JPS6314422A - Plasma chemical vapor desposition method - Google Patents

Plasma chemical vapor desposition method

Info

Publication number
JPS6314422A
JPS6314422A JP15900686A JP15900686A JPS6314422A JP S6314422 A JPS6314422 A JP S6314422A JP 15900686 A JP15900686 A JP 15900686A JP 15900686 A JP15900686 A JP 15900686A JP S6314422 A JPS6314422 A JP S6314422A
Authority
JP
Japan
Prior art keywords
plasma
sample
plasma cvd
plasma cleaning
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15900686A
Other languages
Japanese (ja)
Other versions
JPH0777198B2 (en
Inventor
Yoichi Onishi
陽一 大西
Mikio Takebayashi
幹男 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15900686A priority Critical patent/JPH0777198B2/en
Publication of JPS6314422A publication Critical patent/JPS6314422A/en
Publication of JPH0777198B2 publication Critical patent/JPH0777198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To perform a plasma cleaning on the ineffective film adhered to the component parts located in a vacuum chamber of a plasma CVD device in an excellent reproducible manner by a method wherein a plasma cleaning operation is performed while the self-biased voltage of the electrode, with which low temperature plasma is generated in the vacuum chamber, is being monitored. CONSTITUTION:When a plasma cleaning is performed on the component parts in the reaction chamber 41 of a plasma CVD device, the plasma cleaning is performed while the self-biased voltage of the electrode 46, with which low- temperature plasma is generated, is being monitored. For example, a silicon nitride film is formed on the surface of a sample 42 using the plasma CVD device, and after the sample 42 has been picked out from the vacuum chamber 41, the vacuum chamber 41 is evacuated, SF6 gas is introduced from a gas flow-rate controlling device 47, and low temperature plasma is generated. Also, while the plasma cleaning is being performed, the self-biased voltage of the electrode 46 is measured by a voltmeter 53 through the intermediary of a filter 52. Then, when the self-biased voltage dropped to the prescribed value, the supply of high frequency power is stopped, and the plasma cleaning operation is finished.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プラダ? CV D (Chemi ca 
l VaporDeposition)法によって、薄
膜6成する方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention applies to PRADA? CV D (Chemi ca
The present invention relates to a method for forming a thin film 6 by a vapor deposition method.

従来の技術 プラズマCVD方法は、真空容器内に試料を保持し、形
成すべき薄膜の組成元素を含む化合物ガスを供給しなが
ら、高周波エネルギによって、前記化合物ガスを励起・
し、試料表面をそのプラズマ雰囲気に配置することによ
って、試料表面に薄膜を形成する方法である。この方法
は、プラズマの活性を利用しているため、室温から40
0°C程度までの低温で膜形成を行うことができるとい
う特徴がある。
In the conventional plasma CVD method, a sample is held in a vacuum container, and while a compound gas containing the constituent elements of the thin film to be formed is supplied, the compound gas is excited and energized by high-frequency energy.
This method forms a thin film on the sample surface by placing the sample surface in the plasma atmosphere. This method utilizes plasma activity, so it is possible to
It has the characteristic that film formation can be performed at a low temperature of about 0°C.

プラズマCVD法による薄膜形成上の課題は、形成薄膜
の膜質および膜厚分布の制御並びにピンホールやパーテ
ィクルの付着等の膜欠陥の問題である。また、生産面で
の課題は堆積速度の向上である。
Issues in forming thin films by plasma CVD include control of the quality and thickness distribution of the formed thin film, and problems with film defects such as pinholes and particle adhesion. Another issue in terms of production is improving the deposition rate.

従って、良質のプラズマCVD膜を均一に試料表面に形
成するためには、薄膜形成時の低温プラズマの分布およ
びその安定度、試料加熱分布並びに試料保持温度等のプ
ロセス条件に工夫が必要である。
Therefore, in order to uniformly form a high-quality plasma CVD film on the sample surface, it is necessary to devise process conditions such as the distribution and stability of low-temperature plasma during thin film formation, sample heating distribution, and sample holding temperature.

以下図面を参照しながら、上述した従来のプラズマ気相
成長装置の一例について説明する。
An example of the above-mentioned conventional plasma vapor phase growth apparatus will be described below with reference to the drawings.

