a typical generation device that is conventionally used to deposit semiconductor films by decomposing semiconductor raw material gas through a plasma reaction using glow discharge. The explanation will be given by taking the case of creating a semiconductor thin film as an example. Monosilane or a mixed gas of monosilane and hydrogen as a raw material gas is introduced from an introduction pipe 7 into a reaction chamber 6 connected to a vacuum evacuation system via an exhaust pipe 8. , a glow discharge is generated between the electrodes 1° and 2 under a reduced pressure of around 1 Torr. As a result, active species such as monosilane and hydrogen are generated in the discharge plasma due to the collision of high-speed electrons, and these are deposited on the substrate 3 placed on the lower bridge 2 heated by the heater 4, forming a semiconductor thin film. is generated. The properties of the semiconductor thin film thus produced depend largely on the properties of the discharge plasma. There are two methods of plasma generation: the direct voltage application method (hereinafter referred to as DC) and the high frequency (hereinafter referred to as RF) voltage application method, but currently the insulator substrate is
The RF application method is mainly used because of its advantages such as the ability to obtain uniform plasma. However, R.F.
In the discharge, artificial control of the plasma other than the input power is
l! There are problems in that the research method for evaluating the physical properties of plasma has not been sufficiently established both theoretically and experimentally. Therefore, it is difficult to apply the optimum discharge conditions for growing a semiconductor thin film of a certain quality in one generation apparatus to another generation apparatus. Furthermore, in the production apparatus having the structure shown in FIG. 2, for example, in the case of p-type, B! +1 &, PH for n type. Doping gas such as or a-3iC: H1
l! A compound raw material gas such as CJx+GeH4 for producing an a-3t alloy thin film such as or a-3iGe:HII is mixed with 5IH4 as the main raw material gas and introduced into the reaction chamber 6 via the introduction pipe 7. Therefore, various gases with different decomposition energies are introduced into the reaction chamber through the same introduction tube and decomposed under the same plasma glow discharge conditions. Since each raw material gas is not necessarily decomposed under the optimum conditions, it is difficult to obtain optimum p-type and n-type amorphous silicon films or amorphous alloy films.

【発明の目的】[Purpose of the invention]

本発明は、上記従来の装置にみられる欠点を取除くため
になされたものであり、異なる種類の原料ガスのそれぞ
れに適応した放電の制御が容易で、良質のp形及びn形
アモルファス半導体薄膜あるいはアモルファス合金ml
の得られるアモルファス半導体薄膜生成装置を提供する
ことを目的とする。
The present invention has been made in order to eliminate the drawbacks seen in the above-mentioned conventional devices, and it is easy to control discharge adapted to each of different types of raw material gases, and provides high-quality p-type and n-type amorphous semiconductor thin films. Or amorphous alloy ml
An object of the present invention is to provide an apparatus for producing an amorphous semiconductor thin film.

【発明の要点】[Key points of the invention]

本発明によるアモルファス半導体薄膜生成装置は、真空
排気可能な反応室内に、一つの共通Ml極と開口部がそ
れに対向する複数の円筒状個別電極が配置され、共通a
極と個別電極の間にはそれぞれ独立して制御可能の電源
が接続され、個別電極の内部空間はそれぞれ独立した原
料化合物ガス導入管に連通ずるものである。これにより
、平行平板電極間のDC放電やRF放電では得られない
高密度、高エネルギーのプラズマを円筒状電極内に発生
させ、原料ガスの励起、解離等をより活発に行うホロー
電極方式が、各原料化合物ガスにつし1て各個別電極を
用いてそのガスに適合して独立グロー放電条件下で行わ
れるため、上記の目的を達成することができる。
In the amorphous semiconductor thin film production apparatus according to the present invention, one common Ml electrode and a plurality of cylindrical individual electrodes each having an opening facing the common Ml electrode are arranged in a reaction chamber that can be evacuated.
Independently controllable power sources are connected between the poles and the individual electrodes, and the internal spaces of the individual electrodes are communicated with independent raw material compound gas introduction pipes. As a result, the hollow electrode method generates high-density, high-energy plasma in the cylindrical electrode that cannot be obtained with DC discharge or RF discharge between parallel plate electrodes, and more actively excite and dissociate the raw material gas. The above object can be achieved because each individual electrode is used for each raw material compound gas and the discharge is carried out under independent glow discharge conditions adapted to that gas.

