JPS61256640A - Plasma chemical vapor deposition apparatus - Google Patents

Plasma chemical vapor deposition apparatus

Info

Publication number
JPS61256640A
JPS61256640A JP60098368A JP9836885A JPS61256640A JP S61256640 A JPS61256640 A JP S61256640A JP 60098368 A JP60098368 A JP 60098368A JP 9836885 A JP9836885 A JP 9836885A JP S61256640 A JPS61256640 A JP S61256640A
Authority
JP
Japan
Prior art keywords
sample
plasma
electrode
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60098368A
Other languages
Japanese (ja)
Other versions
JPH06101459B2 (en
Inventor
Yoichi Onishi
陽一 大西
Akira Okuda
晃 奥田
Shinichi Mizuguchi
水口 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60098368A priority Critical patent/JPH06101459B2/en
Priority to KR1019860003411A priority patent/KR910000273B1/en
Priority to US06/861,305 priority patent/US4812712A/en
Publication of JPS61256640A publication Critical patent/JPS61256640A/en
Publication of JPH06101459B2 publication Critical patent/JPH06101459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges

Abstract

PURPOSE:To reduce defects in a plasma CVD film on a specimen and improve the quality by a method wherein a negative DC voltage is applied to an electrode and the voltage is so controlled as to generate a sputtering phenomenon on the electrode surface in order to remove deposited substances adhering to the electrode surface. CONSTITUTION:The internal pressure of a vacuum container 101 is reduced to not higher than 30mTorr by a vacuum pump 108. Then gaseous compounds, i.e. monosilane, ammonium and nitrogen, which contain constituents of thin film, are introduced through a gas flow control apparatus 112 from a gas inlet 111 with flows of 10SCCM, 32SCCM and 80SCCM respectively onto the surface of a specimen 102 and the internal pressure control unit 110. The specimen 102 is heated and maintained at the temperature of 350 deg.C by a specimen table 103. Then a negative DC voltage of -300V is applied to the electrode 106 and, under this condition, further a high-frequency power of 0.33W/cm<2> with a frequency of 50KHz is supplied in order to generate a low-temperature plasma. With the process described above, a silicon nitride film is formed on the surface of the specimen 102.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラダ? CV D (Chemical 
VaporD41PO!l i t i on )法に
よって、薄膜形成するためのプラズマ気相成長装置に関
するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention applies to PRADA? CV D (Chemical
VaporD41PO! The present invention relates to a plasma vapor phase epitaxy apparatus for forming a thin film using the lit ion method.

従来の技術 プラズマCVD法は、真空容器内に試料を保持し、形成
すべき薄膜の組成元素を含む化合物ガスを供給しながら
、高周波エネルギによって、前記の化合物ガスを励起し
、試料表面をそのプラズマ雰囲気に配置することによっ
て、試料表面に薄膜を形成する方法である。この方法は
、プラズマの活性さを利用しているため、室温から40
0℃程度までの低温で膜形成を行うことができるという
主成分がある。
In the conventional plasma CVD method, a sample is held in a vacuum container, and while a compound gas containing the constituent elements of the thin film to be formed is supplied, the compound gas is excited by high frequency energy, and the sample surface is exposed to the plasma. This method forms a thin film on the surface of a sample by placing it in an atmosphere. This method utilizes the activity of plasma, so it is possible to
There is a main component that allows film formation at low temperatures down to about 0°C.

プラズマCVD法による薄膜形成上の課題は、形成薄膜
の膜質および膜厚分布の制御である。
A problem in forming thin films by plasma CVD is controlling the quality and thickness distribution of the formed thin film.

従がって、良質のプラズマCVD膜を試料表面に形成す
るためには、薄膜形成時のプラズマ分布。
Therefore, in order to form a high-quality plasma CVD film on the sample surface, the plasma distribution during thin film formation must be adjusted.

試料加熱分布および試料保持温度等のプロセス条件に工
夫が必要である。
It is necessary to consider process conditions such as sample heating distribution and sample holding temperature.

以下、図面を参照しながら、上述した従来のプラズマ気
相成長装置の一例について説明する。
Hereinafter, an example of the above-mentioned conventional plasma vapor phase growth apparatus will be described with reference to the drawings.