第3図に従来のプラズマ気相成長装置を示す。FIG. 3 shows a conventional plasma vapor phase growth apparatus.

第3図において、1は真空状態の維持が可能な真空容器
、2はプラズマCVD膜が形成される試料、3は試料2
を保持し、かつ、内部に加熱用のヒータを有し、試料2
を加熱することが可能な試料台、4は試料台3の内部に
搭載されたヒータ、6はヒータ4に交流電力を供給する
ための交流電源、6は例えば50KHzの高周波電力が
供給される電極、7は周波数60KHz  の高周波電
源、8は真空容器1内の圧力を大気圧以下の真空度に真
空排気するだめの真空ポンプ、9は真空容器1と真空ポ
ンプ8の間を気密に接続する真空排気用のパイプ、1o
は真空容器1内の圧力を管内抵抗を可変にし、すなわち
真空ポンプ8の有効排気速度を可変にして制御するバタ
フライバルブ、11はガス流量制御装置を介して化合物
ガスを真空容器1内に導入するためのガスノズルである
In FIG. 3, 1 is a vacuum container that can maintain a vacuum state, 2 is a sample on which a plasma CVD film is formed, and 3 is a sample 2.
and has an internal heater for heating sample 2.
4 is a heater mounted inside the sample stage 3, 6 is an AC power source for supplying AC power to the heater 4, and 6 is an electrode to which high frequency power of, for example, 50 KHz is supplied. , 7 is a high-frequency power supply with a frequency of 60 KHz, 8 is a vacuum pump for evacuating the pressure inside the vacuum container 1 to a degree of vacuum below atmospheric pressure, and 9 is a vacuum for airtightly connecting the vacuum container 1 and the vacuum pump 8. Exhaust pipe, 1o
11 is a butterfly valve that controls the pressure inside the vacuum vessel 1 by making the resistance inside the tube variable, that is, the effective pumping speed of the vacuum pump 8; and 11 is a gas flow rate controller that introduces compound gas into the vacuum vessel 1. This is a gas nozzle for.

以上のように構成されたプラズマ気相成長装置について
、以下その動作について説明する。
The operation of the plasma vapor deposition apparatus configured as described above will be described below.

まず真空容器1内を真空ポンプ8によシ、60mTor
r以下の真空度まで真空排気した後、試料2表面に形成
すべき薄膜の組成元素を含む化合物ガスをガスノズル1
1から流量制御装置で制御しながら真空容器1内に導入
する。
First, the inside of the vacuum container 1 is pumped with the vacuum pump 8 to 60mTor.
After evacuation to a vacuum level below
1 into the vacuum container 1 while being controlled by a flow rate controller.

さらにバタフライバルブ1oを操作し、薄膜形成条件で
ある圧力すなわち100〜400mTorτに真空容器
1内を制御する。また試料2は試料台3によってSOO
″C程度の温度に加熱制御する。次く電極6に周波数6
0KHz の高周波電力を供給することによって、前記
化合物ガスを励起し、試料2表面をそのプラズマ雰囲気
にさらすことによって、試料2表面にプラズマCVD膜
を形成する。
Furthermore, the butterfly valve 1o is operated to control the inside of the vacuum vessel 1 to a pressure of 100 to 400 mTorτ, which is the thin film forming condition. In addition, the sample 2 is placed at SOO by the sample stage 3.
Heating is controlled to a temperature of about 1000 ft.
A plasma CVD film is formed on the surface of the sample 2 by exciting the compound gas by supplying high frequency power of 0 KHz and exposing the surface of the sample 2 to the plasma atmosphere.

ところで、試料2表面にプラズマCVD膜を形成する際
には、電極6、試料台3、真空容器1等々の真空容器1
内構成部品にも類似の膜(無効な膜)が堆積する。すな
わち、類似の腋が真空容器1内構成部品に累積する。こ
の類似の膜は比較的密着力が弱く、その膜厚増加と共に
、真空容器1内にフレークを発生させる。その結果試料
2表面にパーティクルが多量に付着し、試料2表面に形
成したプラズマCVD膜に膜欠陥を生じさせる。
By the way, when forming a plasma CVD film on the surface of the sample 2, the electrode 6, the sample stage 3, the vacuum vessel 1, etc.
A similar film (ineffective film) is also deposited on internal components. That is, similar armpits accumulate in the components inside the vacuum container 1. This similar film has relatively weak adhesion, and as the film thickness increases, flakes are generated within the vacuum vessel 1. As a result, a large amount of particles adhere to the surface of the sample 2, causing film defects in the plasma CVD film formed on the surface of the sample 2.