【発明の実施例】[Embodiments of the invention]

第1図はこの発明の実施例を示すもので、第2図と共通
の部分には同一の符号が付されている。 図中符号9で示したのは中空同筒型の金属でできたホロ
ー陰極であり、メツシュ電極11との間で電源12から
給電される電力によりDC放電を行い、プラズマ10を
発生する。この場合、p形及びn形アモルファスシリコ
ン膜、あるいはアモルファス合金膜の生成に必要な5i
Ha+BtHt+PIIt+CJt+GeHaなどの原
料化合物ガスの種類に従い、複数個のホロー陰極9を縦
横に適当な間隔で配置する。また、各ホロー陰極9への
ガス導入は、それぞれ独立に原料ガス導入管7から絶縁
物の接続管17を介してホロー陰Fi内に供給され、こ
こで陰極内に生成されている高密度の負グロープラズマ
10中で効率よく電離あるいは解離され、これらの生成
物はメツシュ陽極11を通過して放電部分とメツシュ電
極を挟んで反対側に設置された取付台l上の基板3に堆
積する。この際、メツシュ電極11と基板取付台1の間
に接続されるRF′giil[14によるRF電界が堆
積の均一化に役立つ。基板3は取付台1に装備されたヒ
ータ4により任意の温度に加熱できる。 DC電源15からの各ホロー陰極9への給電電力は、各
ホロー陰極との間に接続された可変抵抗13によって調
整することができる0例えば電源15の電圧が400〜
500Wの場合に可変抵抗13の制御により流れる電流
を0−100WAの間に、従ってホロー陰極9とメツシ
ュ陽極11の間の放電電力はO〜50Wの間に調整する
。これにより、例えばCJtのようなSIH,にくらべ
て分解しやすい原料ガスを供給するホロー陰極9とメソ
シュ′¥5FfAllの間の放電電力はSiH,を供給
するホロー陰極9の場合の172ないし1/3に低めら
れ、最適条件で放電が起こるようにすることができる。 第1図に示した装置では、電極等に付着した)レークや
ほこりが基板上に落下するのを防ぐために、基板3が上
部に設置されたデボアップ方式となっているが、基板を
下部に設置するデボダウン方式や、基板を鉛直面内に配
置する方式にも本発明を存効に実施できることは勿論で
ある。
FIG. 1 shows an embodiment of the invention, and parts common to those in FIG. 2 are given the same reference numerals. In the drawing, reference numeral 9 indicates a hollow cathode made of metal that is hollow and cylindrical, and generates plasma 10 by performing DC discharge between it and the mesh electrode 11 using power supplied from a power source 12. In this case, 5i, which is necessary for the production of p-type and n-type amorphous silicon films or amorphous alloy films, is
A plurality of hollow cathodes 9 are arranged vertically and horizontally at appropriate intervals depending on the type of raw material compound gas such as Ha+BtHt+PIIt+CJt+GeHa. In addition, gas is introduced into each hollow cathode 9 independently from the raw material gas introduction pipe 7 through the insulating connecting pipe 17 into the hollow cathode Fi, where the high-density gas generated in the cathode is They are efficiently ionized or dissociated in the negative glow plasma 10, and these products pass through the mesh anode 11 and are deposited on the substrate 3 on the mount 1 installed on the opposite side of the discharge area and the mesh electrode. At this time, the RF electric field generated by RF'giil [14] connected between the mesh electrode 11 and the substrate mount 1 helps to make the deposition uniform. The substrate 3 can be heated to an arbitrary temperature by a heater 4 provided on the mounting base 1. The power supplied from the DC power supply 15 to each hollow cathode 9 can be adjusted by a variable resistor 13 connected between each hollow cathode. For example, when the voltage of the power supply 15 is 400 to
In the case of 500 W, the current flowing between the hollow cathode 9 and the mesh anode 11 is adjusted between 0 and 100 WA by controlling the variable resistor 13, and therefore the discharge power between the hollow cathode 9 and the mesh anode 11 is adjusted between 0 and 50 W. As a result, the discharge power between the hollow cathode 9, which supplies a material gas that is easier to decompose compared to SIH, such as CJt, and the mesh gas, is 172 to 1/2 that in the case of the hollow cathode 9, which supplies SiH. 3, allowing discharge to occur under optimal conditions. The device shown in Figure 1 uses a debo-up method in which the substrate 3 is installed at the top in order to prevent particles (attached to the electrodes, etc.) from falling onto the substrate, but the substrate is installed at the bottom. Of course, the present invention can also be effectively implemented in a debo-down method in which the substrate is placed in a vertical plane or in a method in which the substrate is arranged in a vertical plane.

