JPH0119467B2 - - Google Patents

Info

Publication number
JPH0119467B2
JPH0119467B2 JP22365286A JP22365286A JPH0119467B2 JP H0119467 B2 JPH0119467 B2 JP H0119467B2 JP 22365286 A JP22365286 A JP 22365286A JP 22365286 A JP22365286 A JP 22365286A JP H0119467 B2 JPH0119467 B2 JP H0119467B2
Authority
JP
Japan
Prior art keywords
base material
discharge
film formation
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22365286A
Other languages
Japanese (ja)
Other versions
JPS6379970A (en
Inventor
Ryoji Makabe
Shingo Kawamura
Shoichi Mochizuki
Saburo Kimura
Sadao Nakajima
Osamu Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
YKK Corp
Original Assignee
Agency of Industrial Science and Technology
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Yoshida Kogyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP22365286A priority Critical patent/JPS6379970A/en
Publication of JPS6379970A publication Critical patent/JPS6379970A/en
Publication of JPH0119467B2 publication Critical patent/JPH0119467B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えば工具、金型、機械部品等の立体
形状をした基材の表面に、金属あるいはセラミツ
クス被膜を形成し、高機能化させる場合に適用さ
れるプラズマCVD法による高密着性薄膜の形成
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to cases in which a metal or ceramic coating is formed on the surface of a three-dimensional shaped base material such as a tool, a mold, or a mechanical part to improve functionality. This paper relates to a method for forming highly adhesive thin films by plasma CVD applied to.

[従来の技術] 従来、工具、金型、機械部品等へセラミツク薄
膜を形成するには、化学蒸着法(以下CVD法と
略記する)が実用化されている。この方法は基材
を高温に加熱した炉内に置き、原料ガスを所要時
間送り込んで基材との間に化学反応を進行させ薄
膜を形成する。この方法は膜層の生成が熱エネル
ギーに依存して行なわれるので「熱CVD法」と
呼ばれている。
[Prior Art] Conventionally, a chemical vapor deposition method (hereinafter abbreviated as CVD method) has been put to practical use in order to form ceramic thin films on tools, molds, machine parts, and the like. In this method, a base material is placed in a furnace heated to a high temperature, and a raw material gas is fed for a required period of time to cause a chemical reaction to proceed between the base material and the base material to form a thin film. This method is called a "thermal CVD method" because the formation of the film layer depends on thermal energy.

そして近年ではイオンプレーテイング等の物理
蒸着法(以下PVD法と略記する)が開発され、
より低い温度で薄膜を形成することが可能となつ
た。
In recent years, physical vapor deposition methods (hereinafter abbreviated as PVD methods) such as ion plating have been developed.
It has become possible to form thin films at lower temperatures.

又、低温でセラミツク薄膜を複雑形状をした基
材に被覆できるプラズマCVD法が開発され、太
陽電池作成のためのアモルフアスシリコン膜や、
層間絶縁膜といつた半導体分野でもつぱら使用さ
れてきたが、工具、金型、機械部品への応用も数
件報告されている。
In addition, a plasma CVD method has been developed that allows ceramic thin films to be coated on substrates with complex shapes at low temperatures, resulting in amorphous silicon films for making solar cells,
It has mainly been used in the semiconductor field, such as interlayer insulating films, but several applications have been reported for tools, molds, and machine parts.

[発明が解決しようとする問題点] ところで熱CVD法は基材の温度を1000℃程度
の高温にしなければならず、これに伴う基材の熱
的損傷を避けることができない。
[Problems to be Solved by the Invention] Incidentally, in the thermal CVD method, the temperature of the base material must be raised to a high temperature of about 1000° C., and the accompanying thermal damage to the base material cannot be avoided.

PVD法は500℃前後の低温で処理することがで
きるが、複雑な形状をした基材に均一に被膜を形
成することはできない。
Although the PVD method can be processed at low temperatures of around 500°C, it is not possible to uniformly form a film on substrates with complex shapes.

プラズマCVD法は低温でセラミツクス薄膜を
複雑な形状をした基材に被覆することができると
され、工具、金型、機械部品へ応用した数件の事
例が報告されているが、高負荷に耐えられるだけ
の膜と基材との密着力が得られなかつたのが現状
である。又、形成される膜の均一性、膜中の不純
物量等にも問題があり、実用の域に達していな
い。
The plasma CVD method is said to be able to coat substrates with complex shapes with ceramic thin films at low temperatures, and several cases have been reported in which it has been applied to tools, molds, and machine parts, but it is difficult to withstand high loads. At present, it has not been possible to obtain sufficient adhesion between the film and the base material. Furthermore, there are problems with the uniformity of the formed film, the amount of impurities in the film, etc., and the method has not reached the level of practical use.

セラミツクス薄膜の密着性低下の原因となるの
は、基材の表面が基材本来の組成とは異なるこ
と、すなわち基材表面には酸化層等の層が存在
し、その上からセラミツクス薄層を形成するため
である。従来ではこのような認識が欠けていた。
The reason for the decrease in adhesion of ceramic thin films is that the surface of the base material differs from the original composition of the base material.In other words, there is a layer such as an oxide layer on the surface of the base material, and it is difficult to apply the thin ceramic layer on top of it. This is to form. In the past, this kind of recognition was lacking.

又、不純物の問題は下記の理由による。従来の
プラズマCVD法では水素ガス等の放電維持ガス
でプラズマ放電場を形成したのち、反応ガスをプ
ラズマ放電場に導き、成膜を開始する。この方法
だと放電維持ガスでプラズマ放電場を形成してい
るときに、プラズマ発生電極やプラズマ発生コイ
ルあるいは真空容器の壁に付着した不純物原子
が、プラズマ衝撃によるスパツタリング現象によ
り、減圧空間内に飛び出し、基材表面に付着して
しまうからである。
Further, the problem of impurities is due to the following reasons. In the conventional plasma CVD method, a plasma discharge field is formed using a discharge sustaining gas such as hydrogen gas, and then a reactive gas is introduced into the plasma discharge field to start film formation. With this method, when a plasma discharge field is formed using a discharge sustaining gas, impurity atoms attached to the plasma generation electrode, plasma generation coil, or wall of the vacuum chamber will fly out into the reduced pressure space due to the sputtering phenomenon caused by the plasma impact. This is because it adheres to the surface of the base material.

