JP3137532B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP3137532B2
JP3137532B2 JP06128665A JP12866594A JP3137532B2 JP 3137532 B2 JP3137532 B2 JP 3137532B2 JP 06128665 A JP06128665 A JP 06128665A JP 12866594 A JP12866594 A JP 12866594A JP 3137532 B2 JP3137532 B2 JP 3137532B2
Authority
JP
Japan
Prior art keywords
gas
electrode
hollow
reaction vessel
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06128665A
Other languages
Japanese (ja)
Other versions
JPH07330488A (en
Inventor
良昭 竹内
正義 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP06128665A priority Critical patent/JP3137532B2/en
Publication of JPH07330488A publication Critical patent/JPH07330488A/en
Application granted granted Critical
Publication of JP3137532B2 publication Critical patent/JP3137532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアモルファスシリコン太
陽電池、薄膜半導体、光センサ、半導体保護膜絶縁膜な
どを形成する化学蒸着型(Chemical Vapour Depositio
n, 以下CVDという)薄膜形成に用いられる高周波プ
ラズマCVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition (Chemical Vapor Depositio) for forming an amorphous silicon solar cell, a thin film semiconductor, an optical sensor, a semiconductor protective film and an insulating film.
n, hereinafter referred to as CVD).

【0002】[0002]

【従来の技術】大面積のa−Si系薄膜を製造するため
に、従来より用いられているプラズマCVD装置の構成
を図6,図7を参照して説明する。この技術的手段は、
例えば、特願平3−5329号(特開平4−23678
1号)などに開示されている装置である。
2. Description of the Related Art The configuration of a conventional plasma CVD apparatus for producing a large-area a-Si thin film will be described with reference to FIGS. This technical means
For example, Japanese Patent Application No. Hei 3-5329 (Japanese Unexamined Patent Publication No. Hei.
No. 1).

【0003】図6はプラズマCVD装置の断面図で、反
応容器1内には、グロー放電プラズマを発生させるため
の梯子状平面形コイル電極11(以下ラダー電極とい
う)が配置されている。このラダー電極11は図7の電
極平面図に示すように、2本の線材11a,11bに対
して垂直に数本の線材を梯子状に組み、接続した構造を
有し、外周部が四角形をなしている。図6に戻り、ラダ
ー電極11の電力供給点11a,11bには高周波電源
5から、例えば13.56MHz の高周波数の電力(Radi
o Frequency ;以下RF電力という)がインピーダンス
整合器6を介して供給される。
FIG. 6 is a cross-sectional view of a plasma CVD apparatus. A ladder-shaped planar coil electrode 11 (hereinafter referred to as a ladder electrode) for generating glow discharge plasma is disposed in a reaction vessel 1. As shown in the electrode plan view of FIG. 7, the ladder electrode 11 has a structure in which several wires are assembled in a ladder shape perpendicularly to two wires 11a and 11b and connected to each other. No. Returning to FIG. 6, the high frequency power (for example, 13.56 MHz) from the high frequency power supply 5 is supplied to the power supply points 11a and 11b of the ladder electrode 11.
o Frequency; hereinafter, referred to as RF power) is supplied via the impedance matching device 6.

【0004】反応容器1内には、図示しないボンベから
反応ガス導入管12を介して、例えばモノシラン/水素
の混合ガスが供給される。反応容器1内のガスは排気管
7を通して真空ポンプ8により反応容器1外へ排気され
る。
[0004] In the reaction vessel 1, for example, a mixed gas of monosilane / hydrogen is supplied from a cylinder (not shown) via a reaction gas introduction pipe 12. The gas in the reaction vessel 1 is exhausted out of the reaction vessel 1 by a vacuum pump 8 through an exhaust pipe 7.

【0005】薄膜を蒸着する基板9はラダー電極11と
平行に設置され、図示しない基板ホルダにて基板加熱ヒ
ータ10上に支持される。
A substrate 9 on which a thin film is deposited is set in parallel with the ladder electrode 11, and is supported on a substrate heater 10 by a substrate holder (not shown).

