JPH03151629A - Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film - Google Patents

Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film

Info

Publication number
JPH03151629A
JPH03151629A JP29021189A JP29021189A JPH03151629A JP H03151629 A JPH03151629 A JP H03151629A JP 29021189 A JP29021189 A JP 29021189A JP 29021189 A JP29021189 A JP 29021189A JP H03151629 A JPH03151629 A JP H03151629A
Authority
JP
Japan
Prior art keywords
gas
exhaust system
thin film
reaction chamber
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29021189A
Other languages
Japanese (ja)
Inventor
Tatsuo Yoshioka
吉岡 達男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29021189A priority Critical patent/JPH03151629A/en
Publication of JPH03151629A publication Critical patent/JPH03151629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent dust from attaching on a substrate arranged between electrodes and stably supply gas, by surrounding the periphery of plasma forming electrodes for decomposing gas installed in a reaction chamber, by using a metal wall equipped with a lot of holes. CONSTITUTION:The periphery of electrodes 3, 4 in a reaction chamber are covered with a metal wall 10 equipped with a lot of holes 5. The external part of the metal wall is constituted so as to be closed to the atmosphere. Reactant gas 15 is introduced into the reaction chamber from a lot of the holes 5 arranged on the metal wall 10 on the periphery of the electrodes 3, 4, so that the reactant gas 15 uniformly flows in the reaction chamber from the peripheral part, thereby obtaining a stable gas flow between the plasma electrodes 3, 4. Further the plasma electrodes 3, 4 are equipped with a lot of holes 5 to constitute an exhaust system, so that the gas reaching the part between the electrodes 3, 4 flows from the upper electrode 3 fixing substrates 1 toward the lower electrode 4 provided with the exhaust system. Hence, when dust is generated, it is hard to reach the substrate surface because of gas flow, so that the dust can be prevented from attaching on the substrate during mask formation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体薄膜の製造を行うためのプラズマCV
 D (Chemicalνaper Daposjt
ion:化学気相堆積)装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to plasma CVD for manufacturing semiconductor thin films.
D (Chemical aper Daposjt
ion (chemical vapor deposition) apparatus.

従来の技術 従来の平行平板型プラズマCVD装置のガス導入系は、
反応室側壁から反応ガスを導入するものやプラズマ電極
に設けた多数の孔からガスを導入するものがある。また
、それらのガスを排気するための系は反応室の側壁か下
部に設けである。例えば、第2図の(A)と(B)に従
来のガス導入系と排気系の模式図を示す。第2図(A)
では反応室側壁からガスを導入してまた側壁から排気す
る構造をとっている。このような構造ではガスの流れは
導入系から排気系へ向けて層流となる。そのため、基板
上へ均一に膜を製膜することが困難となり、それを防ぐ
ために基板支持台に回転機構をもたせている。第2図(
B)ではガスの導入系を多数の孔を存するプラズマ電極
に設けている。このような構造をとることによりガスは
電極周辺で均一となり基板上に均一に膜を製膜すること
が可能である。
Conventional technology The gas introduction system of a conventional parallel plate plasma CVD apparatus is as follows:
There are those that introduce the reaction gas from the side wall of the reaction chamber and those that introduce the gas through a number of holes provided in the plasma electrode. In addition, a system for exhausting these gases is provided on the side wall or lower part of the reaction chamber. For example, FIGS. 2A and 2B show schematic diagrams of a conventional gas introduction system and exhaust system. Figure 2 (A)
In this case, gas is introduced from the side wall of the reaction chamber and exhausted from the side wall. In such a structure, the gas flow becomes laminar from the introduction system to the exhaust system. This makes it difficult to uniformly form a film on the substrate, and to prevent this, the substrate support is provided with a rotation mechanism. Figure 2 (
In B), a gas introduction system is provided in a plasma electrode having a large number of holes. By adopting such a structure, the gas becomes uniform around the electrode, and it is possible to uniformly form a film on the substrate.