そこで、定期的に真空容器1内構成部品に付着した無効
な膜を除去する必要がある。その手段として、プラズマ
クリーニングが用いられる。これは、真空容器1内にガ
スノズル11よりハロゲンガスを導入し、所定の圧力に
保持した後、電極6に高周波電力を供給することによっ
て、真空容器1内に低温プラズマを発生させ、低温プラ
ズマ中の活性種によって、無効な膜をドライエツチング
するものである。例えば、試料2表面に窒化シリコン膜
を堆積させるプラズマCVD装置の場合には、前記ハロ
ゲンガスは、六フッ化イオウ(SF6)や四フッ化炭素
(CF4)と酸素(o2)との混合ガスが用いられる。
Therefore, it is necessary to periodically remove the ineffective film adhering to the components inside the vacuum vessel 1. Plasma cleaning is used as a means for this purpose. This involves introducing halogen gas into the vacuum chamber 1 through the gas nozzle 11, maintaining it at a predetermined pressure, and then supplying high-frequency power to the electrode 6 to generate low-temperature plasma within the vacuum chamber 1. The activated species of this method dry-etch the ineffective film. For example, in the case of a plasma CVD apparatus that deposits a silicon nitride film on the surface of the sample 2, the halogen gas may be sulfur hexafluoride (SF6) or a mixed gas of carbon tetrafluoride (CF4) and oxygen (O2). used.

また、プラズマクリーニング後、膜堆積速度および膜質
等を安定化させるため、通常試料2に膜堆積を行う前に
試料2を入れない状態で、真空容器1内構成部品にあら
かじめ膜堆積を行う(以下この動作をプリデポジション
という。)。
In addition, in order to stabilize the film deposition rate and film quality after plasma cleaning, before depositing the film on the sample 2, the film is usually deposited on the components inside the vacuum vessel 1 without the sample 2 (hereinafter referred to as This operation is called pre-deposition.)

発明が解決しようとする問題点 しかしながら上記のような構成では下記の問題点を有し
ていた。
Problems to be Solved by the Invention However, the above configuration has the following problems.

すなわち、プラズマクリーニングを低温プラズマの発生
時間によって管理及び制御しているため、再現性良くプ
ラズマクリー二゛ングをすることが困難である。従って
、プラズマクリーニングが不十分の場合、プラズマCV
D膜に膜欠陥を生じさせる。また、プラズマクリーニン
グ状態が検知できないため、プリデポジション条件を明
確に設定できないという問題点を有していた。
That is, since plasma cleaning is managed and controlled by the generation time of low-temperature plasma, it is difficult to perform plasma cleaning with good reproducibility. Therefore, if plasma cleaning is insufficient, plasma CV
D causes film defects in the film. Furthermore, since the plasma cleaning state cannot be detected, there is a problem in that predeposition conditions cannot be clearly set.

本発明は上記問題点に鑑み、プラズマCVD装置の真空
容器内構成部品に付着した無効な膜を再現性良くプラズ
マクリーニングすることが可能なプラズマCVD方法を
提供するものである。
In view of the above-mentioned problems, the present invention provides a plasma CVD method capable of plasma cleaning an ineffective film attached to a component inside a vacuum chamber of a plasma CVD apparatus with good reproducibility.

問題点を解決するための手段 上記問題点を解決するために、本発明のプラズマCVD
方法は、プラズマCVD装置の反応容器内構成部品を反
応容器内においてプラズマクリーニングする際、高周波
電力が印加され、真空容器内に低温プラズマを発生させ
る電極の自己バイアス電圧をモニタリングしながらプラ
ズマクリーニングを行う方法である。
Means for Solving the Problems In order to solve the above problems, the plasma CVD of the present invention
The method involves plasma cleaning the internal components of a reaction vessel of a plasma CVD apparatus by applying high frequency power and monitoring the self-bias voltage of an electrode that generates low-temperature plasma within the vacuum vessel. It's a method.