したがつて本発明はプラズマCVD法によつて、
基材が熱的損傷を受けない温度で、複雑形状の基
材に、均一に、しかも不純物濃度の低い高密着性
を有する金属およびまたはセラミツク薄膜を形成
することを目的としてなされたものである。
Therefore, the present invention uses the plasma CVD method to
The purpose of this method is to uniformly form a metal and/or ceramic thin film with low impurity concentration and high adhesion on a complex-shaped base material at a temperature that does not cause thermal damage to the base material.

[問題点を解決するための手段] 本発明は、減圧空間内において、基材のクリー
ニング及び成膜の為の独立した主副2つの放電機
構を用意し、まず副放電機構により基材のクリー
ニングを開始し、所要時間経過後速やかに原料ガ
スを導入し、該減圧空間内の圧力が設定動作圧に
達し安定した後、そのまま瞬時にプラズマ放電を
起動することにより、成膜開始と同時に基材に負
の電位を生じさせ、高密着性の金属およびまたは
セラミツクス薄膜を形成することを特徴とするプ
ラズマCVD法による高密着性薄膜形成方法であ
る。
[Means for Solving the Problems] The present invention provides two independent main and sub discharge mechanisms for cleaning the substrate and forming a film in a reduced pressure space, and first, the sub discharge mechanism cleans the substrate. After the required time has elapsed, raw material gas is introduced immediately, and after the pressure in the reduced pressure space has reached the set operating pressure and stabilized, plasma discharge is started instantly. This is a method for forming a highly adhesive thin film using a plasma CVD method, which is characterized in that a negative potential is generated in the plasma to form a highly adhesive metal and/or ceramic thin film.

上記プラズマ放電は、減圧空間内においた基材
に直流電圧や高周波、低周波を印加することによ
り発生させる。この場合の空間の圧力は比較的低
い圧力である10-2〜10-5Torr程度で、基材が最
も強いイオン衝撃を受ける形でプラズマ放電場を
形成させれば、基材表面の酸化物等の不純物層を
除去することができる。さらに、プラズマCVD
処理で使用される圧力条件下では、原子、分子の
平均自由行程が基材の形状寸法よりも小さくなる
ため、プラズマ放電が強すぎると、複雑な形状を
した基材のある部分では放電クリーニングにより
スパツタされた不純物の原子や分子が、基材表面
に再吸着し、基材と強固に結合してしまうことが
起きる。そのため、上記程度の比較的低圧がよ
い。
The plasma discharge is generated by applying a DC voltage, high frequency, or low frequency to a base material placed in a reduced pressure space. In this case, the pressure in the space is relatively low, about 10 -2 to 10 -5 Torr, and if a plasma discharge field is formed in such a way that the base material receives the strongest ion bombardment, oxides on the surface of the base material will be removed. It is possible to remove impurity layers such as. In addition, plasma CVD
Under the pressure conditions used in processing, the mean free path of atoms and molecules is smaller than the geometry of the substrate, so if the plasma discharge is too strong, some parts of the complex-shaped substrate may be damaged by discharge cleaning. Spattered impurity atoms and molecules may be re-adsorbed onto the surface of the base material and become firmly bonded to the base material. Therefore, a relatively low pressure as described above is preferable.

ところが、放電クリーニングを停止すると、直
ちに基材表面は減圧容器内に残留する酸素分子、
水蒸気分子等の不純物分子に瞬時にしておおわれ
てしまう。プラズマCVD法は処理圧力が0.1〜数
Torrの範囲であるので、成膜開始時には放電ク
リーニング時の圧力あるいは放電クリーニング後
のバツクグラウンド排気の到達圧力(10-5
10-8Torr)から処理圧力にまで減圧容器内圧力
を上昇させてやらなければならない。この間数分
から数十分を要するため、この時間内に基材表面
は酸素分子、水蒸気分子等におおわれてしまうこ
とになる。
However, when discharge cleaning is stopped, the surface of the substrate is immediately exposed to the oxygen molecules remaining in the vacuum container.
It is instantly covered with impurity molecules such as water vapor molecules. The plasma CVD method has a processing pressure of 0.1 to several
Torr range, so at the start of film formation, the pressure during discharge cleaning or the ultimate pressure of background exhaust after discharge cleaning (10 -5 ~
The pressure inside the vacuum vessel must be increased from 10 -8 Torr) to the processing pressure. Since this takes several minutes to several tens of minutes, the surface of the substrate will be covered with oxygen molecules, water vapor molecules, etc. within this time.

そこで本発明では放電クリーニング時の圧力あ
るいはバツクグランドの圧力からプラズマCVD
処理圧まで、減圧容器内を昇圧する際微弱な放電
場を基材の回りに形成し、成膜開始までクリーニ
ングを続行し、ガス圧力が設定動作圧に達し、安
定したのち、瞬時に成膜のためのプラズマ放電場
を形成し、基材表面にセラミツク薄膜を形成する
のである。成膜条件の圧力に減圧容器内圧力が到
達した後、成膜開始まで成膜条件の圧力にみあつ
た微弱なプラズマ放電を数秒から数分続行しても
よい。
Therefore, in the present invention, plasma CVD is performed using pressure during discharge cleaning or background pressure.
When increasing the pressure in the reduced pressure vessel to the processing pressure, a weak discharge field is created around the substrate, and cleaning continues until the start of film formation. After the gas pressure reaches the set operating pressure and becomes stable, film formation occurs instantly. A plasma discharge field is created to form a ceramic thin film on the surface of the substrate. After the pressure within the reduced-pressure container reaches the pressure of the film-forming conditions, a weak plasma discharge that meets the pressure of the film-forming conditions may be continued for several seconds to several minutes until the film-forming starts.

本発明はまたその実施態様として、成膜初期の
数百〜数千Åの膜厚になるまで、放電開始時に生
じた負の電位をそのまま基材に印加させておき、
その後基材の電位を数分間に数秒ずつ数回アース
ポテンシヤルあるいは放電場の電位にすることを
含むものである。このことによつて密着性の高い
安定した組成をもつ不純物濃度の低い膜を形成す
る。
As an embodiment of the present invention, the negative potential generated at the start of discharge is applied to the substrate as it is until the film thickness reaches several hundred to several thousand angstroms at the initial stage of film formation.
Thereafter, the potential of the substrate is brought to the earth potential or discharge field potential several times for several seconds over several minutes. As a result, a film having a stable composition with high adhesion and a low impurity concentration is formed.