しかし、この構造ではプラズマ電極上に付着した膜をガ
スの流れにより巻き上げる可能性があり、製膜時のダス
トの原因になる。またこのような構造のガス導入系では
高真空状態の反応室にガスを導入する際に、加熱された
基板上に急激に冷えたガスを基板方向に吹き付ける可能
性があり、そのため基板表面の一部を汚染する原因とな
る。これを防ぐために反応室内にガスを導入する前に予
め反応ガスをある温度に加熱して、その加熱されたガス
を反応室に導入する方法をとっているものもある。
However, with this structure, there is a possibility that the film deposited on the plasma electrode may be rolled up by the gas flow, causing dust during film formation. In addition, in a gas introduction system with such a structure, when introducing gas into a reaction chamber in a high vacuum state, there is a possibility that rapidly cooled gas may be sprayed onto a heated substrate in the direction of the substrate. may cause contamination of the parts. In order to prevent this, some methods employ a method of heating the reaction gas to a certain temperature before introducing the gas into the reaction chamber, and then introducing the heated gas into the reaction chamber.

発明が解決しようとする111題 前記に述べた従来型の平行平板プラズマCVD装置に於
いては以下に述べるような課題がある。
111 Problems to be Solved by the Invention The conventional parallel plate plasma CVD apparatus described above has the following problems.

まず、ガス導入系から排気系に向けてガスの流れが起こ
るため上部電極と下部゛電極の藺に反応ガスを均一にす
ることが困難となる。また、電極間のガスを安定させる
ためにプラズマ電極からガスを導入することにより、ダ
ストを基板上に巻き上げる原因になったり高″真空状態
の反応室にガス導入初期に加熱された基板にガスを吹き
付けることにより膜成長に影響を及ぼす可能性がある。
First, since gas flows from the gas introduction system to the exhaust system, it is difficult to make the reaction gas uniform between the upper and lower electrodes. In addition, introducing gas from the plasma electrode to stabilize the gas between the electrodes may cause dust to be rolled up onto the substrate, or gas may be introduced into the heated substrate at the beginning of the reaction chamber in a high vacuum state. Spraying may affect film growth.

課題を解決するための手段 本発明では、前記課題を解決するために反応室内の電極
周辺を多数個の孔を有する金属壁で被い、その金属壁外
部は大気とは閉鎖された構造をとる。
Means for Solving the Problems In the present invention, in order to solve the above problems, the periphery of the electrode in the reaction chamber is covered with a metal wall having a large number of holes, and the outside of the metal wall is closed from the atmosphere. .

そのようにして構成された室をガス溜室として反応ガス
を導入し、金属壁に設けた孔から電極へガスを流す。そ
して、このガス溜室内にも第一の排気系を少なくとも1
つ以上設けている。また金属壁内部には多数個の孔を設
けたプラズマ電極を有しζそこから反応ガスを排気する
ための第二の排気系(B)を接続する。さらに前記第二
の排気系とは別に反応室下部に第三の排気系を設けてい
る。
A reaction gas is introduced into the chamber thus constructed as a gas storage chamber, and the gas flows through holes provided in the metal wall to the electrodes. Also, at least one first exhaust system is installed in this gas reservoir chamber.
We have set up more than one. Moreover, inside the metal wall is a plasma electrode provided with a large number of holes, and a second exhaust system (B) is connected thereto for exhausting the reaction gas. Further, in addition to the second exhaust system, a third exhaust system is provided at the bottom of the reaction chamber.