【0006】この装置を用いて以下のように薄膜を作製
する。まず、真空ポンプ8を駆動して反応容器1内を排
気する。反応ガス導入管12を通して、例えばモノシラ
ン/水素の混合ガスを100〜200CC/min 程度の
流量で供給し、反応容器1内の圧力を0.5〜1Torrに
保ち、高周波電源5からインピーダンス整合器6を介し
てラダー電極11にRF電力を印加するとラダー電極1
1と反応容器1との空間及び電極11の周囲にグロー放
電プラズマが発生する。発生したプラズマにより混合ガ
スが分解され、基板9表面にa−Si薄膜が堆積する。
Using this apparatus, a thin film is prepared as follows. First, the inside of the reaction vessel 1 is evacuated by driving the vacuum pump 8. For example, a mixed gas of monosilane / hydrogen is supplied at a flow rate of about 100 to 200 CC / min through the reaction gas introduction pipe 12, the pressure in the reaction vessel 1 is maintained at 0.5 to 1 Torr, When RF power is applied to the ladder electrode 11 through the
Glow discharge plasma is generated in the space between the electrode 1 and the reaction vessel 1 and around the electrode 11. The mixed gas is decomposed by the generated plasma, and an a-Si thin film is deposited on the surface of the substrate 9.

【0007】[0007]

【発明が解決しようとする課題】前述の従来の装置は、
ラダー電極11を用いることにより一般的に用いられて
いる平行平板型電極に比べ、高速・大面積均一成膜が可
能となっている。しかし以下の問題がある。
The above-mentioned conventional device is
The use of the ladder electrode 11 enables high-speed and large-area uniform film formation as compared with a generally used parallel plate type electrode. However, there are the following problems.

【0008】(1)図8は従来のラダー電極の電磁場強
度分布の図で、ラダー電極より5mmの位置における電磁
場強度を示している。図示のように、RF=50Wの低
電力域では、ほぼ一様な電磁場強度分布であるが、RF
=100Wの高電力域では、電極線材11上は強電磁場
であるのに対し、電極線材11間は50Wより弱電磁場
強度となる。発生するプラズマの密度は電磁場強度に比
例する。従ってRF=50Wと100Wを比べた場合、
電極線材11近傍では100Wの方がプラズマの密度が
高くなっているのに対して電極線材11間では50Wの
方が高くなる。従来の方法では、原料となるガスは大部
分は電極線材11上を通らず、線材11の間を通って供
給されるので、成膜速度は電極線材11間のプラズマ密
度に比例する。その結果、図9の成膜速度とRF電力と
の関係図に示すようにRF電力を増加していくと、成膜
速度は増加するが、あるRF電力値からは、前述のよう
に電極間のプラズマ密度が高くならないのでRF電力を
増加しても成膜速度が下がるようになり、それ以上の高
速成膜ができなかった。
(1) FIG. 8 is a diagram of the electromagnetic field intensity distribution of the conventional ladder electrode, showing the electromagnetic field intensity at a position 5 mm from the ladder electrode. As shown in the figure, in the low power region where RF = 50 W, the electromagnetic field intensity distribution is almost uniform.
In the high power range of = 100 W, the strong electromagnetic field is present on the electrode wires 11, whereas the intensity between the electrode wires 11 is weaker than 50 W. The density of the generated plasma is proportional to the electromagnetic field intensity. Therefore, when comparing RF = 50W and 100W,
In the vicinity of the electrode wires 11, the density of the plasma is higher at 100 W, whereas between the electrode wires 11, the power is higher at 50 W. In the conventional method, most of the raw material gas does not pass over the electrode wires 11 but is supplied through the space between the wires 11, so that the deposition rate is proportional to the plasma density between the electrode wires 11. As a result, as shown in the relationship diagram between the deposition rate and the RF power in FIG. 9, as the RF power is increased, the deposition rate is increased. Since the plasma density did not increase, the film formation rate was reduced even if the RF power was increased, and a higher film formation could not be performed any more.