【発明の効果】【Effect of the invention】

本発明は、p形及びn形アモルファスシリコン膜を生成
するためのドーピングガスあるいはアモルファス合金薄
膜を生成するための化合物ガスを主原料ガスであるシラ
ンガスとは別にそれぞれ独立に供給できるホロー電極を
備え、各ホロー電極によって共通7S極との間にそれぞ
れの原料ガスの分解エネルギーに応じた分解条件で、プ
ラズマを生成できろようにしたものである。これにより
、ドーピング効率の優れた各導電形のアモルファスシリ
コン膜あるいは良好な膜質のアモルファス合金膜を得る
ことができる。特に、本発明による生成’A ’Ifを
用いてアモルファス大MW池を作成する場合、p層、1
層、n5各膜の生成において大きな効果を得ることがで
き、太陽電池の高効率化に寄与する。
The present invention includes a hollow electrode that can independently supply doping gas for producing p-type and n-type amorphous silicon films or compound gas for producing an amorphous alloy thin film separately from silane gas, which is the main raw material gas, Plasma can be generated between each hollow electrode and the common 7S pole under decomposition conditions according to the decomposition energy of each source gas. As a result, an amorphous silicon film of each conductivity type with excellent doping efficiency or an amorphous alloy film with good film quality can be obtained. In particular, when creating an amorphous large MW pond using the generation 'A'If according to the present invention, the p layer, 1
It is possible to obtain a great effect in the formation of each layer and N5 film, contributing to higher efficiency of solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来の装
置の断面図である。 l:基板取付台、3:基板、6;反応室、7:ガス導入
管、9zホロー陰極、11:メツシュ陽極、12:DC
電源、13:可変抵抗、14:RFii源、17:絶縁
接続管、                〆・−゛)
C−パ ′々
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional device. l: Substrate mounting stand, 3: Substrate, 6: Reaction chamber, 7: Gas introduction tube, 9z hollow cathode, 11: Mesh anode, 12: DC
Power supply, 13: Variable resistance, 14: RFii source, 17: Insulated connection tube, 〆・-゛)
C-P's

Claims (1)

