JPS62287078A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS62287078A
JPS62287078A JP13234086A JP13234086A JPS62287078A JP S62287078 A JPS62287078 A JP S62287078A JP 13234086 A JP13234086 A JP 13234086A JP 13234086 A JP13234086 A JP 13234086A JP S62287078 A JPS62287078 A JP S62287078A
Authority
JP
Japan
Prior art keywords
plasma
vacuum container
vacuum
sample
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13234086A
Other languages
Japanese (ja)
Inventor
Yoichi Onishi
陽一 大西
Mikio Takebayashi
幹男 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13234086A priority Critical patent/JPS62287078A/en
Publication of JPS62287078A publication Critical patent/JPS62287078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable the removal of useless films sticking to all the constituent parts in a vacuum vessel by electrically floating a sample stand so as to easily generate low temp. plasma even at a position at which low temp. plasma is hardly generated by conventional plasma cleaning. CONSTITUTION:This plasma CVD apparatus is composed essentially of a vacuum vessel 41, an evacuating means 49, a pressure controlling means 51, a gas feeding means, an electrode 46 and a means 43 of holding a body 42 to be processed. When high frequency electric power is supplied to the electrode 46, the electrode 46 generates low temp. plasma in the space in the vacuum vessel 41 including the body 42 to be processed. The holding means 43 floats electrically and can be earthed or high frequency electric power can be supplied to the means 43.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、プラズマCV D (Chetnical 
VaporDeposition)法によって、被加工
物である試料の表面に薄膜を形成するだめのプラズマC
VD装2ベーノ 置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention is directed to plasma CVD (Chetnical
Using the VaporDeposition method, plasma C is used to form a thin film on the surface of the sample, which is the workpiece.
This relates to a VD device with two vanes.

従来の技術 プラズマCVD法は真空容器内に試料を保持し、形成す
べき薄膜の組成元素を含む化合物ガスを供給しながら、
高周波エネルギによって、前記の化合物ガスを励起し、
試料表面をその低温プラズマ雰囲気に配置することによ
って、試料表面に薄膜を形成(堆積)する方法である。
In the conventional plasma CVD method, a sample is held in a vacuum container, and a compound gas containing the constituent elements of the thin film to be formed is supplied.
Exciting the compound gas by high frequency energy,
This is a method of forming (depositing) a thin film on a sample surface by placing the sample surface in a low-temperature plasma atmosphere.

この方法は低温プラズマの活性さを利用しているため、
室温から4o○°C程度寸での低温で薄膜形成を行なう
ことができるという特徴がある。
This method utilizes the activity of low-temperature plasma, so
It is characterized in that thin films can be formed at low temperatures ranging from room temperature to about 4°C.

プラズマCVD法による薄膜形成上の課題は、形成薄膜
の膜質および膜厚分布の制御並びにピンホールやパーテ
ィクルの付着等の膜欠陥の問題である。また、生産面で
の課題は堆積速度の向上である。
Issues in forming thin films by plasma CVD include control of the quality and thickness distribution of the formed thin film, and problems with film defects such as pinholes and particle adhesion. Another issue in terms of production is improving the deposition rate.

従って、良質のプラズマCVD膜を均一に試料表面に形
成するためには、薄膜形成時の低温プラズマの分布およ
びその安定度、試料加熱分布並びに試料保持温度等のプ
ロセス条件に工夫が必要で3ベーノ 和り ある。
Therefore, in order to uniformly form a high-quality plasma CVD film on the sample surface, it is necessary to devise process conditions such as the distribution and stability of the low-temperature plasma during thin film formation, the sample heating distribution, and the sample holding temperature. It's peaceful.

以下図面を参照しながら、上述した従来のプラズマ気相
成長装置の一例について説明する。
An example of the above-mentioned conventional plasma vapor phase growth apparatus will be described below with reference to the drawings.

第2図に従来のプラズマ気相成長装置を示す。FIG. 2 shows a conventional plasma vapor phase growth apparatus.

