JPS6151629B2 - - Google Patents

Info

Publication number
JPS6151629B2
JPS6151629B2 JP4680582A JP4680582A JPS6151629B2 JP S6151629 B2 JPS6151629 B2 JP S6151629B2 JP 4680582 A JP4680582 A JP 4680582A JP 4680582 A JP4680582 A JP 4680582A JP S6151629 B2 JPS6151629 B2 JP S6151629B2
Authority
JP
Japan
Prior art keywords
gas
flat
electrode
growth
introduction means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4680582A
Other languages
Japanese (ja)
Other versions
JPS58163432A (en
Inventor
Yoshimi Shiotani
Yasushi Ooyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4680582A priority Critical patent/JPS58163432A/en
Publication of JPS58163432A publication Critical patent/JPS58163432A/en
Publication of JPS6151629B2 publication Critical patent/JPS6151629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、プラズマ化学気相成長(CVD)装
置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to improvements in plasma chemical vapor deposition (CVD) equipment.

(b) 技術の背景 プラズマCVD法は通常の減圧CVD法に比べ低
温で高成長速度が得られ、且つ厚さ、組成等の分
布が一様な成長膜が得られ易いので、近時太陽電
池に使用するアモーフアス・シリコン層の形成、
電極配線に使用する高融点金属或るいは高融点金
属珪化物層の形成等に多く用いられるようになつ
て来た。
(b) Background of the technology The plasma CVD method can achieve a high growth rate at a low temperature compared to the normal low-pressure CVD method, and it is easy to obtain a grown film with a uniform distribution of thickness, composition, etc., so it has become popular in recent years for solar cells. Formation of amorphous silicon layer used for
It has come to be widely used for forming refractory metal or refractory metal silicide layers used in electrode wiring.

(c) 従来技術と問題点 第1図は従来高融点金属珪化物層例えばタング
ステン・シリサイド(WSi)層を形成する際に用
いていた、被処理基板を搭載する電極上に均等に
成長ガスを流入する機能を持つプラズマCVD装
置を示したものである。即ち該プラズマCVD装
置は、真空排気口1を有する金属製の気密反応容
器2内の下部に加熱手段3を具備し、上面に被処
理基板4を搭載し得る平板状下部電極5が直かに
配設されており、又該平板状下部電極5の上部に
これと対向して平板状対向電極6が、気密絶縁体
7を介して気密反応容器2の外部に導出された電
極支持管8によつて支持配設された構造を有して
いた。そして前記電極支持管8と平板状対向電極
6の内部とは連続した中空状に形成されており、
平板状対向電極6の下面に前記中空域に通ずる複
数のガス流入孔9が分配形成されており、成長ガ
ス及びキヤリア・ガスは電極支持管8、平板状対
向電極6の中空域からなるガス通路及び該ガス流
入孔9を介して気密容器2内の平板状下部電極5
の上面に均等に注下されるようになつていた。
(c) Conventional technology and problems Figure 1 shows a conventional technique used to form a high melting point metal silicide layer, such as a tungsten silicide (WSi) layer, in which a growth gas is uniformly distributed over an electrode on which a substrate to be processed is mounted. This shows a plasma CVD device with a function of inflow. That is, the plasma CVD apparatus is equipped with a heating means 3 at the lower part of a metal airtight reaction vessel 2 having a vacuum exhaust port 1, and a flat lower electrode 5 on which a substrate 4 to be processed can be mounted is directly connected to the upper surface. A flat counter electrode 6 is disposed on the upper part of the flat lower electrode 5 and is connected to an electrode support tube 8 led out to the outside of the airtight reaction vessel 2 via an airtight insulator 7. Therefore, it had a supported structure. The electrode support tube 8 and the interior of the flat counter electrode 6 are formed in a continuous hollow shape,
A plurality of gas inflow holes 9 communicating with the hollow area are distributed on the lower surface of the flat counter electrode 6, and the growth gas and carrier gas are passed through the electrode support tube 8 and the gas passage formed by the hollow area of the flat counter electrode 6. and the flat lower electrode 5 inside the airtight container 2 through the gas inflow hole 9.
The liquid was poured evenly over the top surface of the glass.