【0009】(2)上記(1)の欠点を補うために、図
10のプラズマCVD装置の断面図に示すようにガス導
入管12をラダー電極11に近づけ、ガス導入管12の
ガス吹出孔12aより吹出すガス13を、電極線材11
近傍に供給するように改善をしている。しかしながらこ
の場合、図11のガス導入管断面図に示すように電極1
1近くにあるガス導入管12の上に分解したガス成分に
より厚く堆積したSiNx膜14が堆積し、ガス吹出孔
12aを塞ぐようになる。ガス吹出孔12a周囲に堆積
したSiNx膜14はガス13が吹出す勢いによりフレ
ーク15となって吹飛び、このフレーク15が基板9上
に付着することで基板9上に堆積する薄膜に微少な傷を
生じせしめ、成膜速度は向上しても膜質は悪化した。
(2) In order to compensate for the drawback of the above (1), as shown in the cross-sectional view of the plasma CVD apparatus in FIG. 10, the gas introduction pipe 12 is brought close to the ladder electrode 11, and the gas blowing holes 12a of the gas introduction pipe 12 are formed. The gas 13 blown out from the electrode wire 11
It has been improved so that it can be supplied to the vicinity. However, in this case, as shown in the cross-sectional view of the gas introduction pipe of FIG.
A thick SiNx film 14 is deposited on the gas introduction pipe 12 near the area 1 by the decomposed gas component, and closes the gas outlet 12a. The SiNx film 14 deposited around the gas blowing holes 12a becomes flakes 15 and blows off due to the force of the gas 13 to be blown out, and the flakes 15 adhere to the substrate 9 to cause minute damage to the thin film deposited on the substrate 9. And the film quality deteriorated even though the film formation rate was improved.

【0010】本発明はこのような課題を解決することを
目的として、ラダー電極近辺にできるだけ反応ガスを吹
出させて電極上での高磁場強度によりプラズマ密度を高
め、高速成膜を行うと共に高品質の非晶質薄膜を製造す
ることのできるプラズマCVD装置を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention aims at solving such problems by blowing out a reaction gas as close to the ladder electrode as possible to increase the plasma density by a high magnetic field strength on the electrode, thereby performing high-speed film formation and high quality film formation. It is intended to provide a plasma CVD apparatus capable of producing an amorphous thin film.

【0011】[0011]

【課題を解決するための手段】そのため、本発明は反応
容器内で放電用電極と対向して基板を配置し、放電用電
極からグロー放電プラズマを発生させて基板上に非晶質
薄板を形成するプラズマCVD装置において、放電用電
極を中空線材で構成すると共に中空線材の空洞内にガス
を流して電極線材表面から反応ガスを吹出すような構成
として、電極とプラズマ形成用のガス流路とを一体化し
たプラズマCVD装置とする。
Therefore, according to the present invention, a substrate is arranged in a reaction vessel so as to face a discharge electrode, and glow discharge plasma is generated from the discharge electrode to form an amorphous thin plate on the substrate. In a plasma CVD apparatus, a discharge electrode is made of a hollow wire and a gas is blown into a cavity of the hollow wire to blow out a reaction gas from a surface of the electrode wire. Are integrated into a plasma CVD apparatus.

【0012】即ち、本発明は、反応容器と、この反応容
器内に反応ガスを導入し、排出する手段と、前記反応容
器内に収容された放電用電極と、この放電用電極にグロ
ー放電用電力を供給する電源とを有し、前記反応容器内
で前記放電用電極と対向して設置した基板表面に非晶質
薄膜を形成するプラズマCVD装置において、前記放電
用電極は複数本の中空線材からなる梯子状の平面形に形
成し、同複数本の中空線材の前記基板に対向する面の裏
面となる位置にガス吹出孔を設けると共に、同ガス吹出
孔と間隙を保って同吹出孔を覆うアースシールドを設け
てなり、前記中空線材の空洞にガスを流し、前記吹出孔
から噴出させることにより放電用電極にガス導入部を一
体化したことを特徴とするプラズマCVD装置を提供す
る。
That is, the present invention provides a reaction vessel, means for introducing and discharging a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and a glow discharge electrode provided in the discharge electrode. A plasma CVD apparatus having a power supply for supplying electric power and forming an amorphous thin film on a substrate surface provided in the reaction vessel so as to face the discharge electrode, wherein the discharge electrode comprises a plurality of hollow wires. A ladder-like planar shape made of, and a plurality of hollow wires are provided with gas blowout holes at positions on the back surface of the surface facing the substrate, and the gas blowout holes are maintained at the same gap as the gas blowout holes. There is provided a plasma CVD apparatus comprising a covering earth shield, a gas flowing into a cavity of the hollow wire material, and a gas introducing portion integrated with a discharge electrode by ejecting the gas from the blowing hole.