【特許請求の範囲】[Claims] 1)化合物ガスを電極間に発生するグロー放電を用いた
プラズマ反応により分解して基体上にアモルファス半導
体を堆積させるものにおいて、真空排気可能な反応室内
に一つの共通電極と開口部が該共通電極に対向する複数
の円筒状個別電極が配置され、共通電極と個別電極の間
にはそれぞれ独立して制御可能の電源が接続され、個別
電極の内部空間はそれぞれ独立した化合物ガス導入管に
連通したことを特徴とするアモルファス半導体薄膜生成
装置。
1) In a device in which an amorphous semiconductor is deposited on a substrate by decomposing a compound gas by a plasma reaction using a glow discharge generated between electrodes, one common electrode and an opening are located in a reaction chamber that can be evacuated. A plurality of cylindrical individual electrodes were arranged facing each other, independently controllable power sources were connected between the common electrode and the individual electrodes, and the internal spaces of the individual electrodes were connected to independent compound gas introduction pipes. An amorphous semiconductor thin film production device characterized by the following.
JP61001024A 1986-01-07 1986-01-07 Amorphous semiconductor thin film generator Expired - Lifetime JPH0622203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001024A JPH0622203B2 (en) 1986-01-07 1986-01-07 Amorphous semiconductor thin film generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001024A JPH0622203B2 (en) 1986-01-07 1986-01-07 Amorphous semiconductor thin film generator

Publications (2)

Publication Number Publication Date
JPS62159419A true JPS62159419A (en) 1987-07-15
JPH0622203B2 JPH0622203B2 (en) 1994-03-23

Family

ID=11489995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001024A Expired - Lifetime JPH0622203B2 (en) 1986-01-07 1986-01-07 Amorphous semiconductor thin film generator

Country Status (1)

Country Link
JP (1) JPH0622203B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108711A (en) * 1986-10-27 1988-05-13 Fuji Electric Corp Res & Dev Ltd Manufacture of alloy thin film
WO2004107825A1 (en) * 2003-05-30 2004-12-09 Tokyo Electron Limited Plasma source and plasma processing apparatus
JP2004356558A (en) * 2003-05-30 2004-12-16 Toshio Goto Apparatus and method for coating
JP2008007798A (en) * 2006-06-27 2008-01-17 Dialight Japan Co Ltd Plasma-generating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108711A (en) * 1986-10-27 1988-05-13 Fuji Electric Corp Res & Dev Ltd Manufacture of alloy thin film
WO2004107825A1 (en) * 2003-05-30 2004-12-09 Tokyo Electron Limited Plasma source and plasma processing apparatus
JP2004356558A (en) * 2003-05-30 2004-12-16 Toshio Goto Apparatus and method for coating
US7632379B2 (en) 2003-05-30 2009-12-15 Toshio Goto Plasma source and plasma processing apparatus
JP2008007798A (en) * 2006-06-27 2008-01-17 Dialight Japan Co Ltd Plasma-generating device

Also Published As

Publication number Publication date
JPH0622203B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US5039376A (en) Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
US9243327B2 (en) Plasma CVD device and method of manufacturing silicon thin film
JPH04232276A (en) Method and apparatus for treating articles by reaction with the aid of dc arc discharge
US20110220026A1 (en) Plasma processing device
JP5089669B2 (en) Thin film forming equipment
JP2003527478A (en) Apparatus for plasma-chemical deposition of polycrystalline diamond
JP2000109979A (en) Surface treatment method by dc arc discharge plasma
JP2000223421A (en) Film growth method and its device
JPS62203328A (en) Plasma cvd apparatus
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JP4273382B2 (en) Plasma processing apparatus and thin film forming method
JP3144165B2 (en) Thin film generator
JPS63190173A (en) Plasma treating device
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPS6037118A (en) Plasma vapor phase reaction method
JPS6239532B2 (en)
JPS6150372B2 (en)
JPS60123021A (en) Amorphous semiconductor film forming device
JP3426788B2 (en) Plasma CVD equipment
JPS63215595A (en) Method and apparatus for vapor phase synthesis of diamond
JP2742796B2 (en) Method for forming a-sic: H thin film
JPS62262419A (en) Plasma cvd equipment
JP3546095B2 (en) Plasma CVD equipment
JPH09237762A (en) Silicon film manufacture
JPS59136475A (en) Apparatus for plasma vapor-phase reaction