前述のとおり、従来のように水素ガス等でプラ
ズマ放電場を形成した後、減圧容器内へ反応ガス
を導入し成膜を開始すると、電極、コイル、減圧
容器壁等からスパツタされる不純物のため、基材
表面は汚染されてしまう。本発明では成膜のため
のプラズマ放電場を形成せずに、反応ガスを減圧
容器内に導入し、反応ガス組成および処理能力が
目的とする値に到達するまで、前記放電クリーニ
ングを続行する。この場合、微弱な放電場である
ため、膜形成よりも基材のクリーニングが優先し
て起こる。
As mentioned above, when a reaction gas is introduced into a vacuum vessel and film formation is started after forming a plasma discharge field with hydrogen gas or the like as in the past, impurities spattered from the electrodes, coils, walls of the vacuum vessel, etc. , the surface of the substrate becomes contaminated. In the present invention, a reactive gas is introduced into a reduced pressure container without forming a plasma discharge field for film formation, and the discharge cleaning is continued until the reactive gas composition and processing capacity reach target values. In this case, since the discharge field is weak, cleaning of the base material occurs with priority over film formation.

減圧容器内の反応ガス組成、圧力が目的値に達
した段階で、瞬時にプラズマ発生電極あるいはプ
ラズマ発生コイルに電力を印加し、プラズマを発
生させたところ、プラズマは瞬時に安定し、清浄
な基材表面に組成の安定した膜が形成されること
を見出した。またそれまで基材のまわりに形成さ
れていた微弱なプラズマ放電場は、成膜のために
形成されたプラズマ放電場には何ら影響を与えず
消滅し、基材は負の電位をもつた状態で成膜のた
めに形成されたプラズマ放電場におかれることに
なる。このため、基材は成膜前には弱いイオン衝
撃、成膜開始時点およびその後の膜成長時には負
の電位を与えているため、強いプラズマ放電場に
よる強いイオン衝撃を受けることになり、基材表
面上には密着性の良好な不純物の少ない強固な膜
を形成することができる。成膜中にのみ基材に負
の電位を印加することによつても密着性は改善さ
れるが、放電クリーニングとの組合せにより、一
層強固な密着性を得ることができる。
When the reaction gas composition and pressure in the vacuum container reach the target values, power is instantly applied to the plasma generation electrode or plasma generation coil to generate plasma, which instantly stabilizes and generates a clean substrate. It was discovered that a film with a stable composition was formed on the surface of the material. In addition, the weak plasma discharge field that had been formed around the base material disappears without any effect on the plasma discharge field that was formed for film formation, leaving the base material in a state with a negative potential. It will be placed in a plasma discharge field that was created for film formation. For this reason, the base material is subjected to weak ion bombardment before film formation, and since a negative potential is applied at the start of film formation and during subsequent film growth, the base material is subjected to strong ion bombardment due to a strong plasma discharge field. A strong film with good adhesion and few impurities can be formed on the surface. Although adhesion can be improved by applying a negative potential to the substrate only during film formation, even stronger adhesion can be obtained by combining this with discharge cleaning.

また、成膜開始と同時にあるいは所定時間経過
後、基材の電位を任意に変化させることにより、
様々な結晶構造をもつ膜を作成することができ
る。
In addition, by arbitrarily changing the potential of the base material at the same time as the start of film formation or after a predetermined period of time,
Films with various crystal structures can be created.

また、一般的にプラズマCVD法を用いてドリ
ル等の鋭いエツジ部をもつ複雑形状をした基材を
処理する場合、エツジ部等に局所的にアーク放電
が発生し、形成される膜の性能を損うことが多
い。ところが本発明の場合、基材の電位を膜質に
より異なるが、一般的に1分間に数回以上、数秒
間以内でアース電位あるいは放電場の電位にして
やれば、膜質を変化させることなく、アーク放電
を防止できることを発見した。
Additionally, when using the plasma CVD method to process substrates with complex shapes such as drills and other sharp edges, localized arc discharge occurs at the edges, reducing the performance of the formed film. There are many losses. However, in the case of the present invention, although the potential of the base material varies depending on the film quality, in general, if the potential of the base material is brought to earth potential or the potential of the discharge field several times a minute or more within a few seconds, arc discharge can occur without changing the film quality. discovered that it can be prevented.

また、成膜初期の数百から数千Åの膜厚形成時
点では、基材に連続した電位を印加してもアーク
放電は起きず、連続した電位を印加させた方がよ
り強力な密着性が得られることを見出した。
In addition, at the initial stage of film formation, when the film thickness is from several hundred to several thousand Å, arc discharge does not occur even if a continuous potential is applied to the substrate, and stronger adhesion is achieved by applying a continuous potential. was found to be obtained.

[実施例] 実施例 1 第1図a,bは本発明を実施するに適した容量
結合型プラズマCVD装置の基本構造である。こ
の装置は内部に減圧空間1を形成する減圧容器2
を設け、この減圧容器2内の上段位置に、上部電
極3を略水平に配置している。この上部電極3に
対向する前記減圧容器2内の下段位置に下部電極
4を配設している。この下部電極4は通常はアー
スポテンシヤルにしておく。また、前記上部電極
3と前記下部電極4の間に、ガス吹出用ノズル5
を配設する。このノズル5は櫛型でも、リング状
でも、メツシユ状のものでもよい。さらにノズル
5と下部電極4の間に基材ホルダー7を配置し、
この基材ホルダー7に基材6を固定する。この基
材ホルダー7は基材6を固定した状態で、自公転
させることも可能である。基材6の加熱のために
下部電極4の下側に電熱ヒーター8および前記減
圧容器2の側面に、ヒーター9を配置する。この
ヒーター9は電熱ヒーターでもハロゲンランプヒ
ーターでもよい。
[Example] Example 1 Figures 1a and 1b show the basic structure of a capacitively coupled plasma CVD apparatus suitable for carrying out the present invention. This device consists of a vacuum container 2 that forms a vacuum space 1 inside.
An upper electrode 3 is disposed substantially horizontally at an upper stage within the reduced pressure container 2. A lower electrode 4 is disposed at a lower position in the reduced pressure container 2 facing the upper electrode 3. This lower electrode 4 is normally kept at earth potential. Further, a gas blowing nozzle 5 is provided between the upper electrode 3 and the lower electrode 4.
to be placed. This nozzle 5 may be comb-shaped, ring-shaped, or mesh-shaped. Furthermore, a substrate holder 7 is arranged between the nozzle 5 and the lower electrode 4,
The base material 6 is fixed to this base material holder 7. The base material holder 7 can also rotate around its axis while fixing the base material 6 thereon. An electric heater 8 is disposed below the lower electrode 4 for heating the base material 6, and a heater 9 is disposed on the side surface of the vacuum container 2. This heater 9 may be an electric heater or a halogen lamp heater.