作  用 本発明は上記した構成によって、プラズマCVD装置の
反応容器内構成部品を反応容器内においてプラズマクリ
ーニングする際、電極の自己バイアス電圧をモニタリン
グしながらプラズマク、リーニングができ例えば前記電
圧が所定の値に増加した時、高周波電力の供給を停止し
、プラズマクリーニングを終了することによって、再現
性良くプラズマクリーニングをすることができる。
Effect of the Invention With the above-described configuration, the present invention allows plasma cleaning to be performed while monitoring the self-bias voltage of the electrode when performing plasma cleaning of the internal components of the reaction vessel of a plasma CVD apparatus within the reaction vessel. Plasma cleaning can be performed with good reproducibility by stopping the supply of high frequency power and terminating plasma cleaning when the amount increases to .

実施例 以下本発明の一実施例のプラズマCVD装置について図
面を参照しながら説明する。
EXAMPLE Hereinafter, a plasma CVD apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は、本発明の実施例に用いるプラズマ気相成長装
置の概略断面図を示すものである。
FIG. 1 shows a schematic cross-sectional view of a plasma vapor phase growth apparatus used in an embodiment of the present invention.

第1図において、41は真空状態の維持が可能な真空容
器(反応容器)、42はプラズマCVD膜が形成される
被加工物としての試料、43は試料42を保持し、かつ
、内部に加熱装置を有し試料42を加熱することが可能
なアース接地された被加工物保持手段としての試料台、
44は試料台43の内部に搭載された加熱装置、46は
交流電源、46は周波数60KHzの高周波電力が供給
される電極、47はガス流量制御装置、48は周波数5
0 KHzの高周波電源、49は真空容器41内の圧力
を大気圧以下の真空度にするための真空排気手段として
の真空ポンプ、60は真空容器41と真空ポンプ49と
の間を気密に接続する真空排気用のパイプ、61は真空
容器41内の圧力を制御するだめの圧力制御装置、62
は高周波成分を除去するためのフィルター、63は電圧
計である。
In FIG. 1, 41 is a vacuum container (reaction container) that can maintain a vacuum state, 42 is a sample as a workpiece on which a plasma CVD film is formed, and 43 is a container that holds sample 42 and heats the inside. a sample stand as a grounded workpiece holding means that has a device and is capable of heating the sample 42;
44 is a heating device mounted inside the sample stage 43, 46 is an AC power source, 46 is an electrode to which high frequency power with a frequency of 60 KHz is supplied, 47 is a gas flow rate control device, and 48 is a frequency 5
0 KHz high frequency power supply; 49, a vacuum pump as evacuation means for reducing the pressure inside the vacuum container 41 to a degree of vacuum below atmospheric pressure; 60, an airtight connection between the vacuum container 41 and the vacuum pump 49; A pipe for evacuation, 61 is a pressure control device for controlling the pressure inside the vacuum container 41, 62
is a filter for removing high frequency components, and 63 is a voltmeter.

以上のように構成されたプラズマCVD装置を用いたプ
ラズマCVD方法を説明する。
A plasma CVD method using the plasma CVD apparatus configured as described above will be explained.

まず、真空容器41内を真空ポンプ49によって、30
mTorr以下の真空度まで真空排気した後、試料42
表面に形成すべき薄膜の組成元素を含む化合物ガス、す
なわち、モノシラン(S I H4) tアンモニア(
NH3)、窒素(N2)の混合ガスを各々13SCCM
、 31SCCM、 142 SCCM のガス流量で
、ガス流量制御装置47より真空容器41内に導入し、
かつ、真空容器41内の圧力を圧力制御装置61を操作
して、260mTorrに保持する。
First, the vacuum pump 49 pumps the inside of the vacuum container 41 for 30 minutes.
After evacuation to a vacuum level of mTorr or less, sample 42
Compound gas containing the constituent elements of the thin film to be formed on the surface, i.e., monosilane (S I H4) t ammonia (
NH3) and nitrogen (N2) mixed gas at 13 SCCM each.
, 31 SCCM, and 142 SCCM are introduced into the vacuum vessel 41 from the gas flow rate controller 47,
In addition, the pressure inside the vacuum container 41 is maintained at 260 mTorr by operating the pressure control device 61.