第3図に、従来のプラズマ気相成長装置を示す。FIG. 3 shows a conventional plasma vapor phase growth apparatus.

第3図において、1は真空状態の維持が可能な真空容器
、2はプラズマCVD膜が形成される試料、3は試料2
を保持し、かつ、内部に加熱用のヒータを有し、試料2
を加熱することが可能な試料台、4は試料台3の内部に
搭載されたヒータ、6は交流電源、6は50KHzの高
周波電力が供給され、少なくとも試料2を含む空間に、
低温プラズマを発生させる電極、7は電極6にマツチン
グ回路を介して、周波数50KHzの高周波電力を供給
するための高周波電源、8は真空容器1内の圧力を大気
圧以下の真空度に真空排気するための真空ポンプ、9は
真空容器1と真空ポンプ8の間を気密に接続する真空排
気用のパイプ、10は真空容器1内の圧力を管内抵抗を
可変にして制御するバタフライバルブ、11は真空容器
1内へ、試料2表面に形成される薄膜の組成元素を含む
化合物ガスを供給するためのガス導入管、12はガス流
量制御装置である。
In FIG. 3, 1 is a vacuum container that can maintain a vacuum state, 2 is a sample on which a plasma CVD film is formed, and 3 is a sample 2.
and has an internal heater for heating sample 2.
A sample stand capable of heating the sample stand, 4 a heater mounted inside the sample stand 3, 6 an AC power source, and 6 a 50 KHz high frequency power supplied to the space containing at least the sample 2;
An electrode for generating low-temperature plasma, 7 a high-frequency power source for supplying high-frequency power at a frequency of 50 KHz to the electrode 6 via a matching circuit, and 8 evacuating the pressure inside the vacuum container 1 to a degree of vacuum below atmospheric pressure. 9 is a vacuum exhaust pipe that airtightly connects the vacuum container 1 and the vacuum pump 8, 10 is a butterfly valve that controls the pressure inside the vacuum container 1 by varying the resistance inside the pipe, and 11 is a vacuum pump. A gas introduction pipe 12 is a gas flow rate control device for supplying a compound gas containing the constituent elements of the thin film formed on the surface of the sample 2 into the container 1.

以上のように構成されたプラズマ気相成長装置について
、以下その動作について説明する。
The operation of the plasma vapor deposition apparatus configured as described above will be described below.

まず、真空容器1内を真空ポンプ8によシ、50mTo
rr以下の真空度まで真空排気した後、試料2表面に形
成すべき薄膜の組成元素を含む化合物ガスをガス導入管
11から流量をガス流量制御装置12で制御しながら、
真空容器1内に導入する。さらに、バタフライバルブ1
oを操作し、薄膜形成条件である圧力すなわち100〜
400mTorr に真空容器1内を制御する。また、
試料2は、試料台3によって、300℃程度の温度に加
熱制御する。
First, the inside of the vacuum container 1 is pumped with the vacuum pump 8, and the pressure is 50 mTo.
After evacuation to a vacuum level below rr, a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 2 is introduced from the gas introduction pipe 11 while controlling the flow rate with the gas flow rate controller 12.
Introduced into vacuum container 1. In addition, butterfly valve 1
o to adjust the pressure that is the thin film forming condition, i.e. 100~
The inside of the vacuum container 1 is controlled to 400 mTorr. Also,
The sample 2 is heated and controlled to a temperature of about 300° C. by the sample stage 3.

次に、電極6に周波数50KHzの高周波電力を供給す
ることによって、前記化合物ガスを励起し、試料2表面
をそのプラズマ雰囲気にさらすことによって、試料2表
面にプラズマCVD膜を堆積する。
Next, by supplying high frequency power with a frequency of 50 KHz to the electrode 6, the compound gas is excited, and the surface of the sample 2 is exposed to the plasma atmosphere, thereby depositing a plasma CVD film on the surface of the sample 2.