前記基材ホルダー7は、基材6の放電クリーニ
ング時のプラズマ発生電極を兼ねた電位印加電極
でもあつて、この基材ホルダー7にクリーニング
放電電源10を接続し、基材6の回りにクリーニ
ングプラズマ放電場11を形成させる。前記プラ
ズマ放電電源は、直流電源でも交流電源でも高周
波電源でも低周波電源であつてもよい。また、任
意波形の交番電源であつてもよい。また、クリー
ニングプラズマ放電場11を強化、安定化させる
ため、前記ガスノズル5や下部電極4に、電源1
2,13により電圧を印加したり、補助電極や熱
電子放出フイラメントを併用することができる。
The substrate holder 7 also serves as a potential applying electrode that also serves as a plasma generation electrode during discharge cleaning of the substrate 6. A cleaning discharge power source 10 is connected to the substrate holder 7, and cleaning plasma is generated around the substrate 6. A discharge field 11 is formed. The plasma discharge power source may be a DC power source, an AC power source, a high frequency power source, or a low frequency power source. Alternatively, it may be an alternating power supply with an arbitrary waveform. In addition, in order to strengthen and stabilize the cleaning plasma discharge field 11, a power source 1 is connected to the gas nozzle 5 and the lower electrode 4.
2 and 13, voltage can be applied, and auxiliary electrodes and thermionic emitting filaments can be used together.

成膜時には、前記基材ホルダー7は電源10に
接続したままにしておくか、あるいはスイツチ1
6の切り換え操作により電源17に接続されるか
して、任意波形の電位を基材6に印加する。前記
クリーニング放電電源10と電源17は共通の電
源であつてもよい。
During film formation, the substrate holder 7 is left connected to the power source 10, or the switch 1 is turned off.
By the switching operation in step 6, the power source 17 is connected, and an arbitrary waveform potential is applied to the base material 6. The cleaning discharge power source 10 and the power source 17 may be a common power source.

前記上部電極3は成膜時のプラズマ放電場18
を発生させるための電極であつて、この上部電極
3に成膜時の放電電源19を接続する。この成膜
時に使用する放電電源19は直流電源でも高周波
電源でも低周波電源であつてもよい。
The upper electrode 3 is a plasma discharge field 18 during film formation.
This upper electrode 3 is connected to a discharge power source 19 during film formation. The discharge power source 19 used during film formation may be a DC power source, a high frequency power source, or a low frequency power source.

ガス供給系は反応ガス供給系20および液体原
料ガス供給系21からのガスを混合したのち、バ
ルブ22の操作で前記減圧容器2内へ流すことが
できる。また、ベーパライザ23が安定するまで
は、バルブ24の操作により排気経路25を通し
て液体原料を含んだ反応ガスを真空ポンプ26へ
流しておくことができる。また、この間、前記減
圧容器2内の圧力を成膜時の圧力で安定化させる
ため、あるいは基材6のクリーニングを継続して
行なうため、プラズマ放電場形成ガスを供給経路
27より前記減圧容器2内へ供給しておくことが
できる。
The gas supply system can mix the gases from the reaction gas supply system 20 and the liquid raw material gas supply system 21 and then flow the mixed gases into the reduced pressure container 2 by operating the valve 22 . Further, until the vaporizer 23 is stabilized, the reaction gas containing the liquid raw material can be allowed to flow through the exhaust path 25 to the vacuum pump 26 by operating the valve 24. During this period, plasma discharge field forming gas is supplied to the reduced pressure container 2 from the supply path 27 in order to stabilize the pressure in the reduced pressure container 2 at the pressure during film formation or to continue cleaning the substrate 6. It can be supplied internally.

そして、前記減圧容器2の下端部に、大排気量
の真空ポンプ28を含む排気経路29と成膜時の
真空ポンプ30を含む排気経路31を接続する。
なお、図中、32,33はバルブ、34はダーク
スペースである。
An exhaust path 29 including a large displacement vacuum pump 28 and an exhaust path 31 including a vacuum pump 30 during film formation are connected to the lower end of the reduced pressure container 2.
In the figure, 32 and 33 are valves, and 34 is a dark space.