作用 本発明により作製されたプラズマCVD装置では、反応
ガスは電極周辺の金属壁に設けた多数個の孔から反応室
内部に導入されるため、反応ガスが反応室に周辺から均
一に流れるため電極間で安定したガスの流れを得ること
ができる。さらにプラズマ電極に多数個の孔を設は排気
系としているため、電極間に達したガス“が基板を固定
した上部電極から排気系を有する下部電極に向かって流
れる。そのため、もしダストが発生したとしてもガスの
流れにより基板上に到達し難く、製膜中に基板上にダス
トが付着することを防ぐことができる。
Function: In the plasma CVD apparatus manufactured according to the present invention, the reaction gas is introduced into the reaction chamber through a large number of holes provided in the metal wall around the electrode. A stable gas flow can be obtained between the two. Furthermore, since the plasma electrode has a large number of holes and is used as an exhaust system, the gas that reaches between the electrodes flows from the upper electrode to which the substrate is fixed to the lower electrode, which has an exhaust system. However, the gas flow makes it difficult for the gas to reach the substrate, and it is possible to prevent dust from adhering to the substrate during film formation.

また、反応室下部に設けた第三の排気系のコンダクタン
スを第二の排気系のコンダクタンスよりも大きくするこ
とにより、ガス全体の流れは金属壁から反応室下部に向
い電極間でダストが舞い上がることを防いでいる。ガス
溜室に設けた第一の排気系は反応室内を排気する際に用
い、同一反応室で多層薄膜を製膜する際に高速にガスの
切り換えを行うことができる。
In addition, by making the conductance of the third exhaust system installed at the bottom of the reaction chamber larger than the conductance of the second exhaust system, the entire gas flow is directed from the metal wall to the bottom of the reaction chamber, and dust is raised between the electrodes. is prevented. The first exhaust system provided in the gas storage chamber is used to exhaust the inside of the reaction chamber, and gas can be switched at high speed when forming a multilayer thin film in the same reaction chamber.

実施例 第2図に本発明による平行平板型プラズマCVD装置の
模式図を示す。第2図(A)は正面から見た断面図であ
り、第2図(B)は上から見た断面図である。基板1は
、基板加熱用のヒータ2を有する上部電極3に固定され
ている。また下部電極4には同心円状に規則正しく孔5
が設けられており、電極の下側にはこれらの孔全体を被
うように第二の排気系との緩衝用の空間6を設けさらに
この空間の中心に排気系の配管7を接続する。反応室下
部には第三の排気系の配管9が下部電極4の周辺を対称
位置に4箇所設けである。ここで、配管9のコンダクタ
ンスは配管7に比べて十分大きくしておく。次に電極周
辺を金属壁10で被いそこに電極間より広い幅で規則正
しくガス導入用の孔11を設げる。金属壁10の外部に
は大気と閉鎖されたガス溜室12を設け、このガス溜室
にガス配管13A、13Bと第一の排気系の配管14を
接続する。
Embodiment FIG. 2 shows a schematic diagram of a parallel plate type plasma CVD apparatus according to the present invention. FIG. 2(A) is a sectional view seen from the front, and FIG. 2(B) is a sectional view seen from above. A substrate 1 is fixed to an upper electrode 3 having a heater 2 for heating the substrate. In addition, holes 5 are arranged concentrically in the lower electrode 4.
A buffer space 6 with the second exhaust system is provided below the electrode so as to cover the entirety of these holes, and a pipe 7 of the exhaust system is connected to the center of this space. At the bottom of the reaction chamber, piping 9 of a third exhaust system is provided at four locations symmetrically around the lower electrode 4. Here, the conductance of the pipe 9 is made sufficiently larger than that of the pipe 7. Next, the periphery of the electrodes is covered with a metal wall 10, and holes 11 for introducing gas are regularly provided therein with a width wider than between the electrodes. A gas reservoir chamber 12 closed to the atmosphere is provided outside the metal wall 10, and gas pipes 13A, 13B and a first exhaust system piping 14 are connected to this gas reservoir chamber.

次に、このようにして構成されたプラズマCVD装置に
よる半導体薄膜の製膜方法について述べる。まず上部電
極3に基板1を取り付けて反応室内を排気系配管14,
9.7のバルブをこの順番で開け排気を行°なう。高真
空状態に達したら排気系配管7,9のバルブをこの順番
で閉じる。
Next, a method for forming a semiconductor thin film using the plasma CVD apparatus configured as described above will be described. First, the substrate 1 is attached to the upper electrode 3, and the exhaust system piping 14,
9. Open the valves 7 in this order to exhaust air. When a high vacuum state is reached, the valves of the exhaust system piping 7 and 9 are closed in this order.