発明が解決しようとする問題点 しかしながら、上記のような構成では、プラズマCVD
膜を形成する際、試料2表面にプラズマCVD膜が堆積
する他に、電極6表面にも、密度の小さいポーラスな膜
または、粒子状または塊状の堆積物が多量に付着する。
Problems to be Solved by the Invention However, with the above configuration, plasma CVD
When forming a film, in addition to depositing a plasma CVD film on the surface of the sample 2, a porous film with a low density or a large amount of particulate or lump-like deposits also adheres to the surface of the electrode 6.

これらの電極6表面の堆積物は、電極6との付着力が弱
く、試料2表面に粒子状または、塊状で落下または、浮
遊付着し、所望の試料2表面に形成するプラズマCVD
膜に欠陥を生じさせる。すなわち、低温プラズマ発生時
にそれらが付着する場合は、ピンホールまたは突起物が
プラズマCVD膜に生じ、品質上の問題を発生させる。
These deposits on the surface of the electrode 6 have a weak adhesion to the electrode 6, fall or float on the surface of the sample 2 in the form of particles or lumps, and are formed on the surface of the desired sample 2 due to plasma CVD.
Causes defects in the membrane. That is, if they adhere during low-temperature plasma generation, pinholes or protrusions will occur in the plasma CVD film, causing quality problems.

また、試料2表面にプラズマCVす膜形成後、その表面
に、それらが落下または、浮遊の後、付着した場合は、
コンタクトホール等を形成するための後工程であるフォ
トリングラフィ工程、特に、レジスト塗布工程、露光工
程に問題を生じる。
In addition, if a plasma CV film is formed on the surface of the sample 2, and if it falls or floats and then adheres to the surface,
This causes problems in the photolithography process, which is a post-process for forming contact holes, etc., particularly in the resist coating process and the exposure process.

本発明は、上記問題点に鑑み、電極6表面に付、着する
堆積物の生成を抑制し、プラズマCVD膜の欠陥を大幅
に減少させることができ、プラズマCVD膜の品質向上
を可能にするプラズマ気相成長装置を提供するものであ
る。
In view of the above-mentioned problems, the present invention suppresses the formation of deposits adhering to the surface of the electrode 6, can significantly reduce defects in plasma CVD films, and makes it possible to improve the quality of plasma CVD films. A plasma vapor phase growth apparatus is provided.

問題点を解決するための手段 上記問題点を解決するために、本発明のプラズマ気相成
長装置は、真空状態の維持が可能な真空容器と、真空容
器内を減圧雰囲気にするための真空ポンプと、真空容器
と真空ポンプを気密に接続するパイプと、プラズマCV
D膜を少なくとも−方の表面に形成させる試料を保持す
る試料台と、試料を直接的もしくは、間接的に加熱制御
するための加熱装置と、真空容器内に原料ガスを導入し
、かつ、真空容器内を所定の圧力に制御した状態で、少
なくとも試料を含む空間に、低温プラズマを発生させる
電極と、電極にマツチング回路を介して、高周波電力を
供給するための高周波電源と、電極に高周波電力と共に
、rsoVから10oovの負の直流電圧をフィルター
回路を介して、制御して供給する直流電源という構成を
備えたものである。
Means for Solving the Problems In order to solve the above problems, the plasma vapor phase growth apparatus of the present invention includes a vacuum container capable of maintaining a vacuum state, and a vacuum pump for creating a reduced pressure atmosphere inside the vacuum container. , a pipe that airtightly connects the vacuum container and vacuum pump, and a plasma CV
A sample stage that holds a sample on which the D film is to be formed on at least one surface; a heating device that directly or indirectly controls the heating of the sample; a source gas that is introduced into a vacuum container; An electrode for generating low-temperature plasma at least in a space containing a sample while controlling the pressure inside the container to a predetermined level, a high-frequency power source for supplying high-frequency power to the electrode via a matching circuit, and high-frequency power to the electrode. Additionally, it is equipped with a DC power supply that controls and supplies a negative DC voltage of rsoV to 10oOV via a filter circuit.