次いで上記装置の作動とともに本発明の方法に
ついて説明する。まず真空ポンプ28により、減
圧容器2内を10-5〜10-8Torr程度の圧力に排気
するとともに、基材ホルダー7にセツトした基材
6をヒーター8及び9により所定温度に加熱して
おく。その後供給経路27より、Arガス等の不
活性ガスあるいは水素等の化学的エツチング効果
のあるガス、あるいは両者の混合ガスを前記減圧
容器2へ導入しながら、前記大排気量の真空ポン
プ28を含む排気経路29で排気を続ける。減圧
容器2内の圧力が10-3〜10-4Torr程度の目的と
する圧力で安定したら、基材ホルダー7にクリー
ニングプラズマ発生の為の電圧を印加し、基材6
の回りにグロー放電場11を形成し、基材の放電
クリーニングを行なう。必要ならばノズル5や下
部電極4にも電圧を印加したり、あるいは補助電
極や熱電子放出フイラメントを作動させ、プラズ
マの安定化をはかる。この放電クリーニングによ
り、基材6の表面上に大気中で形成された不純物
層を除去することができる。十数分から数十分間
放電クリーニングを続行させた後、成膜時に使用
する真空ポンプ30を含む排気経路31へとバル
ブ32と33の操作により、前記排気経路29か
ら排気ルートの切り換えを行ない、前記減圧容器
2内に成膜時の放電場維持ガスあるいはクリーニ
ング用ガスを供給経路27より導入し、減圧容器
2内の圧力を成膜時の圧力まで上昇させる。この
間に基材ホルダー7に印加する電圧を減圧容器2
内の圧力上昇とともに下げ、基材6の回りに微弱
な放電場を形成しておく。この放電クリーニング
により、減圧容器2内において不純物分子の基材
6表面への付着を避けることができる。また減圧
容器2内の圧力を上昇させる前に一旦ガス導入を
停止し、減圧容器2内の圧力を真空ポンプ28を
含む排気経路29のルートで10-6〜10-8Torrに
降圧してもよい。以上の操作を行なつている間に
液体原料の入つたベーパライザ23にキヤリアガ
スを導入し、真空ポンプ26を含む排気経路25
に成膜時のガス組成、流量条件にて混合反応ガス
を流しておく。
Next, the method of the present invention will be explained along with the operation of the above device. First, the inside of the decompression container 2 is evacuated to a pressure of about 10 -5 to 10 -8 Torr by the vacuum pump 28, and the substrate 6 set in the substrate holder 7 is heated to a predetermined temperature by the heaters 8 and 9. . Thereafter, an inert gas such as Ar gas, a gas having a chemical etching effect such as hydrogen, or a mixture of both gases is introduced into the decompression vessel 2 from the supply path 27, while the large displacement vacuum pump 28 is being introduced. Continue exhausting through the exhaust route 29. When the pressure inside the vacuum container 2 stabilizes at the desired pressure of about 10 -3 to 10 -4 Torr, a voltage for generating cleaning plasma is applied to the substrate holder 7, and the substrate 6 is heated.
A glow discharge field 11 is formed around the base material to perform discharge cleaning of the base material. If necessary, a voltage is applied to the nozzle 5 and the lower electrode 4, or an auxiliary electrode or a thermionic emission filament is activated to stabilize the plasma. By this discharge cleaning, an impurity layer formed in the atmosphere on the surface of the base material 6 can be removed. After continuing the discharge cleaning for several minutes to several minutes, the exhaust route is switched from the exhaust route 29 to the exhaust route 31 including the vacuum pump 30 used during film formation by operating the valves 32 and 33, A discharge field maintenance gas or a cleaning gas during film formation is introduced into the reduced pressure container 2 through the supply path 27, and the pressure inside the reduced pressure container 2 is increased to the pressure during film formation. During this time, the voltage applied to the substrate holder 7 is
As the internal pressure rises, it is lowered to form a weak discharge field around the base material 6. This discharge cleaning can prevent impurity molecules from adhering to the surface of the base material 6 within the reduced pressure vessel 2. Furthermore, even if the gas introduction is temporarily stopped before increasing the pressure inside the decompression vessel 2, and the pressure inside the decompression vessel 2 is lowered to 10 -6 to 10 -8 Torr through the route of the exhaust path 29 including the vacuum pump 28, good. While performing the above operations, carrier gas is introduced into the vaporizer 23 containing the liquid raw material, and the exhaust path 25 including the vacuum pump 26 is
A mixed reaction gas is flowed according to the gas composition and flow rate conditions used for film formation.

減圧容器2内の圧力が成膜時の圧力で安定し、
ベーパライザ23が安定したのち、バルブ22,
32,33の同時操作により混合反応ガスを減圧
容器2へ、この時点まで減圧容器2へ流していた
成膜時の放電場維持ガスあるいはクリーニング用
ガスを真空ポンプ26を含む排気経路25へ流
す。この操作は多方向の切り換えが一度にできる
1つのバルブを使用して行なつてもよい。以上の
操作により、減圧容器2内の圧力を変化させるこ
となしに混合反応ガスを減圧容器2へ導入するこ
とができるため、この間は基材は連続して安定し
た微弱な放電クリーニングを受けることができ
る。この後、前記上部電極3に所定の電力を電源
19により印加し、瞬時に成膜のための放電場1
8を形成する。プラズマ放電場18は瞬時に安定
し、それまで基材に放電クリーニングの為に印加
しておいた電圧により、基材の回りにはプラズマ
放電場18の中でダークスペース34が形成さ
れ、基材には負の電位が印加されたことになり、
成膜中の連続したイオン衝撃効果を得ることにな
る。
The pressure inside the reduced pressure container 2 is stabilized at the pressure during film formation,
After the vaporizer 23 stabilizes, the valve 22,
By simultaneous operations 32 and 33, the mixed reaction gas is flowed into the vacuum container 2, and the discharge field maintenance gas or cleaning gas during film formation, which had been flowing into the vacuum container 2 up to this point, is flowed into the exhaust path 25 including the vacuum pump 26. This operation may be performed using a single valve that can switch in multiple directions at once. By the above operation, the mixed reaction gas can be introduced into the vacuum container 2 without changing the pressure inside the vacuum container 2, so during this time, the substrate can be continuously subjected to stable and weak discharge cleaning. can. After that, a predetermined power is applied to the upper electrode 3 by the power source 19, and the discharge field 1 for film formation is instantaneously applied to the upper electrode 3.
form 8. The plasma discharge field 18 stabilizes instantaneously, and due to the voltage previously applied to the base material for discharge cleaning, a dark space 34 is formed around the base material in the plasma discharge field 18, and the base material This means that a negative potential is applied to
This results in a continuous ion bombardment effect during film formation.

このようにして清浄な基材上に密着性に優れた
不純物の少ない良質な膜を形成させることができ
る。
In this way, a high-quality film with excellent adhesion and few impurities can be formed on a clean base material.

また成膜開始と同時あるいは所定時間経過後ス
イツチ16の切換操作により電源10から電源1
7へ切換えるか、そのまま電源10を使用して基
材6に印加する電圧を変化させることにより、
種々の膜質を得ることができる。
In addition, at the same time as the start of film formation or after a predetermined period of time, the power supply 10 is switched from the power supply 10 to the power supply 1 by switching the switch 16.
7 or by changing the voltage applied to the base material 6 using the power source 10 as is.
Various film qualities can be obtained.

実施例 2 本発明のプラズマCVD法を実施する為、横巾
600mm、奥行600mm、高さ600mmの立方体形状ステ
ンレス製減圧容器を製作した。上部電極は直径
200mmの大きさに下部電極は1辺が300mmの正方形
形状とした。上部電極と下部電極間の距離は100
mmに設定した。第2図に示すようにノズルは直径
6mmの先端が閉じた管の側面に直径0.6mmのガス
吹出口を20mmピツチであけ、合計6本のノズルを
左右から交互に略水平にガス吹出口が下部電極側
を向く形で配設した。
Example 2 In order to carry out the plasma CVD method of the present invention, a width
We manufactured a cubic stainless steel vacuum vessel measuring 600mm, depth 600mm, and height 600mm. The upper electrode has a diameter
The size of the lower electrode was 200 mm, and the lower electrode had a square shape with one side of 300 mm. The distance between the upper and lower electrodes is 100
It was set to mm. As shown in Figure 2, the nozzle is a 6 mm diameter tube with a closed end, with gas outlets 0.6 mm in diameter drilled at a 20 mm pitch on the side, and a total of 6 nozzles arranged approximately horizontally, alternating from the left and right. It was arranged so that it faced the lower electrode side.