このとき反応室は排気系配管14のみにより排気されて
いる。この状態で13BからH2ガスを導入した後、排
気系配管9,7をこの順番で開け、反応室内が所定の圧
力に達したら排気系配管14を閉じ基板1をヒータ2に
より所定の温度に加熱する。基板1の温度が所定の温度
に安定したらI]2ガスの排気を行なうためにガス配管
13Bを閉じる。ここで反応室内のガスの排気を行なう
ときには、反応室内にガスがある状態でまず排気系配管
14を開け、排気系配管7,9をこの順番で閉じて、排
気系配管14により初期排気を行なう。
At this time, the reaction chamber is evacuated only through the exhaust system piping 14. After introducing H2 gas from 13B in this state, the exhaust system piping 9 and 7 are opened in this order, and when the reaction chamber reaches a predetermined pressure, the exhaust system piping 14 is closed and the substrate 1 is heated to a predetermined temperature by the heater 2. do. When the temperature of the substrate 1 is stabilized at a predetermined temperature, the gas pipe 13B is closed to exhaust the gas. When exhausting the gas in the reaction chamber, first open the exhaust system piping 14 while there is gas in the reaction chamber, close the exhaust system piping 7 and 9 in this order, and perform initial exhaust through the exhaust system piping 14. .

真空度がある値になった状態で再び排気系配管9゜7を
この順番で開け高真空状態まで排気を行なう。
When the degree of vacuum reaches a certain value, the exhaust system piping 9.7 is opened again in this order to evacuate to a high vacuum state.

高真空状態が得られた段階で反応ガスを反応室に導入す
るために排気系配管7.9をこの順番で閉じる。次に、
例えば第1の膜を製膜するためにSiH,ガスとH2ガ
スをある混合比で予め混合した状態の反応ガスを装置の
ガス配管13Aを通してガス溜室12へ流す。反応ガス
がガス溜室に導入された初期には反応ガスは排気系配管
14のみで排気され、さらに前記で述べたように排気系
配管9,7を開けることにより反応室内、電極間へと反
応ガスを導入していく。その後、圧力コントローラによ
り反応室内が所定の圧力に達したら排気系配管14のバ
ルブを閉じて上部電極3と下部電極4の間で放電を開始
し製膜を行う。この時、排気系配管9のコンダクタンス
が排気系配管7のコンダクタンスよりも大きくしである
ため反応ガスは全体として金属壁の孔から排気系配管9
に向かって流れる。また、電極間に拡散してきた反応ガ
スはプラズマによって分解され基板上に付着する。この
ようにして半導体薄膜の製膜を行う。ここで、第1の膜
の製膜が完了したら排気系配管7゜9をこの順番で閉じ
て排気系配管14を開ける。
When a high vacuum state is obtained, the exhaust system piping 7.9 is closed in this order in order to introduce the reaction gas into the reaction chamber. next,
For example, in order to form a first film, a reaction gas in which SiH gas and H2 gas are mixed in advance at a certain mixing ratio is flowed into the gas reservoir chamber 12 through the gas pipe 13A of the apparatus. At the initial stage when the reaction gas is introduced into the gas reservoir chamber, the reaction gas is exhausted only through the exhaust system piping 14, and as described above, by opening the exhaust system piping 9 and 7, the reaction gas is discharged into the reaction chamber and between the electrodes. Gas will be introduced. Thereafter, when the pressure in the reaction chamber reaches a predetermined pressure using the pressure controller, the valve of the exhaust system piping 14 is closed and discharge is started between the upper electrode 3 and the lower electrode 4 to form a film. At this time, since the conductance of the exhaust system piping 9 is larger than the conductance of the exhaust system piping 7, the reaction gas as a whole flows from the hole in the metal wall to the exhaust system piping 9.
flowing towards. Further, the reactive gas that has diffused between the electrodes is decomposed by the plasma and adheres to the substrate. In this way, a semiconductor thin film is formed. Here, when the film formation of the first film is completed, the exhaust system piping 7.9 is closed in this order and the exhaust system piping 14 is opened.