また、試料42は試料台43によって300°Cの温度
に加熱制御する。次に、電極46に高周波電源48より
周波数50KHzの高周波電力を供給することによって
、試料42を含む空間に低温プラズマを発生させる。以
上の結果、試料42上に屈折率1.998±0.02、
膜厚分布±3チのシリコンナイトライド膜を形成するこ
とができた。
Further, the sample 42 is heated and controlled to a temperature of 300° C. by the sample stage 43. Next, by supplying high frequency power with a frequency of 50 KHz to the electrode 46 from the high frequency power supply 48, low temperature plasma is generated in the space containing the sample 42. As a result, the refractive index is 1.998±0.02 on the sample 42,
A silicon nitride film with a film thickness distribution of ±3 inches could be formed.

次に、プラズマクリーニングを行う際の動作を説明する
Next, the operation when performing plasma cleaning will be explained.

まず、試料42を真空容器41内より取り出した後、真
空容器41内を真空ポンプ49によって、30mTor
r以下の真空度まで真空排気した後、六フッ化硫黄(S
F6)ガスを200SCCMのガス流量で、ガス流量制
御装置47より真空容器41内に導入し、かつ、真空容
器41内の圧力を圧力制御装置61を操作して、300
 m Tor rに保持する。次に、電極46に高周波
電源48よシ周波数50KHzの高周波電力を供給する
ことによって、低温プラズマを発生させる。
First, after taking out the sample 42 from inside the vacuum container 41, the inside of the vacuum container 41 is heated to 30 mTor by the vacuum pump 49.
After evacuation to a vacuum degree of r or less, sulfur hexafluoride (S
F6) Gas is introduced into the vacuum container 41 from the gas flow rate controller 47 at a gas flow rate of 200 SCCM, and the pressure inside the vacuum container 41 is controlled to 300 SCCM by operating the pressure controller 61.
Hold at m Torr. Next, low-temperature plasma is generated by supplying high-frequency power with a frequency of 50 KHz from the high-frequency power source 48 to the electrode 46 .

まだ、プラズマクリーニング中、電極46の自己バイア
ス電圧をフィルター52を介し、電圧計63で測定する
Still during plasma cleaning, the self-bias voltage of the electrode 46 is measured with a voltmeter 63 via a filter 52.

その測定結果を第2図に示す。第2図中A点は低温プラ
ズマが発生した時の自己バイアス電圧を示す。第2図よ
り明らかなように、プラズマクリーニングが進行すると
共K、ある時間より自己バイアス電圧が減少する。この
増加後の一定の値を決め、(本実施例では一141vに
した)その値になった時、高周波電力の供給を停止し、
プラズマクリーニングを終了する。
The measurement results are shown in FIG. Point A in FIG. 2 shows the self-bias voltage when low temperature plasma is generated. As is clear from FIG. 2, as plasma cleaning progresses, the self-bias voltage decreases over a certain period of time. A certain value after this increase is determined, and when that value is reached (-141V in this example), the supply of high frequency power is stopped,
Finish plasma cleaning.

次)で、プラズマクリーニング後、一定条件で膜形成を
約1μmの膜厚でプリデポジションを行った後、窒化シ
リコン膜の膜堆積速度を調べてみると、表1に示すよう
にほぼ同等の値が得られた(墓1〜扁6の6回の実験を
行った。)。すなわちプラズマクリーニングが再現性良
くできたことを示している。
After plasma cleaning and pre-deposition with a film thickness of approximately 1 μm under certain conditions, we investigated the film deposition rate of the silicon nitride film and found that it was almost the same as shown in Table 1. The value was obtained (6 experiments were conducted from Tomi 1 to Hibi 6). In other words, this shows that plasma cleaning was performed with good reproducibility.

表−1 以上のように、本実施例によれば、プラズマクリーニン
グの際、高周波電力が印加され、真空容器41内に低温
プラズマを発生させる電極46の自己バイアス電圧を電
圧計63でモニタリングし、所定の値にその値が減少し
た時、高周波電力の供給を停止し、プラズマクリーニン
グを終了することによって、再現性良くプラズマクリー
ニングをすることができた。
Table 1 As described above, according to this embodiment, during plasma cleaning, high-frequency power is applied, and the self-bias voltage of the electrode 46 that generates low-temperature plasma in the vacuum container 41 is monitored with the voltmeter 63, When the value decreased to a predetermined value, the supply of high frequency power was stopped and plasma cleaning was completed, thereby making it possible to perform plasma cleaning with good reproducibility.