作  用 本発明は、上記した構成によって、電極に負の直流電圧
を印加し、低温プラズマ中の正イオンの原子または分子
を電極方向に加速して引きつけ、電極表面でスパッタリ
ング現象が発生するように制御してやることによって、
試料上にプラズマCVD膜を堆積中に、電極表面に付着
する堆積物を原子状、または分子状で除去することによ
って、試料上のプラズマCVD膜の欠陥を低減し、プラ
ズマCVD膜の品質向上を可能にすることになる。
Effect of the Invention With the above-described configuration, the present invention applies a negative DC voltage to the electrode, accelerates and attracts positive ion atoms or molecules in the low-temperature plasma toward the electrode, and causes a sputtering phenomenon to occur on the electrode surface. By controlling
By removing deposits that adhere to the electrode surface in atomic or molecular form while depositing the plasma CVD film on the sample, defects in the plasma CVD film on the sample can be reduced and the quality of the plasma CVD film can be improved. It will make it possible.

実施例 以下本発明の一実施例のプラズマ気相成長装置について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, a plasma vapor phase growth apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例におけるプラズマ気相
成長装置の概略断面図を示すものである。
FIG. 1 shows a schematic cross-sectional view of a plasma vapor phase growth apparatus in a first embodiment of the present invention.

第1図において、1o1は真空状態の維持が可能な真空
容器、102はプラズマCVD膜が形成される試料、1
03は試料102を保持し、かつ、内部に加熱装置を有
し、試料台102を加熱することが可能な試料台、10
4は試料台103の内部に搭載かれた加熱装置、106
は交流電源、106は試料を含む空間に、低温プラズマ
を発生させる電極、107は電極108にマツチング回
路を介して、高周波電力を供給するための高周波電源、
108は真空容器101内の圧力を大気圧以下の真空度
に真空排気するための真空ポンプ、109は真空容器1
01と真空ポンプ108との間を気密に接続する真空排
気用のパイプ、11゜は真空容器101内の圧力を制御
するための圧力制御装置、111は真空容器101内へ
、試料102表面に堆積する薄膜の組成元素を含む化合
物ガスを供給するためのガス導入管、112はガス流量
制御装置、113は電極106に高周波電力と共に、5
0Vから1o00vの負の直流電圧をフィルター回路を
介して、制御して供給する直流電源である。
In FIG. 1, 1o1 is a vacuum container capable of maintaining a vacuum state, 102 is a sample on which a plasma CVD film is formed, 1
03 is a sample stand 10 that holds the sample 102 and has a heating device inside and is capable of heating the sample stand 102;
4 is a heating device mounted inside the sample stage 103; 106;
106 is an electrode for generating low-temperature plasma in the space containing the sample; 107 is a high-frequency power supply for supplying high-frequency power to the electrode 108 via a matching circuit;
108 is a vacuum pump for evacuating the pressure inside the vacuum container 101 to a degree of vacuum below atmospheric pressure; 109 is the vacuum container 1;
01 is an evacuation pipe that airtightly connects the vacuum pump 108; 11° is a pressure control device for controlling the pressure in the vacuum container 101; 112 is a gas flow rate control device; 113 is a gas flow control device for supplying a compound gas containing the compositional elements of the thin film;
This is a DC power supply that controls and supplies negative DC voltage from 0V to 1o00V via a filter circuit.

以上のように構成されたプラズマ気相成長装置について
、以下第1図、第2図を用いて、その動作を説明する。
The operation of the plasma vapor deposition apparatus configured as described above will be explained below with reference to FIGS. 1 and 2.