以後は、前記で述べたH2ガスの排気方法と同様の手順
を用いて反応ガスを反応室から排気する。
Thereafter, the reaction gas is exhausted from the reaction chamber using the same procedure as the H2 gas exhaust method described above.

次に第2の膜の製膜を行なう。例えばS + H4H2
,N2とNH3ガスを混合した反応ガスをガス配管13
Bを用いて前記第1の膜を製膜したときと同様の手順で
ガスの導入、製膜、排気を行なう。このようにして第1
の膜と第2の膜を交互に製膜することにより、1室の反
応室で効率よく良質な半導体多層膜の製膜を行なうこと
ができる。
Next, a second film is formed. For example, S + H4H2
, a reaction gas containing a mixture of N2 and NH3 gas is supplied to the gas pipe 13.
Gas introduction, film formation, and exhaust are performed in the same manner as when forming the first film using B. In this way the first
By alternately forming the first film and the second film, a high-quality semiconductor multilayer film can be efficiently formed in one reaction chamber.

発明の効果 以上述べてきたようにガスを導入する際も排気を行う際
も常に第一、第三、第二の排気系の順番で行うことによ
り、電極間に取り付けた基板上にダストの付着を防ぎ且
つ安定したガスの供給を行うことができる。また、半導
体II膜製造装置をこのような構造にすることにより、
反応室内のガスの排気を高速に行うことができるととも
に基板上にガスの切り換えによる影響がほとんどでない
ため1室の反応室で良好な多層薄膜を製膜することが可
能となる。
Effects of the Invention As mentioned above, by always using the first, third, and second exhaust systems in the order of gas introduction and exhaust, it is possible to prevent dust from adhering to the substrate attached between the electrodes. It is possible to prevent this and provide a stable gas supply. In addition, by making the semiconductor II film manufacturing apparatus into such a structure,
Since the gas in the reaction chamber can be exhausted at high speed and there is almost no effect on the substrate due to gas switching, it is possible to form a good multilayer thin film in a single reaction chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるプラズマCVD装置の構ある。 1・・・・・・基板、2・・・・・・ヒータ、3・・・
・・・上部電極、4・・・・・・下部電極、5・・・・
・・孔、6・・・・・・排気緩衝室、7・・・・・・排
気系配管、8・・・・・・絶縁性物質、9・・・・・・
排気系配管、10・・・・・・金属壁、11・・・・・
・ガス導入用の孔、12・・・・・・ガス溜室、13A
・・・・・・ガス導入配管、13B・・・・・・ガス導
入配管、14・・・・・・排気系配管、15・・・・・
・反応ガス。 1
FIG. 1 shows the structure of a plasma CVD apparatus according to the present invention. 1... Board, 2... Heater, 3...
...Top electrode, 4...Bottom electrode, 5...
... Hole, 6 ... Exhaust buffer chamber, 7 ... Exhaust system piping, 8 ... Insulating material, 9 ...
Exhaust system piping, 10...Metal wall, 11...
・Gas introduction hole, 12...Gas reservoir chamber, 13A
...Gas introduction piping, 13B...Gas introduction piping, 14...Exhaust system piping, 15...
・Reactive gas. 1

Claims (8)

