JPS6173881A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS6173881A
JPS6173881A JP19599184A JP19599184A JPS6173881A JP S6173881 A JPS6173881 A JP S6173881A JP 19599184 A JP19599184 A JP 19599184A JP 19599184 A JP19599184 A JP 19599184A JP S6173881 A JPS6173881 A JP S6173881A
Authority
JP
Japan
Prior art keywords
substrate
cathode
sputtering
hollow cathode
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19599184A
Other languages
Japanese (ja)
Inventor
Yukimi Ichikawa
幸美 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19599184A priority Critical patent/JPS6173881A/en
Publication of JPS6173881A publication Critical patent/JPS6173881A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin alloy film having compsn. over a wide range by gener ating glow discharge between a hollow cathode and anode and sputtering a cathode material on a substrate, cracking the reacting gas introduced by the glow discharge into a reaction vessel and depositing the same on the substrate. CONSTITUTION:The cylindrical hollow cathode 3 and anode 4 consisting of prescribed elements are disposed in proximity to each other in a vacuum vessel 1. A buffer gas introducing pipe 9 for sputtering is communicated with one aperture of the cathode 3 and a substrate supporting base 5 holding a substrate 6 for forming a thin film thereon is positioned to face the other aperture. An introducing pipe 8 for the reactive gas contg. the other prescribed element is further provided in the vessel 1. The device which excecutes simultaneously a plasma CVD method and sputtering method is thus obtd.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は基体上に合金薄膜を生成するための気相成長装
置に関する。 r従来技術とその問題点】 グロー放電を用いたプラズマ反応により原料ガスを分解
してアモルファス薄膜を堆積させる方法はプラズマCV
D法と呼ばれ、水素化アモルファスンリコン膜の作成な
どに用いられているが、この方法が利用できるのは目的
とする薄膜材料を含んだ適当な反応ガスが得られる場合
に限定される。 一方、グロー放電を利用した代表的な薄膜生成法の他の
方法としてスパッタリング法がある。この方法では、成
膜させたい材料をターゲット電橋(直流放電では陰極)
としてグロー放電を生ぜしめ、正イオンによりスバフタ
されたそのターゲット材料を近傍ないしは対向電極上に
置かれた基体に堆積させる。この方法によると、プラズ
マCvDのように原料が気相化合物でなければならない
という制約がないことや、高融点物質の薄膜が容易に作
成されるという利点があるが、水素化アモルファスシリ
コンのような水素を多量に含む薄膜が作成しにくいなど
の欠点があった。
The present invention relates to a vapor phase growth apparatus for producing thin alloy films on substrates. rPrior art and its problems] Plasma CV is a method for depositing an amorphous thin film by decomposing source gas through a plasma reaction using glow discharge.
This method is called the D method and is used for the production of hydrogenated amorphous silicon films, but this method can only be used when a suitable reaction gas containing the desired thin film material can be obtained. On the other hand, sputtering is another typical thin film production method using glow discharge. In this method, the material to be deposited is placed on the target bridge (cathode in DC discharge).
As a result, a glow discharge is generated, and the target material, which has been swabbed by positive ions, is deposited on a substrate placed nearby or on a counter electrode. This method has the advantage that there is no restriction that the raw material must be a gas phase compound as in plasma CVD, and that thin films of high melting point substances can be easily created. There were drawbacks such as difficulty in creating thin films containing large amounts of hydrogen.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除去し、プラズマCVD法とス
パッタリング法の特徴を兼ね備えて広い範囲で組成が選
定された合金薄膜の生成可能な気相成長装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a vapor phase growth apparatus that combines the features of plasma CVD and sputtering methods and is capable of producing alloy thin films with compositions selected over a wide range.

【発明の要点】[Key points of the invention]