このような従来装置を用いて被処理基板4上に
例えばタングステン・シリサイド(WSi)層を形
成するに際しては、前記電極支持管8内のガス通
路から、所定量のモノシラン(SiH4)+6弗化タ
ングステン(WF6)からなる成長ガスとキヤリ
ア・ガス例えばアルゴン(Ar)が、平板状対向
電極6の中空域及びガス流入孔9を介して気密反
応容器2内に送り込まれ、真空排気口1から所定
の真空排気を行つて該容器2内を0.1〜数
〔Torr〕に保つた状態で平板状下部電極5と平板
状対向電極6間に高周波電力(RF)を印加し
て、両電極間にArプラズマPを発生させ、該プ
ラズマPにより成長ガスを反応せしめてWSi層を
被処理基板4上に成長させる。(図中Gは接地) しかし上記従来の装置に於ては、成長ガスが通
過する平板状対向電極5及び電極支持管8の中空
域に、電極及び支持管を形成している金属面が直
かに表出しているために、該中空域内にプラズマ
P領域が延びて来て、該中空域内で成長ガスが反
応し、該中空域内にもWSiが生成する。そのため
特に断面積の小さい電極支持管8の中空域内に
WSiが推積してガス流量を変化させ、遂には該中
空域が詰まつてガスの供給が断たれ、成長が不可
能になるという現象が生ずる。
When forming, for example, a tungsten silicide (WSi) layer on the substrate 4 to be processed using such a conventional apparatus, a predetermined amount of monosilane (SiH 4 )+6-fluoride is supplied from the gas passage in the electrode support tube 8. A growth gas consisting of tungsten (WF 6 ) and a carrier gas such as argon (Ar) are fed into the airtight reaction vessel 2 through the hollow area of the flat counter electrode 6 and the gas inlet hole 9, and are then fed into the airtight reaction vessel 2 from the vacuum exhaust port 1. While maintaining the inside of the container 2 at a pressure of 0.1 to several [Torr] by performing a predetermined vacuum evacuation, high frequency power (RF) is applied between the flat lower electrode 5 and the flat counter electrode 6 to generate a voltage between the two electrodes. Ar plasma P is generated, and the plasma P reacts with the growth gas to grow a WSi layer on the substrate 4 to be processed. (G in the figure is grounded.) However, in the conventional apparatus described above, the metal surfaces forming the electrode and support tube are directly in the hollow area of the flat counter electrode 5 and electrode support tube 8 through which the growth gas passes. Since the plasma is exposed, the plasma P region extends into the hollow area, the growth gas reacts within the hollow area, and WSi is also generated within the hollow area. Therefore, in the hollow area of the electrode support tube 8, which has a particularly small cross-sectional area,
WSi accumulates and changes the gas flow rate, eventually causing the hollow space to become clogged and the gas supply to be cut off, making growth impossible.

この現象のため、内径4〔mm〕程度の電極支持
管8をガス導入管として用いた従来の装置に於て
は、100〜200〔Å/分〕程度の比較的低成長速度
でWSiを成長する際でも、安定した成長条件を確
保できる時間が5〔時間〕程度の短時間であつ
た。そして更に前記ガス通路内に推積したWSiは
その除去が容易でなく、そのために装置の休止時
間が長引き、作業効率や処理効率が著しく損われ
るという問題があつた。
Because of this phenomenon, in conventional equipment that uses the electrode support tube 8 with an inner diameter of about 4 [mm] as a gas introduction tube, WSi can be grown at a relatively low growth rate of about 100 to 200 [Å/min]. Even in this case, stable growth conditions could be secured for a short time of about 5 hours. Furthermore, the WSi accumulated in the gas passage is not easy to remove, leading to a problem in that the down time of the apparatus is prolonged and the working efficiency and processing efficiency are significantly impaired.

(d) 発明の目的 本発明の目的は、対向電極面を介して均等に成
長ガスを供給する方式の平行平板型プラズマ気相
成長装置に於て成長ガス供給通路内にプラズマが
延びるのを防止する構造を提供し、上記問題点を
除去することにある。
(d) Purpose of the Invention The purpose of the present invention is to prevent plasma from extending into the growth gas supply passage in a parallel plate type plasma vapor phase growth apparatus that supplies growth gas uniformly through opposing electrode surfaces. The object of the present invention is to provide a structure for eliminating the above-mentioned problems.