【特許請求の範囲】[Claims] (1)反応性ガスを分解することにより半導体薄膜を製
膜する半導体薄膜製造装置に於て、反応室内に設けた、
ガスを分解するためのプラズマ形成電極の周辺を多数個
の孔を有する金属壁で囲むことを特徴とする半導体薄膜
製造装置。
(1) In a semiconductor thin film manufacturing apparatus that forms a semiconductor thin film by decomposing a reactive gas, a
A semiconductor thin film manufacturing apparatus characterized in that a plasma forming electrode for decomposing gas is surrounded by a metal wall having a large number of holes.
(2)プラズマ形成電極周辺を囲んだ金属壁の外部には
金属壁を被う形で大気とは閉鎖された反応ガスを導入す
るためのガス溜室を有し、装置外部から導入された反応
ガスは前記ガス溜室を通って反応室へ流れる構造をとる
ことを特徴とする請求項1記載の半導体薄膜製造装置。
(2) On the outside of the metal wall surrounding the plasma forming electrode, there is a gas reservoir chamber for introducing reaction gas, which is closed from the atmosphere and covered by the metal wall, so that the reaction gas introduced from outside the device is 2. The semiconductor thin film manufacturing apparatus according to claim 1, wherein the gas flows into the reaction chamber through the gas storage chamber.
(3)ガス溜室に反応ガスを排気するための第一の排気
系を有することを特徴とする請求項(1)記載の半導体
薄膜製造装置。
(3) The semiconductor thin film manufacturing apparatus according to claim (1), further comprising a first exhaust system for exhausting the reaction gas into the gas reservoir chamber.
(4)反応ガスを分解するために平行平板からなるプラ
ズマ形成電極を用い、この平行平板電極のうち第一の電
極には基板を固定し加熱するための構造を有し、第二の
電極は多数個の孔を有する金属板からなり、その孔のう
ち少なくとも1つ以上が第二の排気系に接続されている
ことを特徴とする半導体薄膜製造装置。
(4) In order to decompose the reaction gas, plasma forming electrodes consisting of parallel plates are used. Among these parallel plate electrodes, the first electrode has a structure for fixing and heating the substrate, and the second electrode has a structure for fixing and heating the substrate. A semiconductor thin film manufacturing apparatus comprising a metal plate having a large number of holes, at least one of which is connected to a second exhaust system.
(5)基板を固定する構造を有する第一の電極を反応室
上部に設け、第二の排気系を有する第二の電極を反応室
下部に設けることを特徴とする請求項(4)記載の半導
体薄膜製造装置。
(5) The first electrode having a structure for fixing the substrate is provided in the upper part of the reaction chamber, and the second electrode having a second exhaust system is provided in the lower part of the reaction chamber. Semiconductor thin film manufacturing equipment.
(6)反応室には、第二の電極に設けた第二の排気系と
は別に、反応室下部にも第三の排気系を少なくとも1つ
以上設け、この第三の排気系のコンダクタンスを前記第
二の排気系のコンダクタンスよりも大きくすることを特
徴とする請求項4記載の半導体薄膜製造装置。
(6) In the reaction chamber, in addition to the second exhaust system provided at the second electrode, at least one third exhaust system is provided at the bottom of the reaction chamber, and the conductance of this third exhaust system is 5. The semiconductor thin film manufacturing apparatus according to claim 4, wherein the conductance is made larger than the conductance of the second exhaust system.
(7)半導体多層薄膜を製膜する際に、プラズマ形成電
極周辺を囲むガス導入系とガス溜室内、反応室下部、下
部電極に排気系を設けた前記半導体薄膜製造装置を用い
ることを特徴とする半導体多層薄膜の製造方法。
(7) When forming a semiconductor multilayer thin film, the semiconductor thin film manufacturing apparatus described above is used, which is provided with a gas introduction system surrounding the plasma forming electrode and an exhaust system in the gas reservoir, the lower part of the reaction chamber, and the lower electrode. A method for manufacturing a semiconductor multilayer thin film.
(8)前記半導体製造装置を用いて、ガスを導入する際
には第二及び第三の排気系を閉じた状態で第一の排気系
で初期排気を行い、その後前記第三の排気系、前記第二
の排気系を順番に開け反応室内にガスを導入し、また、
反応室にガスがある状態から高真空状態に排気する際に
は排気状態にある前記第二の排気系、前記第三の排気系
を順番に閉め、まず前記第一の排気系からガスを排気し
、つづいて前記第三の排気系、前記第二の排気系を再び
順番に開けることを特徴とする請求項7記載の半導体多
層薄膜の製造方法。
(8) When introducing gas using the semiconductor manufacturing apparatus, initial exhaust is performed with the first exhaust system with the second and third exhaust systems closed, and then the third exhaust system, The second exhaust system is sequentially opened to introduce gas into the reaction chamber, and
When evacuating a reaction chamber from a state where there is gas to a high vacuum state, the second exhaust system and the third exhaust system that are in the exhaust state are closed in order, and the gas is exhausted from the first exhaust system first. 8. The method of manufacturing a semiconductor multilayer thin film according to claim 7, wherein the third exhaust system and the second exhaust system are sequentially opened again.
JP29021189A 1989-11-08 1989-11-08 Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film Pending JPH03151629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29021189A JPH03151629A (en) 1989-11-08 1989-11-08 Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29021189A JPH03151629A (en) 1989-11-08 1989-11-08 Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film