【0013】[0013]

【作用】本発明はこのような手段により、反応ガスは放
電用電極を構成する中空線材の空洞内を通り、ガス吹出
孔より流出して反応容器内を所定の圧力にする。電源よ
り放電用電極に電力を供給し、グロー放電プラズマを発
生させ、放電用電極と対向して配置した基板表面にプラ
ズマにより分解した非晶質の薄膜が形成される。この薄
膜形成過程において、ガス吹出孔は中空線材の基板に対
向する面の裏側となる面に設けられており、かつ、アー
スシールドで覆われているので、反応ガスは吹出孔から
アースシールドで導かれて中空線材の基板側の周面上部
で電磁場強度の高い領域に導かれて、この領域でプラズ
マが発生するので、ガス吹出孔周辺はプラズマにさらさ
れず、そのため吹出孔周辺に薄膜が堆積し、これにより
フレークが飛散して基板表面に傷を付けるようなことも
なく、高速、高品質の成膜を形成することができる。
According to the present invention, by such means, the reaction gas passes through the cavity of the hollow wire constituting the discharge electrode, flows out of the gas outlet, and keeps the inside of the reaction vessel at a predetermined pressure. Power is supplied from the power supply to the discharge electrode to generate glow discharge plasma, and an amorphous thin film decomposed by the plasma is formed on the surface of the substrate disposed opposite to the discharge electrode. In the process of forming the thin film, the gas outlet is provided on the surface opposite to the surface of the hollow wire facing the substrate and is covered with the earth shield, so that the reaction gas is guided from the outlet through the earth shield. The hollow wire is guided to a region where the electromagnetic field strength is high in the upper part of the peripheral surface on the substrate side, and plasma is generated in this region.Therefore, the periphery of the gas outlet is not exposed to the plasma, so that a thin film is deposited around the outlet. Accordingly, a high-speed, high-quality film can be formed without flakes scattering and damaging the substrate surface.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。図1は本発明の一実施例に係るプラズマ
CVD装置の構成を示す断面図、図2は図1における中
空ラダー電極の平面図、図3はこの中空ラダー電極の詳
細な断面図、図4は中空ラダー電極の断面図で、ガス供
給とプラズマの状態を示す図、図5は成膜速度とRF電
極との関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a sectional view showing the configuration of a plasma CVD apparatus according to one embodiment of the present invention, FIG. 2 is a plan view of the hollow ladder electrode in FIG. 1, FIG. 3 is a detailed sectional view of this hollow ladder electrode, and FIG. FIG. 5 is a cross-sectional view of a hollow ladder electrode, showing a state of gas supply and plasma, and FIG. 5 is a view showing a relationship between a film forming speed and an RF electrode.

【0015】以下、実施例をこれらの図面を参照し、詳
細に説明するが、従来の装置(図6)と同一の部材には
同一の番号を付している。反応容器1内にはグロー放電
プラズマを発生させるための円筒形中空線材を使用した
弟子状平面形コイル電極2(以下、中空ラダー電極とい
う)が配置されている。この中空ラダー電極2は図2の
平面図及び図3の断面図に示すように2本の中空線材2
a,2bに対して垂直に数本の中空線材を接続し、梯子
状に組んだ構造を有し、外周部が四角形状をなしてい
る。
Hereinafter, embodiments will be described in detail with reference to these drawings, in which the same members as those of the conventional apparatus (FIG. 6) are denoted by the same reference numerals. In the reaction vessel 1, an apprentice-shaped planar coil electrode 2 (hereinafter referred to as a hollow ladder electrode) using a cylindrical hollow wire for generating glow discharge plasma is arranged. This hollow ladder electrode 2 has two hollow wires 2 as shown in the plan view of FIG. 2 and the sectional view of FIG.
It has a structure in which several hollow wires are connected vertically to a and 2b and assembled in a ladder shape, and the outer peripheral portion has a square shape.