第2図において、1は真空状態の維持が可能々真空容器
、2はプラズマCVD膜が形成される試料、3は試料2
を保持し、かつ、内部に加熱用のヒータを有し、試料2
を加熱することが可能な試料台、4は試料台3の内部に
搭載されたヒータ、5はヒータ4に交流電力を供給する
ための交流電源、6は例えば50k)hの高周波電力が
供給される電極、7は周波数50kHzの高周波電源、
8は真空容器1内の圧力を大気圧以下の真空度に真空排
気するための真空ポンプ、9は真空容器1と真空ポンプ
8の間を気密に接続する真空排気用のパイプ、10は真
空容器1内の圧力を管内抵抗を可変にし、すなわち真空
ポンプ8の有効排気速度を可変にして制御するバタフラ
イバルブ、11はガス流量制御装置を介して化合物ガス
を真空容器1内に導入するためのガスノズルである。
In Fig. 2, 1 is a vacuum container capable of maintaining a vacuum state, 2 is a sample on which a plasma CVD film is formed, and 3 is a sample 2.
and has an internal heater for heating sample 2.
4 is a heater mounted inside the sample stage 3, 5 is an AC power source for supplying AC power to the heater 4, and 6 is supplied with high frequency power of, for example, 50k) h. 7 is a high frequency power source with a frequency of 50kHz,
8 is a vacuum pump for evacuating the pressure inside the vacuum container 1 to a degree of vacuum below atmospheric pressure; 9 is a pipe for evacuation that airtightly connects the vacuum container 1 and the vacuum pump 8; 10 is a vacuum container 1 is a butterfly valve that controls the pressure inside 1 by making the internal resistance of the pipe variable, that is, the effective pumping speed of the vacuum pump 8 variable; 11 is a gas nozzle for introducing compound gas into the vacuum container 1 via a gas flow rate controller; It is.

以上のように構成されたプラズマ気相成長装置について
、以下その動作について説明する。
The operation of the plasma vapor deposition apparatus configured as described above will be described below.

まず真空容器1内を真空ポンプ8により、50m T 
o r r以下の真空度まで真空排気した後、試料2表
面に形成すべき薄膜の組成元素を含む化合物ガスをガス
ノズル11から流量制御装置で制御しながら真空容器1
内に導入する。さらにバタフライバルブ10を操作し、
薄膜形成条件である圧力すなわち100〜400 mT
orrに真空容器1内を制御する。また試料2は試料台
3によって300℃程度の温度に加熱制御する。次に、
電極6に周波数50匹の高周波電力を供給することによ
って、前記化合物ガスを励起し、試料2表面をそのプラ
ズマ雰囲気にさらすことによって、試料2表面にプラズ
マCVD膜を形成する。
First, the inside of the vacuum container 1 is heated to 50 m T by the vacuum pump 8.
After evacuation to a degree of vacuum below o r r, a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 2 is pumped into the vacuum vessel 1 through the gas nozzle 11 while being controlled by the flow rate controller.
to be introduced within. Furthermore, operate the butterfly valve 10,
The pressure that is the thin film formation condition is 100 to 400 mT.
The inside of the vacuum container 1 is controlled to orr. Further, the sample 2 is heated and controlled to a temperature of about 300° C. by the sample stage 3. next,
A plasma CVD film is formed on the surface of the sample 2 by exciting the compound gas and exposing the surface of the sample 2 to the plasma atmosphere by supplying high frequency power with a frequency of 50 to the electrode 6.