Publications (1)

Publication Number Publication Date
JPH03151629A true JPH03151629A (en) 1991-06-27

Family

ID=17753188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29021189A Pending JPH03151629A (en) 1989-11-08 1989-11-08 Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film

Country Status (1)

Country Link
JP (1) JPH03151629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439523A (en) * 1994-02-14 1995-08-08 Memc Electronic Materials, Inc. Device for suppressing particle splash onto a semiconductor wafer
US5888579A (en) * 1996-07-29 1999-03-30 Texas Instruments-Acer Incorporated Method and apparatus for preventing particle contamination in a process chamber
WO2002008487A1 (en) * 2000-07-24 2002-01-31 The University Of Maryland, College Park Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439523A (en) * 1994-02-14 1995-08-08 Memc Electronic Materials, Inc. Device for suppressing particle splash onto a semiconductor wafer
US5888579A (en) * 1996-07-29 1999-03-30 Texas Instruments-Acer Incorporated Method and apparatus for preventing particle contamination in a process chamber
WO2002008487A1 (en) * 2000-07-24 2002-01-31 The University Of Maryland, College Park Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation
US6821910B2 (en) 2000-07-24 2004-11-23 University Of Maryland, College Park Spatially programmable microelectronics process equipment using segmented gas injection showerhead with exhaust gas recirculation

Similar Documents

Publication Publication Date Title
US6539891B1 (en) Chemical deposition reactor and method of forming a thin film using the same
US7825039B2 (en) Vertical plasma processing method for forming silicon containing film
US8227346B2 (en) Method of producing semiconductor device
US8394200B2 (en) Vertical plasma processing apparatus for semiconductor process
KR100355321B1 (en) Film forming method and apparatus
US4624214A (en) Dry-processing apparatus
JPH02114530A (en) Thin film formation device
JP2005502784A (en) Plasma reinforced atomic layer deposition apparatus and thin film forming method using the same
KR20060021940A (en) Thin film forming method and thin film forming device
KR100721504B1 (en) Plasma enhanced atomic layer deposition equipment and method of forming a thin film using the same
JP2006057162A (en) Method for forming barrier film
KR101282544B1 (en) Film-forming method and film-forming apparatus
JPH02234419A (en) Plasma electrode
KR20010007431A (en) Chemical deposition reactor and method of forming a thin film using the same
JPH04370924A (en) Cvd device
JPH1154441A (en) Catalytic chemical evaporation device
JPH03151629A (en) Manufacturing equipment for semiconductor thin film and manufacture of semiconductor multilayer thin film
CN101107379B (en) Gas treatment method
JP3670524B2 (en) Manufacturing method of semiconductor device
JP3507614B2 (en) Thin film deposition equipment
JPH02184022A (en) Cvd electrode
JPH02200784A (en) Cvd electrode
JP2001073146A (en) Thin film deposition system and method
JPH0555150A (en) Microwave plasma processing apparatus
US20230323531A1 (en) Coating interior surfaces of complex bodies by atomic layer deposition