まず、真空容器101内を真空ポンプ10Bによって、
30mTorr以下の真空度まで真空排気した後、試料
102表面に形成すべき薄膜の組成元素を含む化合物ガ
ス、すなわち、モノシラン(SiH4)、アンモニア(
NH3)、窒素(N2)の混合ガスを各々108CCM
、31 SCCM、80SCCMのガス流量で、ガス流
量制御装置112を通して、ガス導入管111よシ、真
空容器101内に導入し、かつ、真空容器101内の圧
力を圧力制御装置11oを操作して、0.30 Tor
rに保持する。また、試料102は、試料台103によ
っ″て、350℃の温度に加熱制御する。次に、電極1
06に、負の直流電圧−300Vを印加し、この状態で
さらに、周波数50KHzの高周波電力を0.33W/
d (1ooW)を供給することによって、試料102
を含む空間に低温プラズマを発生させる。以上の動作に
よって、屈折率1.99±0.02゜膜厚分布±3俤以
内のシリコンナイトライド膜を試料102表面に形成す
ることができた。ここで、試料102表面上の0.3μ
m以上のパーティクル数をレーザー表面検査装置で測定
したところ、従来装置では、300個以上であったのに
対し、負の直流電圧を一200vから一600V印加す
ることによって、40個以内に大幅に低減することがで
き、かつ、電極106表面の堆積物は、#1とんど観察
されなかった。
First, the inside of the vacuum container 101 is pumped by the vacuum pump 10B.
After evacuation to a vacuum level of 30 mTorr or less, a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 102, that is, monosilane (SiH4), ammonia (
NH3) and nitrogen (N2) mixed gas at 108 CCM each.
, 31 SCCM, 80 SCCM of gas is introduced into the vacuum vessel 101 through the gas introduction pipe 111 through the gas flow rate control device 112, and the pressure inside the vacuum vessel 101 is controlled by operating the pressure control device 11o. 0.30 Tor
hold at r. Further, the sample 102 is heated to a temperature of 350°C by the sample stage 103. Next, the electrode 1
A negative DC voltage of -300V is applied to 06, and in this state, high frequency power with a frequency of 50KHz is applied at 0.33W/
By supplying d (1ooW), sample 102
generates low-temperature plasma in a space containing Through the above operations, a silicon nitride film with a refractive index of 1.99±0.02° and a film thickness distribution of within ±3 degrees could be formed on the surface of the sample 102. Here, 0.3μ on the surface of sample 102
When measuring the number of particles of m or more with a laser surface inspection device, it was over 300 with the conventional device, but by applying a negative DC voltage of -200V to -1600V, the number of particles was significantly reduced to less than 40. Deposits on the surface of the electrode 106 were hardly observed in #1.

第2図は、膜堆積速度および屈折率と負の直流電圧値と
の依存関係を実験した結果を示す。第2図よシ、負の直
流電圧によって、試料102に堆積する際、その形成条
件は変化しなかった。
FIG. 2 shows the results of an experiment on the dependence of film deposition rate and refractive index on negative DC voltage values. As shown in FIG. 2, the negative DC voltage did not change the formation conditions during deposition on sample 102.

なお、本実施例では、真空容器101内へ供給するガス
をモノシラン(S I H4) (!:アンモニア(N
H)と窒素(N2)の混合ガスとしたが、これらの化合
物ガスに、アルゴン(Ar)またはキセノン等の不活性
ガスを加えるこ によって、前記した電極1061表面
でのスパックリング現象を負の直流電圧で制御しやすく
なる。また、試料102表面は、電極106の材質に依
存し、上記スパッタリング効果によシ、重金属汚染され
る懸念がある場合には、試料102表面に堆積するプラ
ズマCVD膜と同材質または、プラズマCVD膜の構成
元素を含む材質にすれば良い。すなわち、電極106の
材質をシリコン、シリコンナイトライド等にすれば良い
In this embodiment, the gas supplied into the vacuum container 101 is monosilane (S I H4) (!: ammonia (N
By adding an inert gas such as argon (Ar) or xenon to these compound gases, the sputtering phenomenon on the surface of the electrode 1061 can be reduced to a negative direct current. Easier to control with voltage. Also, depending on the material of the electrode 106, the surface of the sample 102 may be made of the same material as the plasma CVD film deposited on the surface of the sample 102, or the plasma CVD film may be made of the same material as the plasma CVD film deposited on the surface of the sample 102. A material containing the constituent elements may be used. That is, the material of the electrode 106 may be silicon, silicon nitride, or the like.