液体原料としてTiCl4を反応ガスとしてN2
ス、Arガス及びH2ガスをプラズマ放電クリーニ
ングガスとしてArガス及びH2ガスを用い、TiN
膜の形成を行なつた。
Using TiCl4 as liquid raw material and plasma discharge using N2 gas, Ar gas and H2 gas as reaction gas, using Ar gas and H2 gas as cleaning gas, TiN
A film was formed.

縦40mm、横40mm、厚さ5mmのSKH51板を熱処
理後、鏡面研摩、脱脂し、減圧容器内の基材ホル
ダーに固定し、減圧容器内を10-6Torrまで排気
したのち、Arガスを50c.c./minの流量で減圧容
器に導入しながら排気を続け、減圧容器内圧力を
2×10-3Torrに保つ。しかる後基材ホルダーに
−1kVの直流電圧、下部電極及びノズルに+
500Vの直流電圧を印加したところ、基材の回り
に安定したArプラズマのグロー放電が発生し、
大気中で形成された基材表面の不純物層が数十分
で完全に除去された。その後、減圧容器を一旦
10-6Torrまで排気したのち、下部電極及びノズ
ルはアースポテンシヤルとし、排気経路を成膜時
に使用する排気経路へと切り換えH2ガスを導入
し、成膜時の圧力である0.3Torrまで減圧容器内
の圧力を上昇させるのと並行して基材ホルダーに
印加する直流電圧を−300Vまで落した。この間
基材の回りには微弱なH2プラズマのグロー放電
が発生して基材は放電クリーニングされ続ける。
減圧容器内の圧力が所定圧力で安定したところ
で、あらかじめマツチングをとつておいた上部電
極に13.56MHz、2.0KWの高周波電力を印加した
ところ、瞬時に安定したプラズマ放電場が形成さ
れ、基材表面にTiN膜が堆積を開始した。基材
の回りにはダークスペースが生じ基材の電位は−
150Vとなつた。この状態で約100分成膜を続行し
た。この結果、SKH51基材上には3.5μmの黄金
色のTiN膜が形成された。またTiN膜の表面は
基材の面粗度をそのまま反映し、鏡面となつた。
形成されたTiN膜をスクラツチテストにより密
着性を評価したところ、40Nの高い臨界荷重が得
られ、膜の破壊の様子を観察したところ、膜が基
材に密着した形でTiN膜自体が破壊しているこ
とが判明した。
After heat-treating an SKH51 plate measuring 40 mm long, 40 mm wide, and 5 mm thick, it was mirror-polished, degreased, fixed to a substrate holder in a vacuum vessel, and the vacuum vessel was evacuated to 10 -6 Torr, and Ar gas was evacuated to 50C. Continue evacuation while introducing into the vacuum vessel at a flow rate of .c./min to maintain the pressure inside the vacuum vessel at 2×10 -3 Torr. After that, apply a DC voltage of -1kV to the substrate holder and + to the lower electrode and nozzle.
When a DC voltage of 500V was applied, a stable Ar plasma glow discharge was generated around the base material.
The impurity layer formed on the surface of the substrate in the atmosphere was completely removed in several tens of minutes. After that, once the vacuum container is
After exhausting to 10 -6 Torr, the lower electrode and nozzle are set to earth potential, the exhaust route is switched to the exhaust route used during film formation, H 2 gas is introduced, and the pressure is reduced to 0.3 Torr, which is the pressure during film formation. At the same time as increasing the internal pressure, the DC voltage applied to the substrate holder was lowered to -300V. During this time, a weak H 2 plasma glow discharge is generated around the base material, and the base material continues to be discharge-cleaned.
When the pressure inside the vacuum vessel stabilized at a predetermined pressure, 13.56MHz, 2.0KW high frequency power was applied to the upper electrode, which had been matched in advance, and a stable plasma discharge field was instantly formed, causing a drop in the surface of the substrate. TiN film started to be deposited. A dark space is created around the base material, and the potential of the base material is -
It became 150V. Film formation was continued in this state for about 100 minutes. As a result, a 3.5 μm golden yellow TiN film was formed on the SKH51 substrate. Furthermore, the surface of the TiN film mirrored the surface roughness of the base material.
When we evaluated the adhesion of the formed TiN film using a scratch test, we found that a high critical load of 40N was obtained, and when we observed the destruction of the film, we found that the TiN film itself was destroyed while the film adhered to the base material. It turned out that it was.

この結果との比較のためにプラズマ放電クリー
ニングを行なわないで基材に−200Vの電位を印
加した状態で3.5μmのTiN膜を鏡面研摩した
SKH51基材上に形成し、スクラツチテストを行
なつたところ、臨界荷重は25Nであつた。また
TiN膜の破壊の様子を観察したところTiN膜が
基材界面から剥離し、基材表面が露出しているの
が観察された。またプラズマ放電クリーニングを
行なつた後、基材に印加する電位をアースポテン
シヤルとした場合、臨界荷重は30Nであり、TiN
膜は基材界面から剥離していた。
For comparison with this result, a 3.5 μm TiN film was mirror-polished with a potential of -200 V applied to the substrate without plasma discharge cleaning.
When formed on an SKH51 base material and subjected to a scratch test, the critical load was 25N. Also
When observing the destruction of the TiN film, it was observed that the TiN film was separated from the base material interface and the base material surface was exposed. Furthermore, when the potential applied to the substrate after plasma discharge cleaning is set to the earth potential, the critical load is 30N, and TiN
The film had peeled off from the base material interface.