発明の効果 本発明によれば、プラズマCVD装置の反応容器内構成
部品を反応容器内においてプラズマクリーニングする際
、高周波電力が印加され、真空容器内に低温プラズマを
発生させる電極の自己バイアス電圧をモニタリングしな
がらプラズマクリーニングを行い、例えば自己バイアス
電圧が所定の値に減少した時、プラズマクリーニングを
停止することができることによって、再現性良くプラズ
マクリーニングを行うことができる。
Effects of the Invention According to the present invention, when performing plasma cleaning of the internal components of a reaction vessel of a plasma CVD apparatus in the reaction vessel, high frequency power is applied and the self-bias voltage of the electrode that generates low-temperature plasma in the vacuum vessel is monitored. Plasma cleaning can be performed with high reproducibility by, for example, being able to stop plasma cleaning when the self-bias voltage decreases to a predetermined value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるプラズマCVD装置の
概略断面図、第2図はプラズマクリーニング中の電極の
自己バイアス電圧をモニタリングした図、第3図は従来
のプラズマCVD装置の概略断面図である。 41・・・・・・真空容器、42・・・・・・試料、4
3・・・・・・試料台、44・・・・・・加熱装置、4
6・・・・・・交流電源、46電極、47・・・・・・
ガス流量制御装置、48・・・・・・高周波電源、49
・・・・・・真空ポンプ、6o・・・・・・パイプ、6
1・・・・・・圧力制御装置、62・・・・・・フィル
ター、63・・・・・・電圧計。
Fig. 1 is a schematic cross-sectional view of a plasma CVD apparatus according to an embodiment of the present invention, Fig. 2 is a view monitoring the self-bias voltage of an electrode during plasma cleaning, and Fig. 3 is a schematic cross-sectional view of a conventional plasma CVD apparatus. be. 41... Vacuum container, 42... Sample, 4
3... Sample stand, 44... Heating device, 4
6... AC power supply, 46 electrodes, 47...
Gas flow rate control device, 48...High frequency power supply, 49
...Vacuum pump, 6o...Pipe, 6
1...Pressure control device, 62...Filter, 63...Voltmeter.

Claims (2)

【特許請求の範囲】[Claims] (1)真空状態の維持が可能な反応容器と、反応容器内
を減圧雰囲気にするための排気手段と、プラズマCVD
膜を少なくとも一方の表面に堆積させる試料を保持する
試料保持手段と、試料を加熱制御するための加熱手段と
、反応容器内に原料ガスを導入するためのガス供給手段
と、反応容器内を所定の圧力に保持するための圧力制御
手段と、少なくとも試料を含む空間に低温プラズマを発
生させる電極と、電極に高周波電力を供給し、低温プラ
ズマを発生させるためのプラズマ発生手段とからなるプ
ラズマCVD装置を用いたプラズマCVD方法において
、プラズマCVD装置の反応容器内構成部品を反応容器
内においてプラズマクリーニングする際、電極の自己バ
イアス電圧をモニタリングしながらプラズマクリーニン
グを行うプラズマCVD方法。
(1) A reaction vessel capable of maintaining a vacuum state, an exhaust means for creating a reduced pressure atmosphere inside the reaction vessel, and plasma CVD
A sample holding means for holding a sample on which a film is to be deposited on at least one surface, a heating means for controlling heating of the sample, a gas supply means for introducing raw material gas into the reaction vessel, and a sample holding means for holding a sample on which a film is to be deposited on at least one surface; A plasma CVD apparatus comprising: a pressure control means for maintaining the pressure at a pressure of A plasma CVD method using a plasma CVD method in which plasma cleaning is performed while monitoring the self-bias voltage of an electrode when plasma cleaning components inside a reaction vessel of a plasma CVD apparatus in the reaction vessel.
(2)プラズマCVD装置の反応容器内構成部品を反応
容器内においてプラズマクリーニングする際、電極の自
己バイアス電圧が所定の値に減少した時、プラズマクリ
ーニングを終了する特許請求の範囲第1項記載のプラズ
マCVD方法。
(2) When the internal components of the reaction vessel of the plasma CVD apparatus are plasma cleaned in the reaction vessel, the plasma cleaning is terminated when the self-bias voltage of the electrode decreases to a predetermined value. Plasma CVD method.
JP15900686A 1986-07-07 1986-07-07 Plasma CVD method Expired - Lifetime JPH0777198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15900686A JPH0777198B2 (en) 1986-07-07 1986-07-07 Plasma CVD method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15900686A JPH0777198B2 (en) 1986-07-07 1986-07-07 Plasma CVD method