【0016】このラダー電極の寸法は反応容器の容量に
よるが、中空線材の長さは100〜1000mm、中空線
材間は10〜50mm、の範囲であり、中空線材の径は3
〜10mmが好ましい。
The dimensions of the ladder electrode depend on the capacity of the reaction vessel, but the length of the hollow wire is 100 to 1000 mm, the distance between the hollow wires is 10 to 50 mm, and the diameter of the hollow wire is 3 mm.
10 to 10 mm is preferred.

【0017】又、この中空線材の半周部分には、図3に
示すように、基板9に対向する中空線材の表面の裏面と
なる位置に一定の間隔を保って円弧状のアースシールド
3が設けられている。この電極とアースシールド3との
間隔は0.5〜2mm程度とし、成膜時の反応容器1内圧
力における電子の平均自由行程以下であることが望まし
い。各線材の空洞部は連通しており、又、この中空線材
にはアースシールド3と対向する位置に複数個のガス吹
出孔4が設けられ、中空線材の空洞部と連通している。
このガス吹出孔4の径は0.2〜0.7mm、孔の配列ピ
ッチは10〜25mm程度であることが好ましい。
As shown in FIG. 3, an arc-shaped earth shield 3 is provided on a semi-circumferential portion of the hollow wire at a predetermined interval at a position on the back surface of the front surface of the hollow wire facing the substrate 9. Have been. The distance between the electrode and the earth shield 3 is preferably about 0.5 to 2 mm, and is preferably equal to or less than the mean free path of electrons at the pressure in the reaction vessel 1 during film formation. The hollow portions of the respective wires are in communication with each other, and the hollow wires are provided with a plurality of gas blowing holes 4 at positions facing the earth shield 3, and are in communication with the hollow portions of the hollow wires.
It is preferable that the diameter of the gas blowing holes 4 is 0.2 to 0.7 mm and the arrangement pitch of the holes is about 10 to 25 mm.

【0018】中空ラダー電極2の電力供給点2a,2b
には、高周波電源5から、例えば13.56MHz の周波
数の電力がインピーダンス整合器6を介して供給され
る。また、中空ラダー電極2のガス供給点2Cには図示
を省略したガス供給管より、電気的に絶縁性の中空材を
介して中空ラダー電極2の空洞部へ、例えばモノシラン
/水素の混合ガスが供給され、ガス吹出孔4より反応容
器1内に送り出される。
The power supply points 2a, 2b of the hollow ladder electrode 2
, Power of a frequency of, for example, 13.56 MHz is supplied from the high-frequency power supply 5 through the impedance matching unit 6. At the gas supply point 2C of the hollow ladder electrode 2, for example, a mixed gas of monosilane / hydrogen is supplied from a gas supply pipe (not shown) to the hollow portion of the hollow ladder electrode 2 via an electrically insulating hollow material. The gas is supplied and sent out of the gas outlet 4 into the reaction vessel 1.

【0019】なお、中空ラダー電極2を構成する中空線
材の断面形状は、楕円形であっても多角形であっても良
いが、その場合にはアースシールド3も中空線材表面と
の距離が一定となるように同一形状の楕円形、又は多角
形状とする必要がある。反応容器1内のガスは排気管7
を通して真空ポンプ8により排気される。
The cross-sectional shape of the hollow wire constituting the hollow ladder electrode 2 may be elliptical or polygonal. In this case, the distance between the ground shield 3 and the surface of the hollow wire is constant. It is necessary to have the same shape of an ellipse or a polygon so that The gas in the reaction vessel 1 is exhaust gas 7
Through the vacuum pump 8.