本発明による気相成長装置は、真空槽内に所定の元素か
らなる円筒型中空陰極および陽極が近接して配置され、
中空陰極の一方の開口部にはスパッタリング用バッファ
ガス導入管が連通し、他方の開口部には薄膜生成基体支
持台が対向し、さらに真空槽に他の所定の元素を含む反
応ガス導入管が連通ずることにより、プラズマCVD法
とスパッタリング法を同時に行って所定の元素からなる
合金薄膜を基体上に形成するものである。
In the vapor phase growth apparatus according to the present invention, a cylindrical hollow cathode and an anode made of a predetermined element are arranged in close proximity in a vacuum chamber,
A buffer gas introduction tube for sputtering is connected to one opening of the hollow cathode, a thin film forming substrate support is opposed to the other opening, and a reaction gas introduction tube containing other predetermined elements is connected to the vacuum chamber. By communicating with each other, a plasma CVD method and a sputtering method are performed simultaneously to form an alloy thin film made of a predetermined element on a substrate.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の一実施例を示し、真空W!■は排気管
2を介して真空系に接続されている。この真空Ht中に
垂直に中空円筒型のホローを極3およびそれに近接して
水平に円盤陽極4が配置されている。ホロー陰極3の上
方に支持台5が設置され、この支持台5はその上に取付
けられる基板6を加熱できるヒータ7を内蔵している。 支持台5を含めたこれらの部分は電気的に他の装置系か
ら浮かせておく、真空槽1内には下方から反応ガス導入
管8とスパッタリング用バッファガス導入管9が挿入さ
れ、バッファガス導入管9の先端はホロー陰極3の下側
の口に接続されている。陰極3と陽極4には槽外の直流
電源lOに接続されている。 次にこの装置を用いて合金薄膜を生成する方法について
述べる。真空槽1内を排気管2を介して真空排気し、反
応ガス導入管8から反応ガスを供給しながら陰極3.陽
極4の間に電StOにより直流電圧を印加してグロー放
電を発生させる0反応ガスは電極近傍に形成されるグロ
ー放電中の高速電子や光により分解されて基板6上に堆
積する。 一方ホロー陰極3の内部にはバッファガス導入管9から
は、陰極材料を効率よ(スパッタさせるためのガスを導
入し、ホロー陰極内に形成される高密度のガスプラズマ
中のガスイオンの衝突により陰極3の材料をスパッタし
て基板6に堆積させる。 基板6は、電極等に付着したフレークやほこりがその上
に落下しないように下向きにされるのが有効である。 例えば反応ガスとしてシラン(SIH*)またはジシラ
ン(SIJ&)を導入管8から供給し、ホロー陰極3を
炭素で作り、導入管9から供給されるバッファガスとし
てアルゴンを用いると、基板6の上に水素化アモルファ
スシリコンカーバイド (a −3iC:H)が生成さ
れる。膜の成長速度や膜中のシリコンと炭素の比などは
、シランとアルゴンのガス流量比、全ガス圧、放電電流
を変化させることにより制御できる。 ホロー陰極3をチタンを用いて作るとアモルファスシリ
コン・チタン合金を生成することができる。アモルファ
スシリコン・チタン合金をプラズマCVD法により生成
しようとすると反応ガスに塩化チタン(TiC14)を
添加するため、でき上がった合金中に塩素が入って所望
の特性が得られないが、本発明による装置を用いること
により無塩素のアモルファスシリコン・チタン合金を得
ることができる。 大きな面積の基板に堆積を行うためには基板の大きさに
従い電極を縦横に適当な間隔で複数個配置すればよい、
第2図には中空円筒型陰極11が5個と円盤型陽1i1
2が4個からなるN極配置の一例の基板側から見た図を
示す、各ホロー陰極11と直流電源13は、独立した可
変抵抗器I4を介して接続されており、各ホロー陰極1
1に流れる電源は調整可能になっていて、大きな面積の
基板に均一にアモルファス合金’3Mを生成できる。 本発明による装置に用いられるホロー陰極3あろいは1
1は中空円筒に限らず、中空円錐形その他ホロー陰極と
して一般的に用いられているいかなる形伏であってもよ
い。
FIG. 1 shows an embodiment of the present invention, in which a vacuum W! (2) is connected to a vacuum system via an exhaust pipe 2. In this vacuum Ht, a hollow cylindrical hollow pole 3 is disposed vertically, and a disk anode 4 is disposed horizontally adjacent thereto. A support stand 5 is installed above the hollow cathode 3, and this support stand 5 has a built-in heater 7 capable of heating a substrate 6 mounted thereon. These parts, including the support stand 5, are electrically floated from other equipment systems.A reactive gas introduction pipe 8 and a sputtering buffer gas introduction pipe 9 are inserted into the vacuum chamber 1 from below to introduce the buffer gas. The tip of the tube 9 is connected to the lower mouth of the hollow cathode 3. The cathode 3 and anode 4 are connected to a DC power supply lO outside the tank. Next, a method for producing an alloy thin film using this apparatus will be described. The inside of the vacuum chamber 1 is evacuated through the exhaust pipe 2, and the cathode 3. A direct current voltage is applied between the anodes 4 using StO to generate a glow discharge. The reactive gas is decomposed by high-speed electrons and light during the glow discharge formed near the electrodes and deposited on the substrate 6. On the other hand, a gas for efficiently sputtering the cathode material is introduced into the hollow cathode 3 from the buffer gas introduction tube 9, and gas is introduced into the hollow cathode 3 through the collision of gas ions in the high-density gas plasma formed inside the hollow cathode. The material for the cathode 3 is sputtered and deposited on a substrate 6. It is effective to place the substrate 6 facing downward so that flakes and dust attached to the electrodes etc. do not fall onto it. For example, silane ( When SIH*) or disilane (SIJ&) is supplied from the inlet tube 8, the hollow cathode 3 is made of carbon, and argon is used as the buffer gas supplied from the inlet tube 9, hydrogenated amorphous silicon carbide ( a-3iC:H) is generated.The growth rate of the film and the ratio of silicon to carbon in the film can be controlled by changing the gas flow ratio of silane and argon, the total gas pressure, and the discharge current.Hollow If the cathode 3 is made of titanium, an amorphous silicon/titanium alloy can be produced.When attempting to produce an amorphous silicon/titanium alloy by the plasma CVD method, titanium chloride (TiC14) is added to the reaction gas, resulting in The presence of chlorine in the alloy prevents the desired properties from being obtained, but by using the apparatus according to the present invention, a chlorine-free amorphous silicon-titanium alloy can be obtained. It is sufficient to arrange multiple electrodes vertically and horizontally at appropriate intervals according to the size of the
Figure 2 shows five hollow cylindrical cathodes 11 and a disk-shaped anode 1i1.
Each hollow cathode 11 and the DC power supply 13 are connected via an independent variable resistor I4, and each hollow cathode 1
The power flowing through 1 can be adjusted, and amorphous alloy '3M can be uniformly produced on a large area of the substrate. Hollow cathode 3 used in the device according to the invention 1
1 is not limited to a hollow cylinder, but may be a hollow cone or any other shape commonly used as a hollow cathode.