Publications (2)

Publication Number Publication Date
JPS6314422A true JPS6314422A (en) 1988-01-21
JPH0777198B2 JPH0777198B2 (en) 1995-08-16

Family

ID=15684178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15900686A Expired - Lifetime JPH0777198B2 (en) 1986-07-07 1986-07-07 Plasma CVD method

Country Status (1)

Country Link
JP (1) JPH0777198B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117439A1 (en) * 2007-03-27 2008-10-02 Fujitsu Limited Surface processing method and method for producing recording medium
US7534469B2 (en) 2005-03-31 2009-05-19 Asm Japan K.K. Semiconductor-processing apparatus provided with self-cleaning device
US7632549B2 (en) 2008-05-05 2009-12-15 Asm Japan K.K. Method of forming a high transparent carbon film
US7638441B2 (en) 2007-09-11 2009-12-29 Asm Japan K.K. Method of forming a carbon polymer film using plasma CVD
WO2011071069A1 (en) * 2009-12-11 2011-06-16 シャープ株式会社 Method for cleaning film forming apparatus, film forming method, and film forming apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534469B2 (en) 2005-03-31 2009-05-19 Asm Japan K.K. Semiconductor-processing apparatus provided with self-cleaning device
WO2008117439A1 (en) * 2007-03-27 2008-10-02 Fujitsu Limited Surface processing method and method for producing recording medium
JP5123930B2 (en) * 2007-03-27 2013-01-23 昭和電工株式会社 Manufacturing method of recording medium
US7638441B2 (en) 2007-09-11 2009-12-29 Asm Japan K.K. Method of forming a carbon polymer film using plasma CVD
US7632549B2 (en) 2008-05-05 2009-12-15 Asm Japan K.K. Method of forming a high transparent carbon film
WO2011071069A1 (en) * 2009-12-11 2011-06-16 シャープ株式会社 Method for cleaning film forming apparatus, film forming method, and film forming apparatus
CN102656664A (en) * 2009-12-11 2012-09-05 夏普株式会社 Method for cleaning film forming apparatus, film forming method, and film forming apparatus

Also Published As

Publication number Publication date
JPH0777198B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JP2001096244A (en) Method and device for washing in improved chamber
JPS6314422A (en) Plasma chemical vapor desposition method
JP3286951B2 (en) Plasma CVD film forming method and apparatus
JPH0456770A (en) Method for cleaning plasma cvd device
JP2537822B2 (en) Plasma CVD method
JP7091198B2 (en) Manufacturing method of plasma processing equipment and semiconductor equipment
TWI810682B (en) Method of reducing defects in a multi-layer pecvd teos oxide film
JPS63129629A (en) Plasma cvd method
JP2726414B2 (en) Method for producing silicon-based thin film
JPS62287079A (en) Plasma cvd apparatus
JPS63166972A (en) Plasma cvd method
JPH01136970A (en) Method for cleaning plasma cvd apparatus
JPH01104778A (en) Plasma cvd device
JPS60147113A (en) Manufacture of silicon film
JPS62287078A (en) Plasma cvd apparatus
JPS61260623A (en) Plasma vapor growth equipment
JPH01298169A (en) Film formation
JPS61256639A (en) Plasma vapor deposition apparatus
JPS61256640A (en) Plasma chemical vapor deposition apparatus
TWI794318B (en) Methods and apparatuses for increasing reactor processing batch size
RU1610927C (en) Device for coating in vacuum
JP2502582B2 (en) Plasma CVD equipment
JPS62287077A (en) Plasma vapor growth device
JPH0729829A (en) Method and system for dc discharge plasma processing
JPS62145811A (en) Plasma processor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term