【0020】薄膜を成形すべき基板9は、中空ラダー電
極2と平行に設置され、図示しない基板ホルダにより基
板加熱ヒータ10に支持される。
A substrate 9 on which a thin film is to be formed is placed in parallel with the hollow ladder electrode 2 and is supported by a substrate heater 10 by a substrate holder (not shown).

【0021】この装置を用い、以下のようにして薄膜を
作製する。まず、真空ポンプ8を駆動して反応容器1内
を排気する。図示しないガス供給管より、ガス供給点2
Cから中空ラダー電極2の空洞部を介して、例えばモノ
シラン/水素の混合ガスを100〜200CC/min 程
度の流量で供給し、反応容器1内の圧力を0.5〜1To
rr程度に保ち、高周波電源5からインピーダンス整合器
6を介して中空ラダー電極2にRF電力を印加すると、
図4に示すように電極2のアースシールド3がない部分
の周囲にグロー放電プラズマが発生する。
Using this apparatus, a thin film is prepared as follows. First, the inside of the reaction vessel 1 is evacuated by driving the vacuum pump 8. Gas supply point 2 from gas supply pipe not shown
C, for example, a mixed gas of monosilane / hydrogen is supplied at a flow rate of about 100 to 200 CC / min through the hollow portion of the hollow ladder electrode 2, and the pressure in the reaction vessel 1 is increased to 0.5 to 1
When the RF power is applied to the hollow ladder electrode 2 from the high-frequency power supply 5 through the impedance matching device 6 while maintaining the power to about rr,
As shown in FIG. 4, glow discharge plasma is generated around a portion of the electrode 2 where the earth shield 3 is not provided.

【0022】プラズマ密度は電極線材近傍で大きく、離
れる程小さくなるが、本発明では図4に示すように、ガ
ス21は常に最もプラズマ密度の高い領域に供給され、
高密度プラズマ20はこの領域に発生し、かつ、ガス吹
出孔4の近辺はプラズマが発生してないので、ガス吹出
孔4はプラズマにさらされず、膜が堆積しないので高品
質・高速成膜が可能となることが推測される。そこで下
記条件で成膜実験を行った。
Although the plasma density is large near the electrode wire and becomes smaller as the distance increases, the gas 21 is always supplied to the region having the highest plasma density as shown in FIG.
The high-density plasma 20 is generated in this area, and no plasma is generated in the vicinity of the gas blowout holes 4, so that the gas blowout holes 4 are not exposed to the plasma, and no film is deposited. It is presumed that it will be possible. Therefore, a film forming experiment was performed under the following conditions.

【0023】基板材料:ガラス、基板面積:300mm×
300mm、基板温度:250℃、反応ガス及び流量:S
iH4 =30CC/分、水素=120CC/分、反応容
器内圧力:1Torr、において印加する高周波電力を20
Wから100Wの範囲に設定した。成膜速度と高周波電
力との関係を図5に示す。
Substrate material: glass, substrate area: 300 mm ×
300 mm, substrate temperature: 250 ° C., reaction gas and flow rate: S
iH 4 = 30 CC / min, hydrogen = 120 CC / min, pressure in the reaction vessel: 1 Torr, and the applied high frequency power is 20
It was set in the range of W to 100W. FIG. 5 shows the relationship between the deposition rate and the high-frequency power.

【0024】図5に示されるように、高周波電力を増加
すると成膜速度は増加し、100Wの高周波電力にて1
4オングストローム/sec と非常に速い成膜速度が得ら
れた。このとき、得られた膜の欠陥密度を電子ピン共鳴
方法により測定したところ1.2×1015個/CCであ
り、高品質の膜であることがわかった。
As shown in FIG. 5, when the high-frequency power is increased, the film forming speed is increased.
A very high film formation rate of 4 angstroms / sec was obtained. At this time, when the defect density of the obtained film was measured by an electron pin resonance method, it was found to be 1.2 × 10 15 / CC, indicating a high quality film.