(e) 発明の構成 即ち本発明は、プラズマ化学気相成長装置に於
て、被処理基板が平置搭載される平板状下部電極
と、絶縁体からなり複数のガス流入孔が前記平板
状下部電極に面して配設された平板状ガス流入部
を有するガス導入手段と、該ガス導入手段に於け
る少なくとも平板状ガス流入部上を平板状に覆
い、且つ該平板状領域に於ける前記ガス流入手段
のガス流入孔の下部領域にガス流通孔を有する対
向電極とが、真空排気手段を有する気密反応容器
内に配設されてなることを特徴とする。
(e) Structure of the Invention In other words, the present invention provides a plasma chemical vapor deposition apparatus including a flat lower electrode on which a substrate to be processed is mounted horizontally, and a plurality of gas inflow holes made of an insulating material. a gas introduction means having a flat gas inflow portion disposed facing the electrode; and a gas introduction means that covers at least the flat gas inflow portion in the gas introduction means in a flat plate shape, and the gas inlet portion in the flat region. A counter electrode having a gas flow hole in a lower region of the gas inflow hole of the gas inflow means is disposed in an airtight reaction vessel having a vacuum evacuation means.

(f) 発明の実施例 以下本発明を一実施例について、第2図に示す
装置の要部断面図を用いて詳細に説明する。
(f) Embodiment of the Invention Hereinafter, one embodiment of the present invention will be described in detail using a sectional view of the main part of the apparatus shown in FIG.

本発明のプラズマ化学気相成長(CVD)装置
は例えば第2図に示すように、真空排気口1を有
する金属製の気密反応容器2内の下部に、加熱手
段3を具備し、上面に被処理基板4を搭載し得る
従来と同様な構造の平板状下部電極5が直かに配
設される。そして該平板状下部電極5の上部に、
例えば石英等の絶縁体からなり、内部が中空で、
複数のガス流入孔9′が前記平板状下部電極5に
面して配設された平板状ガス流入部10aと、該
平板状ガス流入部10aを支持し、且つ該ガス流
入部10aの中空領域と中空部が接続する支持管
10bからなるガス導入手段10が配設される。
そして該ガス導入手段10の表面に、アルミニウ
ム或るいはステンレス等の金属からなり、ガス導
入手段10に於ける平板状ガス流入部10a上を
ガス流入孔9′の下部領域にガス流通孔11を有
する平板状部12aで覆い、更に例えばガス導入
手段10をその支持管10bの部分まで包み込ん
で、該ガス導入手段10に固定された対向電極1
2が設けられる。なお同図に於て7は気密絶縁
体、13はガスケツトである。
For example, as shown in FIG. 2, the plasma chemical vapor deposition (CVD) apparatus of the present invention is equipped with a heating means 3 in the lower part of a metal airtight reaction vessel 2 having a vacuum exhaust port 1, and a heating means 3 on the upper surface. A flat lower electrode 5 having a structure similar to that of the conventional one on which a processing substrate 4 can be mounted is directly disposed. Then, on the upper part of the flat lower electrode 5,
For example, it is made of an insulator such as quartz, and is hollow inside.
A flat gas inflow part 10a in which a plurality of gas inflow holes 9' are disposed facing the flat lower electrode 5, and a hollow area of the gas inflow part 10a that supports the flat gas inflow part 10a. A gas introduction means 10 is provided, which includes a support tube 10b having a hollow portion connected to the support tube 10b.
Gas flow holes 11 are formed on the surface of the gas introduction means 10, made of metal such as aluminum or stainless steel, and located above the flat gas inflow portion 10a of the gas introduction means 10 in the lower region of the gas inflow hole 9'. The counter electrode 1 is fixed to the gas introduction means 10 by covering it with a flat plate-shaped portion 12a having a flat plate-shaped portion 12a and further wrapping the gas introduction means 10 up to its support tube 10b, for example.
2 is provided. In the figure, 7 is an airtight insulator, and 13 is a gasket.

上記実施例に示した本発明の構造を有するプラ
ズマCVD装置は対向電極12が、複数のガス流
入孔9′が形成された平板状ガス流入部10aを
有する絶縁体からなるガス導入手段10の外面
に、該ガス導入手段10を包むように形成されて
いる。言い換えるとガス流入機能を有する対向電
極の内面が絶縁体で被覆された構造を有してい
る。
In the plasma CVD apparatus having the structure of the present invention shown in the above embodiment, the counter electrode 12 is formed on the outer surface of the gas introducing means 10 made of an insulator and having a flat gas inlet part 10a in which a plurality of gas inlet holes 9' are formed. It is formed so as to enclose the gas introduction means 10. In other words, the counter electrode has a structure in which the inner surface of the counter electrode having a gas inflow function is coated with an insulator.

上記実施例の装置を用い、被処理基板上にWSi
層を成長せしめるには次のように行う。
Using the apparatus of the above example, WSi was placed on the substrate to be processed.
To grow a layer, proceed as follows.