【発明の効果】【Effect of the invention】

本発明は、中空陰極とi桟の間にグロー放電を発生させ
て中空陰極に対向する基体上に陰極材料をスパッタさせ
ると同時に、そのグロー放電を利用して同じ反応槽内に
導入された反応ガスを分解して分解生成物を基体上に堆
積させることによりアモルファス合金薄膜を生成するこ
とができるように気相成長装置を構成する。この装置に
より、従来はプラズマCVD法あるいはスパッタリング
法のいずれかでなければ成膜できなかった材料同士の合
金、特にアモルファス合金の薄膜を作成することが可能
となった。この結果、例えば水素化アモルファスシリコ
ンと種々の材料を合成した薄膜などの作成も可能となり
、アモルファスシリコン大[池やLSIのパッシベーシ
ョン技術に利用できる新しい材料の開発に対して極めて
を効に利用することができる。
The present invention generates glow discharge between a hollow cathode and an i-piece to sputter cathode material onto a substrate facing the hollow cathode, and at the same time utilizes the glow discharge to generate a reaction that is introduced into the same reaction tank. The vapor phase growth apparatus is configured to produce an amorphous alloy thin film by decomposing the gas and depositing the decomposition products on the substrate. With this apparatus, it has become possible to create thin films of alloys of materials, particularly amorphous alloys, which could previously only be formed using plasma CVD or sputtering methods. As a result, it is now possible to create thin films made by synthesizing hydrogenated amorphous silicon with various materials, which can be used extremely effectively for the development of new materials that can be used in passivation technology for amorphous silicon and LSI. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の断面図、第2図はこの発明
の実施例において1!極を複数個持つ場合の電極配置例
を基体側からみた図である。 l:真空槽、3.11i円筒型ホロー陰極、4゜11=
円盤型陽極、 5:基体支持台、6:基板、8;反応ガ
ス導入管、9;スパフタ用バフファガ第1図
FIG. 1 is a sectional view of an embodiment of this invention, and FIG. 2 is a sectional view of an embodiment of this invention. FIG. 3 is a diagram of an example of electrode arrangement in the case of having a plurality of poles, viewed from the base side. l: Vacuum chamber, 3.11i cylindrical hollow cathode, 4°11=
Disk-shaped anode, 5: Substrate support, 6: Substrate, 8: Reaction gas introduction tube, 9: Buffing gas for spafter Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)真空槽内に所定の元素からなる円筒型中空陰極およ
び陽極が近接して配置され、中空陰極の一方の開口部に
はスパッタリング用バッファガス導入管が連通し、他方
の開口部には薄膜生成基体支持台が対向し、さらに真空
槽に他の所定の元素を含む反応ガス導入管が連通するこ
とを特徴とする気相成長装置。
1) A cylindrical hollow cathode and an anode made of a predetermined element are placed in close proximity in a vacuum chamber, one opening of the hollow cathode is connected to a buffer gas introduction tube for sputtering, and the other opening is connected to a thin film. A vapor phase growth apparatus characterized in that production substrate supports face each other and a vacuum chamber is further connected to a reaction gas introduction tube containing another predetermined element.
JP19599184A 1984-09-19 1984-09-19 Vapor growth device Pending JPS6173881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19599184A JPS6173881A (en) 1984-09-19 1984-09-19 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19599184A JPS6173881A (en) 1984-09-19 1984-09-19 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS6173881A true JPS6173881A (en) 1986-04-16