【0025】このように本実施例では、放電用電極とし
て図2及び図3に示す中空ラダー電極2を用いること
で、10〜15オングストローム/sec という高速成膜
速度で、かつ、高品質のa−Si薄膜を作製できるもの
である。
As described above, in this embodiment, by using the hollow ladder electrode 2 shown in FIGS. 2 and 3 as a discharge electrode, a high film forming rate of 10 to 15 Å / sec and a high quality a -Si thin film can be produced.

【0026】[0026]

【発明の効果】以上、具体的に詳述したように、本発明
によれば、放電用電極として中空線材からなる電極を用
いることにより、中空線材の吹出口より反応ガスを吹出
し、電極近傍の電磁場強度が強い部分に反応ガスを供給
するようにしたので高速で高品質の非晶質薄膜を製造す
ることができる。従って、アモルファスシリコン太陽電
池、薄膜半導体、光センサ、半導体保護膜などの製造分
野で工業的価値が大きい。
As described in detail above, according to the present invention, by using an electrode made of a hollow wire as a discharge electrode, a reaction gas is blown out from the outlet of the hollow wire, and the vicinity of the electrode is discharged. Since the reaction gas is supplied to the portion where the electromagnetic field intensity is strong, a high-quality amorphous thin film can be manufactured at high speed. Therefore, it has great industrial value in the field of manufacturing amorphous silicon solar cells, thin film semiconductors, optical sensors, semiconductor protective films, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るプラズマCVD装置の
構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of a plasma CVD apparatus according to one embodiment of the present invention.

【図2】図1における中空ラダー電極の平面図である。FIG. 2 is a plan view of a hollow ladder electrode in FIG.

【図3】図1における中空ラダー電極の詳細な断面図で
ある。
FIG. 3 is a detailed sectional view of the hollow ladder electrode in FIG. 1;

【図4】本発明の一実施例に係る中空ラダー電極の断面
図で、ガス供給とプラズマ発生の状態を示す。
FIG. 4 is a sectional view of a hollow ladder electrode according to one embodiment of the present invention, showing a state of gas supply and plasma generation.

【図5】本発明の効果を示す図で、成膜速度とRF電力
との関係を図す。
FIG. 5 is a diagram showing the effect of the present invention, illustrating the relationship between the film forming speed and the RF power.

【図6】従来のプラズマCVD装置の断面図である。FIG. 6 is a sectional view of a conventional plasma CVD apparatus.

【図7】図6に示す従来のラダー電極の平面図である。FIG. 7 is a plan view of the conventional ladder electrode shown in FIG.

【図8】従来のラダー電極の電磁場強度分布を示す図で
ある。
FIG. 8 is a diagram showing an electromagnetic field intensity distribution of a conventional ladder electrode.

【図9】従来のプラズマCVD装置の成膜速度とRF電
力との関係を示す図である。
FIG. 9 is a diagram illustrating a relationship between a film forming speed and RF power of a conventional plasma CVD apparatus.

【図10】従来の改良型のプラズマCVD装置の断面図
である。
FIG. 10 is a sectional view of a conventional improved plasma CVD apparatus.

【図11】従来のプラズマCVD装置におけるラダー電
極での膜堆積の状況を示す概念図である。
FIG. 11 is a conceptual diagram showing a state of film deposition on a ladder electrode in a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 2 中空ラダー電極 3 アースシールド 4 ガス吹出孔 5 高周波電源 6 整合器 7 排気管 8 真空ポンプ 9 基板 20 高密度プラズマ DESCRIPTION OF SYMBOLS 1 Reaction container 2 Hollow ladder electrode 3 Earth shield 4 Gas blowout hole 5 High frequency power supply 6 Matching device 7 Exhaust pipe 8 Vacuum pump 9 Substrate 20 High density plasma