実施例 3 実施例2と同様な方法でドリル径6mmのハイス
鋼ドリルにTiN膜を2μm程度の厚さ被覆し、切
削テストを行なつたところ、第3図に示す様にコ
ーテイングを行なつていないドリルに比べ、ドリ
ルの可能穴あけ数が4倍となつた。またTiN膜
を被覆したドリルのマージン部、すくい面部の膜
厚を測定したところ、全長にわたり、±20%の膜
厚範囲で均一なTiN膜が形成されていることが
判明した。本実施例の場合、ドリルは回転させず
に固定した状態で膜形成を行なつたにもかかわら
ず、良好な膜厚分布が得られ、複雑形状をした基
材に均一に膜形成を行なうことが可能であること
が実証された。また第3図に示す様に放電クリー
ニングを行なわずにTiN膜を形成したドリルは
コーテイングを行なつていないドリルに比べ可能
穴あけ数が1.5倍にしか向上しなかつた。
Example 3 A high-speed steel drill with a drill diameter of 6 mm was coated with a TiN film to a thickness of approximately 2 μm in the same manner as in Example 2, and a cutting test was performed. The number of holes that can be drilled with the drill is four times that of a drill without one. Furthermore, when we measured the film thickness on the margin and rake face of the drill coated with TiN film, we found that a uniform TiN film was formed over the entire length with a thickness range of ±20%. In the case of this example, even though the film was formed while the drill was fixed without rotating, a good film thickness distribution was obtained, and the film was formed uniformly on a substrate with a complex shape. It has been demonstrated that this is possible. Furthermore, as shown in Fig. 3, the drill with a TiN film formed without electrical discharge cleaning was only able to drill 1.5 times as many holes as the drill with no coating.

実施例 4 成膜中に基材にバイアスを印加した場合と、印
加しない場合とで基材との界面近傍の膜中にとり
こまれる不純物濃度を調べた。基材に実施例2で
使用したものと同じ鏡面研摩したSKH51板を用
い、プラズマ放電クリーニングを行なつた後、−
200Vの電位を印加して形成したTiN膜と、プラ
ズマ放電クリーニングを行なつた後、アースポテ
ンシヤルにして形成したTiN膜の基材との界面
近傍の不純物濃度をオージエ電子分光法で調べ
た。この結果第5図に示す様にアースポテンシヤ
ルの場合は、界面近傍に酸素が異常に多くとりこ
まれるが、第4図に示すように基材に−200Vの
電位を印加した場合は、界面近傍の酸素濃度が極
度に減少することが判明した。このように基材の
放電クリーニングだけでなく、成膜中に基材に電
位を印加することが重要であることが実証され
た。
Example 4 The concentration of impurities taken into the film near the interface with the base material was investigated with and without applying a bias to the base material during film formation. The same mirror-polished SKH51 plate used in Example 2 was used as the base material, and after plasma discharge cleaning, -
The impurity concentration near the interface between the TiN film formed by applying a potential of 200 V and the base material after plasma discharge cleaning was performed using the earth potential was investigated using Auger electron spectroscopy. As a result, as shown in Figure 5, in the case of the earth potential, an abnormally large amount of oxygen is taken in near the interface, but when a potential of -200V is applied to the base material as shown in Figure 4, oxygen is taken in in an abnormally large amount near the interface. It was found that the oxygen concentration of In this way, it has been demonstrated that it is important not only to perform electrical discharge cleaning of the substrate, but also to apply a potential to the substrate during film formation.

以上、実施例2、3、4に示すように本発明の
成膜前の基材のプラズマ放電クリーニングおよび
成膜中の基材への電位印加は膜と基材の密着性向
上に非常に有効であることが実証された。
As shown in Examples 2, 3, and 4, the plasma discharge cleaning of the substrate before film formation and the application of potential to the substrate during film formation are very effective in improving the adhesion between the film and the substrate. It has been proven that

なお、本発明に係るプラズマCVDの方法は、
前記実施例に限定されないのは勿論であり、例え
ば基材ホルダーと下部電極を同一のものにし、基
材を下部電極に固定し、下部電極をクリーニング
プラズマ放電電源を兼ねた電位印加電源としても
よい。またノズルのかわりに上部電極から反応ガ
スをシヤワー状に供給する方式であつてもよい。
また基材プラズマ放電クリーニング後放電を一旦
停止して、成膜前に数十秒から数分の放電クリー
ニングをすることによつても密着性に優れる膜を
作成できることも実証した。
Note that the plasma CVD method according to the present invention includes:
Of course, the present invention is not limited to the above embodiments; for example, the base material holder and the lower electrode may be made the same, the base material is fixed to the lower electrode, and the lower electrode may be used as a potential applying power source that also serves as a cleaning plasma discharge power source. . Further, instead of the nozzle, a system may be used in which the reaction gas is supplied in a shower form from the upper electrode.
It was also demonstrated that a film with excellent adhesion can be created by temporarily stopping the discharge after plasma discharge cleaning of the substrate and performing discharge cleaning for several tens of seconds to several minutes before film formation.

またポンプ系は圧力の広い領域で安定した排気
速度をもつものを使用して一経路で行なつてもよ
い。
Alternatively, a pump system having a stable pumping speed over a wide range of pressures may be used, and the pumping may be carried out in one route.

また各電極の配列方向は上、下方向は問わず、
逆であつても、さらに水平対向式であつてもよ
い。
In addition, the arrangement direction of each electrode does not matter whether it is upward or downward.
It may be reversed, or it may be of a horizontally opposed type.

[発明の効果] 本発明によれば、プラズマCVD法により、工
具、金型、機械部品等へセラミツクコーテイング
を、均一で不純物濃度の低い高密着性をもつて形
成することができ、高機能化させることができ
る。
[Effects of the Invention] According to the present invention, ceramic coatings can be formed on tools, molds, machine parts, etc. with uniformity and high adhesion with low impurity concentration by plasma CVD method, resulting in high functionality. can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明に用いる容量結合型プラ
ズマCVD装置の概要図であり、第2図はガス吹
出ノズルの斜視図、第3図はドリルの切削テスト
結果を示すグラフ、第4図は−200Vのバイアス
電位を印加した場合のオージエ電子分光分析の結
果を示すグラフ、第5図はアースポテンシヤルの
場合のオージエ電子分光分析の結果を示すグラフ
である。 1……減圧空間、2……減圧容器、3……上部
電極、4……下部電極、5……ガス吹出用ノズ
ル、6……基材、7……基材ホルダー、8……電
熱ヒーター、9……ヒーター、10……クリーニ
ング放電電源、11……クリーニングプラズマ放
電場、12……電源、13……電源、16……ス
イツチ、17……電源、18……プラズマ放電
場、19……放電電源、20……反応ガス供給
系、21……液体原料ガス供給系、22……バル
ブ、23……ベーパライザ、24……バルブ、2
5……排気経路、26……真空ポンプ、27……
供給経路、28……真空ポンプ、29……排気経
路、30……真空ポンプ、31……排気経路、3
2……バルブ、33……バルブ、34……ダーク
スペース。
Figures 1a and b are schematic diagrams of the capacitively coupled plasma CVD apparatus used in the present invention, Figure 2 is a perspective view of the gas blowing nozzle, Figure 3 is a graph showing the cutting test results of the drill, and Figure 4. is a graph showing the results of Auger electron spectroscopy when a bias potential of -200V is applied, and FIG. 5 is a graph showing the results of Auger electron spectroscopy when earth potential is applied. DESCRIPTION OF SYMBOLS 1... Decompression space, 2... Decompression container, 3... Upper electrode, 4... Lower electrode, 5... Gas blowing nozzle, 6... Base material, 7... Base material holder, 8... Electric heater , 9... Heater, 10... Cleaning discharge power supply, 11... Cleaning plasma discharge field, 12... Power supply, 13... Power supply, 16... Switch, 17... Power supply, 18... Plasma discharge field, 19... ...discharge power supply, 20 ... reaction gas supply system, 21 ... liquid raw material gas supply system, 22 ... valve, 23 ... vaporizer, 24 ... valve, 2
5... Exhaust route, 26... Vacuum pump, 27...
Supply route, 28... Vacuum pump, 29... Exhaust route, 30... Vacuum pump, 31... Exhaust route, 3
2...Valve, 33...Valve, 34...Dark Space.