以上のように、本実施例によれば、真空状態の維持が可
能な真空容器101と、真空容器内を減圧雰囲気にする
ための真空ポンプ108と、真空容器1o1と真空ポン
プ108を気密に接続するパイプ109と、プラズマC
VD膜を少なくとも一方の表面に形成させる試料102
を保持する試料台103と、試料102を直接的もしく
は、間接的に加熱制御するため・の加熱装置104と、
真空容器1o1内に原料ガスを導入し、かつ、真空容器
1o1内を所定の圧力に制御した状態で、少なくとも試
料102を含む空間に、低温プラズマを発生させる電極
106と、電極106にマツチング回路を介して、高周
波電力を供給するための高周波電源107と、電極10
6に高周波電力と共に、50Vから10oOvの負の直
流電圧をフィルター回路を介して、制御して供給する直
流電源113とを設け、電極106に負の直流電圧を印
加し、低温プラズマ中の正イオンの原子または、分子を
電極106方向に加速し、電極106表面で、スパッタ
リング現象が発生するように制御してやることによって
、試料102表面上にプラズマCVD膜を堆積中に、電
極106表面に付着する堆積物を除去することによって
、試料102表面上のプラズマCVD膜の欠陥を低減し
、プラズマCVD膜の品質向上を可能にすることができ
る。
As described above, according to this embodiment, the vacuum container 101 capable of maintaining a vacuum state, the vacuum pump 108 for creating a reduced pressure atmosphere inside the vacuum container, and the vacuum container 1o1 and the vacuum pump 108 are connected airtightly. pipe 109 and plasma C
Sample 102 on which a VD film is formed on at least one surface
a sample stage 103 for holding the sample 102; a heating device 104 for directly or indirectly heating the sample 102;
A source gas is introduced into the vacuum container 1o1, and while the pressure inside the vacuum container 1o1 is controlled to a predetermined pressure, an electrode 106 that generates low-temperature plasma and a matching circuit are connected to the electrode 106 in a space that includes at least the sample 102. A high frequency power source 107 for supplying high frequency power and an electrode 10
6 is provided with a DC power supply 113 that controls and supplies a negative DC voltage of 50V to 10oOv through a filter circuit together with high-frequency power, and applies the negative DC voltage to the electrode 106 to generate positive ions in the low-temperature plasma. By accelerating atoms or molecules in the direction of the electrode 106 and controlling the sputtering phenomenon to occur on the surface of the electrode 106, the deposits attached to the surface of the electrode 106 can be reduced while depositing a plasma CVD film on the surface of the sample 102. By removing the objects, defects in the plasma CVD film on the surface of the sample 102 can be reduced and the quality of the plasma CVD film can be improved.

発明の効果 以上のように本発明は、真空状態の維持が可能な真空容
器と、真空容器内を減圧雰囲気にするための真空ポンプ
と、真空容器と真空ポンプを気密に接続するパイプと、
プラズマCVD膜を少なくとも一方の表面に形成させる
試料を保持する試料台と、試料を直接的もしくは、間接
的に加熱制御するための加熱装置と、真空容器内に原料
ガスを導入し、かつ、真空容器内を所定の圧力に制御し
た状態で、少なくとも試料を含む空間に、低温プラズマ
を発生させる電極と、電極にマツチング回路を介して、
高周波電力を供給するための高周波電源と、電極に高周
波電力と共に、50Vから1 ooovの負の直流電圧
をフィルター回路を介して、制御して供給する直流電源
とを設けることにより、試料上にプラズマCVD膜を形
成する際、電極への堆積物の付着を防止することができ
、それらが、剥離し、試料上に落下または、浮遊の後、
付着するのを防止し、プラズマCVD膜の欠陥の低減、
すなわち、プラズマCVD膜の品質を向上することがで
きる。
Effects of the Invention As described above, the present invention provides a vacuum container that can maintain a vacuum state, a vacuum pump that creates a reduced pressure atmosphere inside the vacuum container, a pipe that airtightly connects the vacuum container and the vacuum pump,
A sample stage that holds a sample on which a plasma CVD film is to be formed on at least one surface; a heating device that directly or indirectly controls the heating of the sample; a source gas that is introduced into a vacuum container; With the inside of the container controlled to a predetermined pressure, an electrode that generates low-temperature plasma in at least a space containing the sample, and a matching circuit to the electrode,
By providing a high frequency power supply for supplying high frequency power to the electrodes and a DC power supply for controlling and supplying a negative DC voltage of 50 V to 1 ooov through a filter circuit together with the high frequency power to the electrodes, plasma can be generated on the sample. When forming a CVD film, it is possible to prevent deposits from adhering to the electrode, and after they peel off and fall or float on the sample,
Preventing adhesion and reducing defects in plasma CVD films,
That is, the quality of the plasma CVD film can be improved.