ところで、試料2表面にプラズマCVD膜を形成する際
には、電極6、試料台3、真空容器1等々の真空容器1
内構成部品にも類似の膜(無効々膜)が堆積する。すな
わち、類似の膜が真空容器1内構成部品に累積する。こ
の類似の膜は比較的5ベーノ 密着力が弱く、その膜厚増加と共に、真空容器1内にフ
レークを発生させる。その結果試料2表面にパーティク
ルが多量に付着し、試料2表面に形成したプラズマCV
D膜に膜欠陥を生じさせる。
By the way, when forming a plasma CVD film on the surface of the sample 2, the electrode 6, the sample stage 3, the vacuum vessel 1, etc.
A similar film (ineffective film) is also deposited on internal components. That is, similar films accumulate on the components within the vacuum vessel 1. This similar film has relatively weak adhesion, and as the film thickness increases, flakes are generated within the vacuum vessel 1. As a result, a large amount of particles adhered to the surface of sample 2, and a plasma CV formed on the surface of sample 2.
D causes film defects in the film.

そこで、定期的に真空容器1内構成部品に付着した無効
な膜を除去する必要がある。その手段として、プラズマ
クリーニング法が用いられる。これは、真空容器1内に
ガスノズル11よりハロゲンガスを導入し、所定の圧力
に保持した後、電極6に高周波電力を供給することによ
って、真空容器1内に低温プラズマを発生させ、低温プ
ラズマ中の活性種によって、無効な膜をドライエツチン
グするものである。例えば、試料2表面に窒化シリコン
膜を堆積させるプラズマCVD装置の場合には、前記ハ
ロゲンガスは、六フッ化イオウ(SF6)や四フフ化炭
素(CF4)と酸素(02)との混合ガスが用いられる
Therefore, it is necessary to periodically remove the ineffective film adhering to the components inside the vacuum vessel 1. A plasma cleaning method is used as a means for this purpose. This involves introducing halogen gas into the vacuum chamber 1 through the gas nozzle 11, maintaining it at a predetermined pressure, and then supplying high-frequency power to the electrode 6 to generate low-temperature plasma within the vacuum chamber 1. The activated species of this method dry-etch the ineffective film. For example, in the case of a plasma CVD device that deposits a silicon nitride film on the surface of the sample 2, the halogen gas may be sulfur hexafluoride (SF6) or a mixed gas of carbon tetrafluoride (CF4) and oxygen (02). used.

発明が解決しようとする問題点 しかしながら上記従来のような構成では下記の問題点を
有していた。す々わち第2図に示したブ6ページ ラズマCVD装置の場合には、図中A部分つまり試料台
3上部空間では活性度の高い低温プラズマが得られるた
め、プラズマクリーニングが良好であるが、例えば、図
中B部つまシ試料台3下部空間では、はとんど低温プラ
ズマが発生しないため、無効な膜を除去することが困難
である。従って、装置を停止し、例えばブラシ等で機械
的にそれらの膜を除去する必要があシ、プラズマCVD
装置の作業性を悪化させる。
Problems to be Solved by the Invention However, the conventional configuration described above has the following problems. In the case of the 6-page plasma CVD apparatus shown in Fig. 2, highly active low-temperature plasma is obtained in the area A in the figure, that is, the space above the sample stage 3, so plasma cleaning is good. For example, in the space below the sample stage 3 in section B in the figure, low-temperature plasma is hardly generated, so it is difficult to remove an ineffective film. Therefore, it is necessary to stop the equipment and remove those films mechanically, for example with a brush.
Deteriorates the workability of the equipment.

このように従来のプラズマCVD装置では、プラズマク
リーニングによって無効な膜を除去できない部分があシ
、操作上、作業性を悪化させるという問題点を有してい
た。
As described above, the conventional plasma CVD apparatus has a problem in that there are parts where ineffective films cannot be removed by plasma cleaning, which deteriorates the workability.

本発明は上記問題点に鑑み、プラズマCVD装置の真空
容器1内構成部品のどの部分に付着した無効な膜をも効
率良くプラズマクリーニングすることが可能なプラズマ
CVD装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a plasma CVD apparatus capable of efficiently plasma cleaning an ineffective film attached to any part of a component inside a vacuum chamber 1 of a plasma CVD apparatus. It is something.