Claims (1)

【特許請求の範囲】 1 減圧空間において、基材のクリーニング及び
成膜の為の独立した主副2つの放電機構を用意
し、まず副放電機構により基材のクリーニングを
開始し、所要時間経過後速やかに原料ガスを導入
し、該減圧空間内の圧力が設定動作圧に達し安定
した後、そのまま瞬時に主プラズマ放電を起動す
ることにより、成膜開始と同時に基材に負の電位
を生じさせ、高密着性の金属及びセラミツクス薄
膜を形成することを特徴とするプラズマCVD法
による高密着性薄膜形成方法。 2 成膜初期の数百〜数千Åの膜厚になるまで、
放電開始時に生じた負の電位をそのまま基材に印
加させておき、その後基材の電位を数分間に数秒
間ずつ数回アースポテンシヤルあるいは放電場の
電位にする特許請求の範囲第1項記載のプラズマ
CVD法による高密着性薄膜形成方法。
[Claims] 1. In a reduced pressure space, two independent main and sub-discharge mechanisms are prepared for cleaning the substrate and forming a film, and first the sub-discharge mechanism starts cleaning the substrate, and after the required time has elapsed. By quickly introducing the raw material gas and after the pressure in the depressurized space reaches the set operating pressure and stabilizes, the main plasma discharge is immediately started, thereby creating a negative potential on the substrate at the same time as film formation begins. , a highly adhesive thin film formation method using a plasma CVD method, which is characterized by forming a highly adhesive metal and ceramic thin film. 2 At the initial stage of film formation, until the film thickness reaches several hundred to several thousand Å,
The negative potential generated at the start of the discharge is applied to the base material as it is, and then the potential of the base material is changed to the earth potential or the potential of the discharge field several times for several seconds every few minutes. plasma
Highly adhesive thin film formation method using CVD method.
JP22365286A 1986-09-24 1986-09-24 Formation of thin film having high adhesion by plasma cvd Granted JPS6379970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22365286A JPS6379970A (en) 1986-09-24 1986-09-24 Formation of thin film having high adhesion by plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22365286A JPS6379970A (en) 1986-09-24 1986-09-24 Formation of thin film having high adhesion by plasma cvd

Publications (2)

Publication Number Publication Date
JPS6379970A JPS6379970A (en) 1988-04-09
JPH0119467B2 true JPH0119467B2 (en) 1989-04-11

Family

ID=16801538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22365286A Granted JPS6379970A (en) 1986-09-24 1986-09-24 Formation of thin film having high adhesion by plasma cvd

Country Status (1)

Country Link
JP (1) JPS6379970A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258979A (en) * 1989-02-21 1990-10-19 Anelva Corp Method and device for normal-pressure cvd
WO1995018460A1 (en) 1993-12-27 1995-07-06 Kabushiki Kaisha Toshiba Thin film formation method
TW269743B (en) * 1994-04-26 1996-02-01 Toshiba Eng Co
US5690759A (en) * 1996-06-24 1997-11-25 General Motors Corporation Coated permanent mold having textured undersurface
WO2013027797A1 (en) * 2011-08-24 2013-02-28 日本ゼオン株式会社 Device for manufacturing and method for manufacturing oriented carbon nanotube aggregates

Also Published As

Publication number Publication date
JPS6379970A (en) 1988-04-09

Similar Documents

Publication Publication Date Title
JP3801730B2 (en) Plasma CVD apparatus and thin film forming method using the same
US11257685B2 (en) Apparatus and process for electron beam mediated plasma etch and deposition processes
US5834371A (en) Method and apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
EP0253361B1 (en) Thin film forming device
US5308950A (en) Method of removing material from a surface in a vacuum chamber
WO2010001880A1 (en) Plasma cvd device, dlc film, and method for depositing thin film
TWI577820B (en) Means for improving MOCVD reaction method and improvement method thereof
US6176982B1 (en) Method of applying a coating to a metallic article and an apparatus for applying a coating to a metallic article
US20150325418A1 (en) Method for producing a dielectric and/or barrier layer or multilayer on a substrate, and device for implementing said method
JPH0697154A (en) Selfcleaning method of reaction apparatus
JP2000068227A (en) Method for processing surface and device thereof
JPH0119467B2 (en)
JP5137304B2 (en) Corrosion resistant member and manufacturing method thereof
CN116065140A (en) Thin film deposition method
KR100324435B1 (en) Plasma of use nitriding aluminum formative and apparatus
US20110014394A1 (en) film depositing apparatus and method
CN116568862A (en) Method for aging a processing chamber
JP2646582B2 (en) Plasma CVD equipment
JP3133206B2 (en) Plasma processing method and plasma processing apparatus
US20230051800A1 (en) Methods and apparatus for plasma spraying silicon carbide coatings for semiconductor chamber applications
JP3808339B2 (en) Thin film formation method
JP3473760B2 (en) Plasma processing method
JPH07110996B2 (en) Plasma CVD equipment
JP3961519B2 (en) Plasma processing method
JPH0411628B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term