なお、第1の実施例において、電極106は、試料10
2を保持する試料台103に対抗して配置され、その形
状が円板状としたが、電極106は、円筒形状としても
よい。
Note that in the first embodiment, the electrode 106 is connected to the sample 10.
Although the electrode 106 is disposed opposite to the sample stage 103 holding the electrode 2 and has a disk shape, the electrode 106 may have a cylindrical shape.

また、試料台103の形状は、円板状としたが、円筒状
とし、その内面または、外面に試料102を配置しても
よい。
Further, although the shape of the sample stage 103 is a disk shape, it may be made into a cylindrical shape and the sample 102 may be placed on the inner or outer surface thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるプラズマ気相成長装置
の概略断面図、第2図は膜堆積速度および屈折率と負の
直流電圧値との依存関係を調べた実験結果を表わす図、
第3図は従来のプラズマ気相成長装置の概略断面図であ
る。 101・・・・・・真空容器、103・・・・・・試料
台、104・・・・・・加熱装置、106・・・・・・
電極、107・・・・・・高周波電源、108・・・・
・・真空ポンプ、113・・・・・・直流電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/l
l/−一賽空容器 淑−−一客(産生 イe3−−−m@ /17−−−高11抜(源 !2図
FIG. 1 is a schematic cross-sectional view of a plasma vapor phase growth apparatus in an embodiment of the present invention, and FIG. 2 is a diagram showing the experimental results of investigating the dependence of film deposition rate, refractive index, and negative DC voltage value.
FIG. 3 is a schematic cross-sectional view of a conventional plasma vapor phase growth apparatus. 101... Vacuum container, 103... Sample stand, 104... Heating device, 106...
Electrode, 107... High frequency power supply, 108...
...Vacuum pump, 113...DC power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person/l
l/-Empty container shuku--Ikkaku (produced e3---m@/17---High school 11 pullout (source! 2 figures)

Claims (4)

【特許請求の範囲】[Claims] (1)真空状態の維持が可能な真空容器と、真空容器内
を減圧雰囲気にするための排気手段と、プラズマCVD
膜を少なくとも一方の表面に堆積させる試料を保持する
試料保持手段と、試料を加熱制御するための加熱手段と
、真空容器内に原料ガスを導入するためのガス供給手段
と、真空容器内を所定の圧力に保持するための圧力制御
手段と、少なくとも試料を含む空間に、低温プラズマを
発生させる電極と、電極に、マッチング回路と高周波電
源を用いて高周波電力を供給し、低温プラズマを発生さ
せるためのプラズマ発生手段と、電極に高周波電力と共
に、50Vから1000Vの負の直流電圧をフィルター
回路を介して、供給する直流電源とからなるプラズマ気
相成長装置。
(1) A vacuum container that can maintain a vacuum state, an exhaust means to create a reduced pressure atmosphere inside the vacuum container, and plasma CVD
A sample holding means for holding a sample on which a film is to be deposited on at least one surface, a heating means for controlling heating of the sample, a gas supply means for introducing a raw material gas into the vacuum vessel, and a sample holding means for holding a sample on which a film is to be deposited on at least one surface; a pressure control means for maintaining the pressure at the pressure of A plasma vapor phase growth apparatus comprising a plasma generating means, and a DC power source that supplies a negative DC voltage of 50V to 1000V to the electrodes together with high frequency power through a filter circuit.
(2)原料ガスの組成が、試料表面に形成するプラズマ
CVD膜の組成元素を含む化合物ガスと少なくともアル
ゴンガスもしくは、キセノンガスとの混合ガスとする特
許請求の範囲第1項記載のプラズマ気相成長装置。
(2) The plasma vapor phase according to claim 1, wherein the composition of the source gas is a mixed gas of a compound gas containing the constituent elements of the plasma CVD film to be formed on the sample surface and at least argon gas or xenon gas. growth equipment.
(3)電極の材質は、少なくとも低温プラズマの雰囲気
に位置する部分が、試料表面に形成するプラズマCVD
膜の組成元素の少なくとも1つの元素を主成分とする特
許請求の範囲第1項記載のプラズマ気相成長装置。
(3) The material of the electrode is such that at least the part located in the low-temperature plasma atmosphere is formed on the sample surface by plasma CVD.
2. The plasma vapor phase growth apparatus according to claim 1, wherein the main component is at least one of the compositional elements of the film.
(4)電極の材質は、少なくとも低温プラズマの雰囲気
に位置する部分の材質が、プラズマCVD膜と同材質と
する特許請求の範囲第1項記載のプラズマ気相成長装置
(4) The plasma vapor phase epitaxy apparatus according to claim 1, wherein the electrode is made of the same material as the plasma CVD film, at least in the portion located in the low-temperature plasma atmosphere.
JP60098368A 1985-05-09 1985-05-09 Plasma vapor deposition equipment Expired - Lifetime JPH06101459B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60098368A JPH06101459B2 (en) 1985-05-09 1985-05-09 Plasma vapor deposition equipment
KR1019860003411A KR910000273B1 (en) 1985-05-09 1986-05-01 Plasma processor
US06/861,305 US4812712A (en) 1985-05-09 1986-05-09 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60098368A JPH06101459B2 (en) 1985-05-09 1985-05-09 Plasma vapor deposition equipment

Publications (2)

Publication Number Publication Date
JPS61256640A true JPS61256640A (en) 1986-11-14
JPH06101459B2 JPH06101459B2 (en) 1994-12-12

Family

ID=14217936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60098368A Expired - Lifetime JPH06101459B2 (en) 1985-05-09 1985-05-09 Plasma vapor deposition equipment

Country Status (1)

Country Link
JP (1) JPH06101459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449726A (en) * 2009-05-25 2012-05-09 应用材料公司 Plasma deposition source and method for depositing thin films
CN106119812A (en) * 2016-06-29 2016-11-16 江苏鲁汶仪器有限公司 Plasma enhanced CVD chamber, equipment and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169136A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Method for detecting end of etching of resist film
JPS59172716A (en) * 1983-03-23 1984-09-29 Oki Electric Ind Co Ltd Manufacture of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169136A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Method for detecting end of etching of resist film
JPS59172716A (en) * 1983-03-23 1984-09-29 Oki Electric Ind Co Ltd Manufacture of semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449726A (en) * 2009-05-25 2012-05-09 应用材料公司 Plasma deposition source and method for depositing thin films
CN106119812A (en) * 2016-06-29 2016-11-16 江苏鲁汶仪器有限公司 Plasma enhanced CVD chamber, equipment and control method thereof

Also Published As

Publication number Publication date
JPH06101459B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US4812712A (en) Plasma processing apparatus
JPH01180970A (en) Vacuum surface treatment device
EP0245688A1 (en) Method of forming diamond film
JPH08232069A (en) Method and apparatus for sublimating solid substance
WO1995018460A1 (en) Thin film formation method
WO1994019509A1 (en) Film forming method and film forming apparatus
JPS61256640A (en) Plasma chemical vapor deposition apparatus
JP3529466B2 (en) Thin film formation method
JPH06279998A (en) Dry coating method for inside surface of cylinder
JPH03229886A (en) Atmospheric glow etching method
JP2002338387A (en) Method of producing diamond film and diamond film
JP2003137521A (en) Deposition method
JPS61256639A (en) Plasma vapor deposition apparatus
JPS6314422A (en) Plasma chemical vapor desposition method
JP2537822B2 (en) Plasma CVD method
JP2646582B2 (en) Plasma CVD equipment
JPH01188678A (en) Plasma vapor growth apparatus
JPS62287079A (en) Plasma cvd apparatus
JPS63129629A (en) Plasma cvd method
JPH02200784A (en) Cvd electrode
JPS62287077A (en) Plasma vapor growth device
JPH05148654A (en) Film forming method by pulse plasma cvd and device therefor
JPH02115359A (en) Formation of compound thin film and device therefor
JPS624875A (en) Plasma vapor phase growth device
JP2765569B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term