Family

ID=16350398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19599184A Pending JPS6173881A (en) 1984-09-19 1984-09-19 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6173881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437890A1 (en) * 1990-01-12 1991-07-24 Philips Patentverwaltung GmbH Method for production of multicomponent materials
WO1999063129A1 (en) * 1998-05-30 1999-12-09 Robert Bosch Gmbh Method for applying a coating system to surfaces
JP2007095536A (en) * 2005-09-29 2007-04-12 Univ Nagoya Radical generator
EP2699706A1 (en) * 2011-04-18 2014-02-26 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Method for depositing a transparent barrier layer system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437890A1 (en) * 1990-01-12 1991-07-24 Philips Patentverwaltung GmbH Method for production of multicomponent materials
WO1999063129A1 (en) * 1998-05-30 1999-12-09 Robert Bosch Gmbh Method for applying a coating system to surfaces
US6613393B1 (en) 1998-05-30 2003-09-02 Robert Bosch Gmbh Method for applying a wear protection layer system having optical properties onto surfaces
JP2007095536A (en) * 2005-09-29 2007-04-12 Univ Nagoya Radical generator
EP2699706A1 (en) * 2011-04-18 2014-02-26 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung E.V. Method for depositing a transparent barrier layer system

Similar Documents

Publication Publication Date Title
JP3318336B2 (en) METHOD AND APPARATUS FOR TREATING ARTICLES BY REACTION SUPPORTING DC ARC DISCHARGE
US4411763A (en) Sputtering apparatus
JPS6173881A (en) Vapor growth device
US5753045A (en) Vacuum treatment system for homogeneous workpiece processing
JP4115545B2 (en) Method for reactively processing a workpiece, vacuum processing apparatus, and use of the same and apparatus
US4698235A (en) Siting a film onto a substrate including electron-beam evaporation
JP2680888B2 (en) Thin film formation method
US5496594A (en) Chemical vapor deposition apparatus and method wherein a corona discharge is generated inside a perforated cage which surrounds the substrate
JPS6010618A (en) Plasma cvd apparatus
KR20200065604A (en) Diamond single crystal growth method using plasma CVD apparatus
US4599971A (en) Vapor deposition film forming apparatus
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JPS6151629B2 (en)
JPS59169129A (en) Method for sputtering high-melting point metal or high-melting point metal silicide
JP2854130B2 (en) Apparatus for coating substrates by sputtering
CN1046143C (en) Technology for processing diamond film by hot cathode glow plasma chemical deposition
JP2562921B2 (en) Method of synthesizing vapor phase diamond
JPH0797690A (en) Plasma cvd device
JPH0250969A (en) Thin film forming device
JP2843126B2 (en) Thin film forming equipment
JPH0775689B2 (en) Thermal plasma jet generator
JPS5956574A (en) Formation of titanium silicide film
JPS6150152B2 (en)
KR960010087B1 (en) Diamond film synthesis by dc plasma cvd
JPS59184519A (en) Method for generating ionized cluster beam and device therefor