即ち平板状下部電極5上に被処理基板4を平置
搭載し、ガス導入手段10の支持管10bから平
板状ガス流入部10a、ガス流入孔9′、及び対
向電極12のガス流通孔11を介して気密反応容
器2内に、例えば10〜30〔c.c./分〕SiH4、10
〔c.c./分〕WF6、1000〔c.c./分〕Arの混合ガスか
らなる成長ガスを流入し、所望の真空排気を行つ
て該反応容器2内の数〔Torr〕程度の減圧状態
とする。そして被処理基板4を150〜450〔℃〕に
昇温した状態で平板状電極5と対向電極12間に
例えば13.56〔MHz〕・0.1〜0.5〔W/cm2〕程度の
高周波パワーを印加し、両電極間に通常より高密
度のプラズマP′を発生させ、該プラズマP′により
成長ガスの反応を促進せしめて、被処理基板4上
に例えば400〜500〔Å/分〕程度の高成長速度で
WSi層の成長を行う。(図中、RFは高周波電源、
Gは接地) 上記実施例の装置に於ては、装置内への成長ガ
ス及びキヤリア・ガスの導入が、対向電極12の
内部に形成されている絶縁体のガス導入手段によ
つてなされており、ガス通路が対向電極から電気
的に絶縁されている。従つて電極間に上記のよう
な高密度プラズマP′を発生させて高速成長を行う
際にも、内径の小さいガス導入手段10の支持管
10b内までプラズマP′が延びることがなく、該
支持管10b内でのWSiの成長反応は防止され
る。
That is, the substrate 4 to be processed is mounted horizontally on the flat lower electrode 5, and the flat gas inflow portion 10a, the gas inflow hole 9', and the gas flow hole 11 of the counter electrode 12 are connected from the support tube 10b of the gas introduction means 10. For example, 10 to 30 [cc/min] SiH 4 , 10
A growth gas consisting of a mixed gas of [cc/min] WF 6 and 1000 [cc/min] Ar is introduced, and desired evacuation is performed to reduce the pressure in the reaction vessel 2 to about several [Torr]. Then, with the substrate 4 to be processed heated to 150 to 450 [°C], a high frequency power of, for example, about 13.56 [MHz] and 0.1 to 0.5 [W/cm 2 ] is applied between the flat electrode 5 and the counter electrode 12. , a plasma P' with a higher density than usual is generated between the two electrodes, and the plasma P' accelerates the reaction of the growth gas, resulting in a high growth rate of, for example, about 400 to 500 [Å/min] on the substrate 4 to be processed. at speed
Perform growth of WSi layer. (In the figure, RF is a high frequency power supply,
(G is ground) In the apparatus of the above embodiment, the growth gas and carrier gas are introduced into the apparatus by means of an insulating gas introduction means formed inside the counter electrode 12. , the gas passageway is electrically isolated from the counter electrode. Therefore, even when performing high-speed growth by generating the above-mentioned high-density plasma P' between the electrodes, the plasma P' does not extend into the support tube 10b of the gas introduction means 10, which has a small inner diameter, and the support A growth reaction of WSi within the tube 10b is prevented.

(g) 発明の効果 以上説明したように本発明のプラズマCVD装
置に於てはガス供給通路内にプラズマが形成され
るのが防止される。従つてガス供給通路内に反応
生成物が推積することが防止されるので、ガス供
給量が安定し、長時間にわたつ安定した化学気相
成長を行うことができる。又電極間に更に高密度
プラズマを発生させて成長反応を促進することも
可能になるので、従来に比べ4〜5〔倍〕程度の
高成長速度が得られる。
(g) Effects of the Invention As explained above, in the plasma CVD apparatus of the present invention, plasma is prevented from being formed in the gas supply passage. Therefore, since reaction products are prevented from accumulating in the gas supply passage, the amount of gas supplied is stabilized, and stable chemical vapor deposition can be performed over a long period of time. Furthermore, since it becomes possible to generate higher density plasma between the electrodes to promote the growth reaction, a growth rate about 4 to 5 times higher than that of the conventional method can be obtained.