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 16/50 - 16/517 C30B 25/00 - 25/22 H01L 21/205 INSPEC(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 16/50-16/517 C30B 25/00-25/22 H01L 21/205 INSPEC (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応容器と、この反応容器内に反応ガス
を導入し、排出する手段と、前記反応容器内に収容され
た放電用電極と、この放電用電極にグロー放電用電力を
供給する電源とを有し、前記反応容器内で前記放電用電
極と対向して設置した基板表面に非晶質薄膜を形成する
プラズマCVD装置において、前記放電用電極は複数本
の中空線材からなる梯子状の平面形に形成し、同複数本
の中空線材の前記基板に対向する面の裏面となる位置に
ガス吹出孔を設けると共に、同ガス吹出孔と間隙を保っ
て同吹出孔を覆うアースシールドを設けてなり、前記中
空線材の空洞にガスを流し、前記吹出孔から噴出させる
ことにより放電用電極にガス導入部を一体化したことを
特徴とするプラズマCVD装置。
1. A reaction vessel, a means for introducing and discharging a reaction gas into the reaction vessel, a discharge electrode housed in the reaction vessel, and supplying glow discharge power to the discharge electrode. A plasma CVD apparatus having a power supply and forming an amorphous thin film on a surface of a substrate disposed opposite to the discharge electrode in the reaction vessel, wherein the discharge electrode has a ladder shape formed of a plurality of hollow wires. A gas outlet is provided at a position that is a back surface of the surface of the plurality of hollow wires facing the substrate, and an earth shield that covers the outlet while keeping a gap with the gas outlet is formed. A plasma CVD apparatus, wherein a gas introduction part is integrated with a discharge electrode by flowing a gas into the cavity of the hollow wire and ejecting the gas from the outlet.
JP06128665A 1994-06-10 1994-06-10 Plasma CVD equipment Expired - Fee Related JP3137532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06128665A JP3137532B2 (en) 1994-06-10 1994-06-10 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06128665A JP3137532B2 (en) 1994-06-10 1994-06-10 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH07330488A JPH07330488A (en) 1995-12-19
JP3137532B2 true JP3137532B2 (en) 2001-02-26

Family

ID=14990421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06128665A Expired - Fee Related JP3137532B2 (en) 1994-06-10 1994-06-10 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP3137532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844274B2 (en) 1998-06-25 2006-11-08 独立行政法人産業技術総合研究所 Plasma CVD apparatus and plasma CVD method
US7626135B2 (en) 2006-05-10 2009-12-01 Sub-One Technology, Inc. Electrode systems and methods of using electrodes
JP4859888B2 (en) * 2008-07-28 2012-01-25 三菱重工業株式会社 Electrode and vacuum processing apparatus provided with the same
WO2013112302A1 (en) * 2012-01-27 2013-08-01 Applied Materials, Inc. Segmented antenna assembly

Also Published As

Publication number Publication date
JPH07330488A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
US5015330A (en) Film forming method and film forming device
KR100615015B1 (en) Electronic device, production method thereof, and plasma process apparatus
KR20000010643A (en) Method and device for plasma treatment
JP2004095953A (en) Method for forming silicon nitride deposited film
JPH0766186A (en) Anisotropic depositing method of dielectric
JP3137532B2 (en) Plasma CVD equipment
JP4087234B2 (en) Plasma processing apparatus and plasma processing method
US5574958A (en) Hydrogen radical producing apparatus
JP2590534B2 (en) Thin film formation method
JP3068604B2 (en) Plasma CVD equipment
JP3372384B2 (en) Plasma CVD equipment
JPH01298725A (en) Thin film formation, apparatus therefor, and semiconductor element
JP3310875B2 (en) Plasma CVD equipment
JP3426788B2 (en) Plasma CVD equipment
JP2798225B2 (en) High frequency plasma CVD equipment
JP2924303B2 (en) Plasma vapor deposition equipment
JP2630089B2 (en) Microwave plasma processing equipment
JP3653035B2 (en) Apparatus for forming carbon film on inner surface of plastic container and method for manufacturing inner surface carbon film-coated plastic container
JP3546095B2 (en) Plasma CVD equipment
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3365742B2 (en) Plasma CVD equipment
JPH1022279A (en) Inductive coupled plasma cvd device
JPS6037119A (en) Plasma vapor phase reaction device
JPH06330305A (en) Film forming method by sputtering
JP3089087B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees