JPH06279998A - Dry coating method for inside surface of cylinder - Google Patents

Dry coating method for inside surface of cylinder

Info

Publication number
JPH06279998A
JPH06279998A JP7000293A JP7000293A JPH06279998A JP H06279998 A JPH06279998 A JP H06279998A JP 7000293 A JP7000293 A JP 7000293A JP 7000293 A JP7000293 A JP 7000293A JP H06279998 A JPH06279998 A JP H06279998A
Authority
JP
Japan
Prior art keywords
cylinder
metal cylinder
electrode
coating method
round bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7000293A
Other languages
Japanese (ja)
Inventor
Tadamoto Tamai
忠素 玉井
Tatsuro Araki
達朗 荒木
Toshiyuki Yamanishi
利幸 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP7000293A priority Critical patent/JPH06279998A/en
Publication of JPH06279998A publication Critical patent/JPH06279998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the dry coating method which can coat the inside surface of a cylinder at a uniform film thickness without requiring a device of a large size. CONSTITUTION:Flanges 32, 33 for hermetic vacuum sealing are fixed to apertures at both ends of the metallic cylinder 31. The flange 32 for hermetic vacuum sealing is provided with an electrode introducing port 34 and a discharge port 35 and the flange 33 for hermetic vacuum sealing is provided with a gas introducing port 36. A round bar type electrode 39 is inserted into the electrode introducing port 34 and is arranged on the central axis of the metallic cylinder. After the metallic cylinder 31 is internally evacuated to a vacuum, gas is introduced into the cylinder and a voltage is applied between the round bar type electrode (cathode) 39 and the metallic cylinder (anode) 31 by an RF power source 37 and a voltage control box 38 to generate plasma and to executed sputtering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属円筒の内面にコーテ
ィング材をコーティングする円筒内面のドライコーティ
ング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dry-coating the inner surface of a metal cylinder with a coating material.

【0002】[0002]

【従来の技術】従来、金属材料の表面に、コーティング
材をコーティングする技術として、イオンプレーティン
グ法、スパッタリング法、プラズマCVD法、及び熱C
VD法等がある。
2. Description of the Related Art Conventionally, as a technique for coating a surface of a metal material with a coating material, an ion plating method, a sputtering method, a plasma CVD method, and a thermal C method.
There is a VD method and the like.

【0003】例えば、イオンプレーティング法では、図
4に示すように、真空容器41内で金属材料42を蒸発
源43に対向配置し、金属材料42を陰極として、高周
波電圧を印加するとともに、真空容器41内にガスを導
入してプラズマを発生させ、プラズマ中で蒸着を行っ
て、金属材料42の表面に蒸発物質または蒸発物質とガ
スの化合物をコーティングしている。
For example, in the ion plating method, as shown in FIG. 4, a metal material 42 is placed inside a vacuum container 41 so as to face an evaporation source 43, a high frequency voltage is applied to the metal material 42 as a cathode, and a vacuum is applied. Gas is introduced into the container 41 to generate plasma, vapor deposition is performed in the plasma, and the surface of the metal material 42 is coated with an evaporated substance or a compound of the evaporated substance and gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法は、平板状金属材料には有効であるが、金属円筒、特
にその内面のコーティングには、向かないという問題点
がある。即ち、イオンプレーティング法では、蒸発物質
を円筒内面に均一に輸送することができないという問題
点がある。また、スパッタリング法においてもスパッタ
された物質を円筒内面に輸送できないという問題点があ
る。さらに、CVD法では、反応ガスを円筒内に流さな
ければならないが、ガスの流れの上流側の方が下流側に
比べ膜厚が厚くなり均一な膜厚のコーティングを行うこ
とができないという問題点がある。
However, although the above method is effective for a flat metal material, it has a problem that it is not suitable for coating a metal cylinder, especially on the inner surface thereof. That is, the ion plating method has a problem in that the vaporized substance cannot be uniformly transported to the inner surface of the cylinder. Further, in the sputtering method, there is a problem that the sputtered substance cannot be transported to the inner surface of the cylinder. Further, in the CVD method, the reaction gas must be flown into the cylinder, but the film thickness on the upstream side of the gas flow becomes thicker than that on the downstream side, and it is not possible to perform coating with a uniform film thickness. There is.

【0005】また、これらの方法は、真空容器内で行わ
れるため、長尺物にコーティングを行おうとすると、装
置が大型化し、設備に多大な費用を必要とするという問
題点もある。
Further, since these methods are carried out in a vacuum container, there is a problem in that when coating a long object, the size of the apparatus becomes large and the equipment requires a great expense.

【0006】本発明は、円筒内面に均一な膜厚のコーテ
ィングを施すことができるドライコーティング方法を提
供することを目的とする。また、本発明は、大型装置を
必要とせず円筒面内にコーティングを施すことができる
ドライコーティング方法を提供することを目的とする。
It is an object of the present invention to provide a dry coating method capable of applying a coating having a uniform film thickness on the inner surface of a cylinder. Another object of the present invention is to provide a dry coating method capable of coating the inside of a cylindrical surface without requiring a large-scale device.

【0007】[0007]

【課題を解決するための手段】本発明によれば、プラズ
マを利用して金属円筒内面にコーティング材をコートす
るドライコーティング方法において、前記金属円筒の内
部であって該金属円筒の実質的中心軸上に電極を配置
し、該電極を陰極、前記金属円筒を陽極として電圧を印
加してプラズマを発生させるようにしたことを特徴とす
る円筒内面のドライコーティング方法が得られる。
According to the present invention, in a dry coating method for coating a coating material on an inner surface of a metal cylinder by using plasma, a substantial central axis of the metal cylinder is provided inside the metal cylinder. A dry coating method for an inner surface of a cylinder is obtained, in which an electrode is arranged on the upper surface of the cylinder and a metal cylinder is used as an anode to apply a voltage to generate plasma.

【0008】また、本発明によれば、金属円筒の実質的
中心軸上に電極を配置すると共に、前記金属円筒の一方
の開口部にガス導入ノズルを有する第1の真空気密用フ
ランジを、他方の開口部にガス排出用ノズルを有する第
2の真空気密用フランジを設け、前記金属円筒を真空容
器として利用すると共に、前記電極を陰極、前記金属円
筒を陽極として電圧を印加してプラズマを発生させるよ
うにしたことを特徴とする円筒内面のドライコーティン
グ方法が得られる。
According to the present invention, the electrode is arranged substantially on the central axis of the metal cylinder, and the first vacuum airtight flange having the gas introduction nozzle is provided in one opening of the metal cylinder, and A second vacuum airtight flange having a gas discharge nozzle is provided at the opening of the, and the metal cylinder is used as a vacuum container, and a voltage is applied using the electrode as a cathode and the metal cylinder as an anode to generate plasma. A dry coating method for the inner surface of the cylinder is obtained.

【0009】[0009]

【実施例】以下に、図面を参照して本発明の実施例を説
明する。図1に本発明の第1の実施例を示す。本実施例
の装置は、真空容器11と、真空容器11内部に設けら
れた丸棒型電極12と、電圧制御回路13と、高周波
(RF)電源14とを有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. The apparatus according to the present embodiment includes a vacuum container 11, a round bar electrode 12 provided inside the vacuum container 11, a voltage control circuit 13, and a radio frequency (RF) power supply 14.

【0010】真空容器11には、複数のガス導入口15
と排気口16とが設けられ、排気口16に接続された真
空ポンプ(図示せず)により、内部を排気可能とすると
共に、種々のガスを内部へ導入することが可能になって
いる。また、丸棒型電極12は、冷却機構が設けられて
いる。さらにまた、電圧制御回路13は、2個のダイオ
ード及び抵抗R1及びR2(R1>R2)で構成され、
RF電源14から丸棒型電極12へ供給される電圧を制
御する。
The vacuum container 11 has a plurality of gas inlets 15
An exhaust port 16 is provided, and a vacuum pump (not shown) connected to the exhaust port 16 makes it possible to exhaust the inside and introduce various gases into the inside. Further, the round bar type electrode 12 is provided with a cooling mechanism. Furthermore, the voltage control circuit 13 includes two diodes and resistors R1 and R2 (R1> R2),
The voltage supplied from the RF power supply 14 to the round bar electrode 12 is controlled.

【0011】被コーティング材である金属円筒17は、
その中心軸上に丸棒型電極12が位置するように真空装
置11内に保持される。そして、丸棒型電極12及び金
属円筒17は、丸棒型電極12が陰極、金属円筒17が
陽極となるように、それぞれ電圧制御回路13及びRF
電源14に接続される。
The metal cylinder 17, which is the material to be coated, is
It is held in the vacuum device 11 so that the round bar type electrode 12 is located on the central axis. The round bar electrode 12 and the metal cylinder 17 have a voltage control circuit 13 and an RF circuit, respectively, so that the round bar electrode 12 serves as a cathode and the metal cylinder 17 serves as an anode.
It is connected to the power supply 14.

【0012】この装置をスパッタリング装置として使用
する場合は、丸棒型電極12にTi,Cu,及びCr等
を使用する。そして、排気口16に接続された真空ポン
プ(図示せず)により、真空装置11内を10-3〜10
-4Torrまで排気する。次に、Arガスをガス導入口15
より導入して、1〜数Torrとする。そして、RF電源1
4を投入して、丸棒型電極12と金属円筒17との間
に、13.56MHzの高周波電圧、例えば、図2図に
示すような電圧を印加してプラズマを発生させる。する
と、ArガスはArイオンとなり、丸棒型電極12をス
パッタする。スパッタされた丸棒型電極12を構成する
物質(例えば、Cr)は、金属円筒17の内面に堆積す
る。こうして、金属円筒17の内面は、丸棒型電極12
を構成する物質によってコーティングされる。
When this apparatus is used as a sputtering apparatus, Ti, Cu, Cr, etc. are used for the round bar type electrode 12. Then, the inside of the vacuum device 11 is set to 10 −3 to 10 by a vacuum pump (not shown) connected to the exhaust port 16.
-Exhaust to -4 Torr. Next, Ar gas is introduced into the gas inlet 15
It is introduced more and it is set to 1 to several Torr. And RF power supply 1
4, a high frequency voltage of 13.56 MHz, for example, a voltage as shown in FIG. 2 is applied between the round bar electrode 12 and the metal cylinder 17 to generate plasma. Then, the Ar gas becomes Ar ions and sputters the round bar electrode 12. The substance (for example, Cr) forming the sputtered rod-shaped electrode 12 is deposited on the inner surface of the metal cylinder 17. In this way, the inner surface of the metal cylinder 17 has a round rod-shaped electrode 12
Is coated with the substance that constitutes the.

【0013】なお、金属円筒17内面にコーティングさ
れた膜の厚さを均一化するために、金属円筒17をその
中心軸を回転の中心として回転させるようにしてもよ
い。また、この装置で反応性スパッタリングを行う場合
は、別のガス導入口15より、N2 、C2 2 、及びC
4 等のガス導入するようにすれば良い。さらに、この
装置をCVD装置として使用する場合は、真空装置11
内を真空排気したあと、所定のガスを導入し、RF電源
14の電圧を調整すれば良い。
In order to make the thickness of the film coated on the inner surface of the metal cylinder 17 uniform, the metal cylinder 17 may be rotated about its central axis. When reactive sputtering is performed with this apparatus, N 2 , C 2 H 2 , and C are supplied from another gas inlet 15.
A gas such as H 4 may be introduced. Furthermore, when this apparatus is used as a CVD apparatus, a vacuum apparatus 11
After evacuating the inside, a predetermined gas may be introduced to adjust the voltage of the RF power supply 14.

【0014】次に、図3を参照して、第2の実施例につ
いて説明する。本実施例の装置は、図3に示すように、
金属円筒31の両端の開口部に、それぞれ固定される真
空気密用フランジ32及び33を有している。そして、
真空気密用フランジ32には、電極導入口34及び排気
口35が設けられ、他方の真空気密用フランジ33に
は、ガス導入口36が設けられている。さらに、本実施
例の装置は、高周波(RF)電源37と、電圧制御ボッ
クス38と、丸棒型電極39とを有している。
Next, a second embodiment will be described with reference to FIG. The apparatus of the present embodiment, as shown in FIG.
The metal cylinder 31 has vacuum airtight flanges 32 and 33, which are fixed to the openings at both ends thereof, respectively. And
The vacuum airtight flange 32 is provided with an electrode introduction port 34 and an exhaust port 35, and the other vacuum airtight flange 33 is provided with a gas introduction port 36. Further, the apparatus of this embodiment has a radio frequency (RF) power supply 37, a voltage control box 38, and a round bar type electrode 39.

【0015】丸棒型電極39は電圧制御ボックス38を
介してRF電源37の負極側に接続されると共に、電極
導入口34に挿入され、金属円筒31の中心軸上に配置
される。また、金属円筒31は,真空気密用フランジ3
2を介してRF電源37の正極側に接続されている。こ
こで、本実施例の装置は、金属円筒21自身を真空容器
として使用する点以外は、第1の実施例と同様なのでそ
の説明を省略する。
The round bar electrode 39 is connected to the negative electrode side of the RF power source 37 via the voltage control box 38, inserted into the electrode introduction port 34, and arranged on the central axis of the metal cylinder 31. In addition, the metal cylinder 31 is a vacuum airtight flange 3
It is connected to the positive electrode side of the RF power source 37 via 2. Here, the apparatus of this embodiment is the same as that of the first embodiment except that the metal cylinder 21 itself is used as a vacuum container, and therefore its description is omitted.

【0016】本実施例の装置は、金属円筒21自身を真
空容器として使用するので、油井管のような長さ数メー
トルの長尺円筒の内面をコーティングする際に有効であ
る。
Since the apparatus of this embodiment uses the metal cylinder 21 itself as a vacuum container, it is effective for coating the inner surface of a long cylinder having a length of several meters such as an oil well pipe.

【0017】なお、上記第1及び第2の実施例では、R
F電源を用いる場合について説明したが、直流電源によ
るグロー放電を利用できることはいうまでもない。
In the first and second embodiments, R
Although the case of using the F power supply has been described, it goes without saying that glow discharge from a DC power supply can be used.

【0018】[0018]

【発明の効果】本発明によれば、金属円筒の中心軸上に
位置する電極を陰極、金属円筒を陽極としてプラズマを
発生させるようにしたことで、金属円筒内面に均一な膜
厚のドライコーティングを行うことができる。
According to the present invention, the electrode located on the central axis of the metal cylinder is used as a cathode and the metal cylinder is used as an anode to generate plasma, so that the inner surface of the metal cylinder is dry-coated with a uniform film thickness. It can be performed.

【0019】また、本発明によれば、金属円筒を真空容
器として使用するようにしたことで、長尺円筒を収容で
きる大型の装置を必要とせず、経費の削減を図ることが
できる。
Further, according to the present invention, since the metal cylinder is used as the vacuum container, a large device capable of accommodating the long cylinder is not required, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の概略図である。FIG. 1 is a schematic diagram of a first embodiment of the present invention.

【図2】図1の高周波電源が発生する電圧を示すグラフ
である。
FIG. 2 is a graph showing a voltage generated by the high frequency power supply of FIG.

【図3】本発明の第2の実施例の概略図である。FIG. 3 is a schematic diagram of a second embodiment of the present invention.

【図4】従来のイオンプレーティング法を説明するため
の概略図である。
FIG. 4 is a schematic diagram for explaining a conventional ion plating method.

【符号の説明】[Explanation of symbols]

11 真空容器 12 丸棒型電極 13 電圧制御回路 14 高周波(RF)電源 15 ガス導入口 16 排気口 17 金属円筒 31 金属円筒 32,33 真空気密用フランジ 34 電極導入口 35 排気口 36 ガス導入口 37 高周波(RF)電源 38 電圧制御ボックス 39 丸棒型電極 41 真空容器 42 金属材料 43 蒸発源 11 Vacuum Container 12 Round Bar Electrode 13 Voltage Control Circuit 14 Radio Frequency (RF) Power Supply 15 Gas Inlet 16 Exhaust Outlet 17 Metal Cylinder 31 Metal Cylinder 32, 33 Vacuum Sealing Flange 34 Electrode Inlet 35 Exhaust 36 Gas Inlet 37 Radio frequency (RF) power supply 38 Voltage control box 39 Round bar type electrode 41 Vacuum container 42 Metal material 43 Evaporation source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラズマを利用して金属円筒内面にコー
ティング材をコートするドライコーティング方法におい
て、前記金属円筒の内部であって該金属円筒の実質的中
心軸上に電極を配置し、該電極を陰極、前記金属円筒を
陽極として電圧を印加してプラズマを発生させるように
したことを特徴とする円筒内面のドライコーティング方
法。
1. A dry coating method of coating a coating material on an inner surface of a metal cylinder by using plasma, wherein an electrode is arranged inside the metal cylinder and on a substantially central axis of the metal cylinder, and the electrode is A dry coating method for an inner surface of a cylinder, wherein a plasma is generated by applying a voltage using a cathode and the metal cylinder as an anode.
【請求項2】 金属円筒の実質的中心軸上に電極を配置
すると共に、前記金属円筒の一方の開口部にガス導入ノ
ズルを有する第1の真空気密用フランジを、他方の開口
部にガス排出用ノズルを有する第2の真空気密用フラン
ジを設け、前記金属円筒を真空容器として利用すると共
に、前記電極を陰極、前記金属円筒を陽極として電圧を
印加してプラズマを発生させるようにしたことを特徴と
する円筒内面のドライコーティング方法。
2. A first vacuum airtight flange having a gas introduction nozzle in one opening of the metal cylinder and a gas discharge in the other opening, with an electrode arranged substantially on the central axis of the metal cylinder. A second vacuum airtight flange having a nozzle for use is provided, the metal cylinder is used as a vacuum container, and a voltage is applied with the electrode as a cathode and the metal cylinder as an anode to generate plasma. Characteristic dry coating method on the inner surface of the cylinder.
JP7000293A 1993-03-29 1993-03-29 Dry coating method for inside surface of cylinder Pending JPH06279998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7000293A JPH06279998A (en) 1993-03-29 1993-03-29 Dry coating method for inside surface of cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7000293A JPH06279998A (en) 1993-03-29 1993-03-29 Dry coating method for inside surface of cylinder

Publications (1)

Publication Number Publication Date
JPH06279998A true JPH06279998A (en) 1994-10-04

Family

ID=13418974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7000293A Pending JPH06279998A (en) 1993-03-29 1993-03-29 Dry coating method for inside surface of cylinder

Country Status (1)

Country Link
JP (1) JPH06279998A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025564A (en) * 1996-07-09 1998-01-27 Ion Kogaku Kenkyusho:Kk Coating method and coating device
US5988103A (en) * 1995-06-23 1999-11-23 Wisconsin Alumni Research Foundation Apparatus for plasma source ion implantation and deposition for cylindrical surfaces
KR20030030672A (en) * 2001-10-12 2003-04-18 우신크라이오백(주) Method Of Plating Vacuum Plasma Inside Of Cylinder-type Object
JP2009057583A (en) * 2007-08-30 2009-03-19 Toshiba Corp Film-forming apparatus and film-forming method
GB2517436A (en) * 2013-08-19 2015-02-25 Pct Protective Coating Technologies Ltd Coating or sealing an internal surface of a workpiece
JP2016516134A (en) * 2013-03-13 2016-06-02 フェデラル−モーグル コーポレイション Cylinder liner having adhesive metal layer and method for forming cylinder liner
WO2020190347A1 (en) * 2019-03-15 2020-09-24 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools
US11371145B2 (en) 2019-03-15 2022-06-28 Halliburton Energy Services, Inc. Depositing coatings on and within a housing, apparatus, or tool using a coating system positioned therein
US11788187B2 (en) 2020-08-27 2023-10-17 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools utilizing counter current flow of reactants
US11788189B2 (en) 2020-08-27 2023-10-17 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools utilizing pressurized cells

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5988103A (en) * 1995-06-23 1999-11-23 Wisconsin Alumni Research Foundation Apparatus for plasma source ion implantation and deposition for cylindrical surfaces
JPH1025564A (en) * 1996-07-09 1998-01-27 Ion Kogaku Kenkyusho:Kk Coating method and coating device
KR20030030672A (en) * 2001-10-12 2003-04-18 우신크라이오백(주) Method Of Plating Vacuum Plasma Inside Of Cylinder-type Object
JP2009057583A (en) * 2007-08-30 2009-03-19 Toshiba Corp Film-forming apparatus and film-forming method
JP2016516134A (en) * 2013-03-13 2016-06-02 フェデラル−モーグル コーポレイション Cylinder liner having adhesive metal layer and method for forming cylinder liner
US10900439B2 (en) 2013-03-13 2021-01-26 Tenneco Inc. Cylinder liners with adhesive metallic layers and methods of forming the cylinder liners
GB2517436A (en) * 2013-08-19 2015-02-25 Pct Protective Coating Technologies Ltd Coating or sealing an internal surface of a workpiece
WO2020190347A1 (en) * 2019-03-15 2020-09-24 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools
US11371137B2 (en) 2019-03-15 2022-06-28 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools
US11371145B2 (en) 2019-03-15 2022-06-28 Halliburton Energy Services, Inc. Depositing coatings on and within a housing, apparatus, or tool using a coating system positioned therein
US11788187B2 (en) 2020-08-27 2023-10-17 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools utilizing counter current flow of reactants
US11788189B2 (en) 2020-08-27 2023-10-17 Halliburton Energy Services, Inc. Depositing coatings on and within housings, apparatus, or tools utilizing pressurized cells

Similar Documents

Publication Publication Date Title
TW201402851A (en) Method for sputtering for processes with a pre-stabilized plasma
EP0740710A1 (en) Magnetron sputtering apparatus for compound thin films
JPH06279998A (en) Dry coating method for inside surface of cylinder
Komiya et al. Titanium nitride film as a protective coating for a vacuum deposition chamber
JP2005048260A (en) Reactive sputtering method
JP3836184B2 (en) Method for manufacturing magnesium oxide film
US6730365B2 (en) Method of thin film deposition under reactive conditions with RF or pulsed DC plasma at the substrate holder
US6136167A (en) Portable apparatus for thin deposition
Kennedy et al. TiN coating of the PEP-II low-energy aluminum arc vacuum chambers
JPH06136544A (en) Plasma treatment device
JPS58118119A (en) Reactive ion plating apparatus
JPS63475A (en) Hybrid ion plating device
JPH03151629A (en) Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film
JP2646582B2 (en) Plasma CVD equipment
DE4441117C1 (en) Process for coating substrates and device for carrying out the process
JPH04314863A (en) Plasma reaction device
JP3485960B2 (en) Method for depositing a coating on a substrate by reactive sputtering
JPH0247252A (en) Production of composite material film
JPH04180551A (en) Formation of thin film of nitrogen-doped tantalum
JPH0280556A (en) Manufacture of film of composite material
JPS5952526A (en) Method for sputtering metal oxide film
JPS61256640A (en) Plasma chemical vapor deposition apparatus
JPH01149956A (en) Film forming device by sputtering
JPH0428861A (en) Film forming device using hollow cathode electron gun
JPH01235326A (en) Plasma treatment apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991104