なお本発明のプラズマCVD装置は、上記実施
例に示したタングステン・シリサイド層以外の層
を気相成長させる際にも有効である。
Note that the plasma CVD apparatus of the present invention is also effective for vapor phase growth of layers other than the tungsten silicide layer shown in the above embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマ化学気相成長装置の要
部断面図で、第2図は本発明の一実施例に於ける
要部断面図である。 図に於て、1は真空排気口、2は気密反応容
器、3は加熱手段、4は被処理基板、5は平板状
下部電極、9′はガス流入孔、10はガス導入手
段、10aは平板状ガス流入部、10bは支持
管、11はガス流通孔、12は対向電極、12a
は対向電極の平板状部、P′は高密度プラズマ、
RFは高周波電源、Gは接地を示す。
FIG. 1 is a sectional view of a main part of a conventional plasma chemical vapor deposition apparatus, and FIG. 2 is a sectional view of a main part of an embodiment of the present invention. In the figure, 1 is a vacuum exhaust port, 2 is an airtight reaction vessel, 3 is a heating means, 4 is a substrate to be processed, 5 is a flat lower electrode, 9' is a gas inflow hole, 10 is a gas introduction means, and 10a is a A flat gas inflow part, 10b is a support tube, 11 is a gas flow hole, 12 is a counter electrode, 12a
is the flat plate part of the counter electrode, P′ is the high-density plasma,
RF indicates high frequency power supply and G indicates grounding.

Claims (1)

【特許請求の範囲】[Claims] 1 被処理基板が平置搭載される平板状下部電極
と、絶縁体からなり複数のガス流入孔が前記平板
状下部電極に面して配設された平板状ガス流入部
を有するガス導入手段と、該ガス導入手段に於け
る少なくとも平板状ガス流入部上を平板状に覆
い、且つ該平板状領域に於ける前記ガス導入手段
のガス流入孔の下部領域にガス流通孔を有する対
向電極とが、真空排気手段を有する気密反応容器
内に配設されてなることを特徴とするプラズマ化
学気相成長装置。
1. A gas introduction means having a flat lower electrode on which a substrate to be processed is mounted horizontally, and a flat gas inlet part made of an insulator and having a plurality of gas inflow holes facing the flat lower electrode. , a counter electrode that covers at least a flat gas inflow portion of the gas introduction means in a flat plate shape and has a gas flow hole in a lower region of the gas inflow hole of the gas introduction means in the flat region; A plasma chemical vapor deposition apparatus, characterized in that the apparatus is disposed in an airtight reaction vessel having a vacuum evacuation means.
JP4680582A 1982-03-24 1982-03-24 Plasma chemical vapor deposition apparatus Granted JPS58163432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4680582A JPS58163432A (en) 1982-03-24 1982-03-24 Plasma chemical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4680582A JPS58163432A (en) 1982-03-24 1982-03-24 Plasma chemical vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JPS58163432A JPS58163432A (en) 1983-09-28
JPS6151629B2 true JPS6151629B2 (en) 1986-11-10

Family

ID=12757541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4680582A Granted JPS58163432A (en) 1982-03-24 1982-03-24 Plasma chemical vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS58163432A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527493Y2 (en) * 1986-03-25 1993-07-13
JPH0527494Y2 (en) * 1986-03-28 1993-07-13
JPS62294437A (en) * 1986-06-11 1987-12-21 Kuraray Co Ltd System for plasma treatment of sheet-like article
JPH0336520Y2 (en) * 1986-09-22 1991-08-02
JP4572100B2 (en) * 2004-09-28 2010-10-27 日本エー・エス・エム株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JPS58163432A (en) 1983-09-28

Similar Documents

Publication Publication Date Title
US4539068A (en) Vapor phase growth method
US4634601A (en) Method for production of semiconductor by glow discharge decomposition of silane
US6086945A (en) Method of forming polycrystalline silicon thin layer
JPH0211012B2 (en)
US4933203A (en) Process for depositing amorphous hydrogenated silicon in a plasma chamber
JPS6151629B2 (en)
US4909183A (en) Apparatus for plasma CVD
EP0295272A1 (en) Production of silicon carbide
JP2680888B2 (en) Thin film formation method
JPH1041251A (en) Device and method for cvd
JP3426788B2 (en) Plasma CVD equipment
JP2848755B2 (en) Plasma CVD equipment
JPH0892746A (en) Plasma chemical vapor deposition and device therefor
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3310875B2 (en) Plasma CVD equipment
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPS62210623A (en) Electrode for vapor phase reactor
JP3372384B2 (en) Plasma CVD equipment
JPH07330488A (en) Plasma cvd apparatus
JPS58132932A (en) Plasma processing device
JPS6220870A (en) Chemical vapor phase growing method for aluminum layer
JPH0578933B2 (en)
JPS6173881A (en) Vapor growth device
JP3546095B2 (en) Plasma CVD equipment
JPS6134507B2 (en)