問題点を解決するための手段 本発明は上記問題点を解決するために、真空状7へ一ン 態の維持が可能な真空容器と、真空容器内を減圧雰囲気
にするための真空排気手段と、真空容器内の圧力を所定
の値にするための圧力制御手段と、真空容器内にガスを
導入するためのガス供給手段と真空容器内に位置し、高
周波電力が供給され所定の圧力状態で真空容器内の少な
くとも被加工物を含む空間に低温プラズマを発生させる
電極と、真空容器に位置して電気的に浮いており、アー
ス接地または高周波電力を供給することが可能であり、
かつ被加工物を保授することが可能な被加工物保持手段
とを備えたことを特徴とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a vacuum container capable of maintaining a vacuum state 7, and a vacuum evacuation means for creating a reduced pressure atmosphere inside the vacuum container. , a pressure control means for bringing the pressure in the vacuum container to a predetermined value, a gas supply means for introducing gas into the vacuum container, and a pressure control means located within the vacuum container, and supplied with high frequency power to maintain the predetermined pressure state. an electrode that generates low-temperature plasma in at least a space containing the workpiece in the vacuum container; and an electrode that is located in the vacuum container and is electrically floating and can be grounded or supplied with high-frequency power;
The present invention is characterized in that it also includes a workpiece holding means capable of holding the workpiece.

作  用 本発明は上記した構成であって、被加工物保持手段は電
気的に浮いており、選択的にアース接地し1だ高周波電
力を供給することができる。そこでプラズマCVD膜を
試料に堆積する際及び通常のプラズマクリーニングする
際には、被加工物保持手段をアース接地することで、そ
れぞれの作業目的に応じて制御された真空容器内の雰囲
気中の特に被加工物保持手段の上部空間に低温プラズマ
を発生させて、被加工物保持手段上の試料表面にプラズ
マCVD膜を堆積させ、また通常のプラズマクリーニン
グつまり真空容器内の特に被加工物保持手段上空間部で
のプラズマクリーニングを行うことができる。被加工物
保持手段の下側部分をプラズマクリーニングする際には
、その作業に応じて制御された真空容器内の雰囲気中の
被加工物保持手段に高周波電力を印加することで、真空
容器内の被加工物保持手段下空間に低温プラズマを発生
させて、真空容器内の被加工物保持手段下学間部でのプ
ラズマクリーニングを行うことができる。
Function The present invention has the above-described configuration, in which the workpiece holding means is electrically floating and can be selectively grounded to supply high-frequency power. Therefore, when depositing a plasma CVD film on a sample or during normal plasma cleaning, by grounding the workpiece holding means, it is possible to prevent A low-temperature plasma is generated in the upper space of the workpiece holding means to deposit a plasma CVD film on the sample surface on the workpiece holding means, and also for normal plasma cleaning, especially on the workpiece holding means in the vacuum chamber. Plasma cleaning can be performed in the space. When performing plasma cleaning on the lower part of the workpiece holding means, high-frequency power is applied to the workpiece holding means in an atmosphere within the vacuum container that is controlled according to the work, thereby cleaning the inside of the vacuum container. Plasma cleaning can be performed in the space below the workpiece holding means in the vacuum container by generating low temperature plasma in the space below the workpiece holding means.

実施例 以下本発明の一実施例のプラズマCVD装置について図
面を参照しながら説明する。
EXAMPLE Hereinafter, a plasma CVD apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例におけるプラズマ気相
成長装置の概略断面図を示すものである。
FIG. 1 shows a schematic cross-sectional view of a plasma vapor phase growth apparatus in a first embodiment of the present invention.

第1図において、41は真空状態の維持が可能な真空容
器、42はプラズマCVD膜が形成され9ヘー。
In FIG. 1, numeral 41 is a vacuum container capable of maintaining a vacuum state, and numeral 9 is a vacuum container in which a plasma CVD film is formed.

る被加工物としての試料、43は試料42を保持し、か
つ、内部に加熱装置を有し試料42を加熱することが可
能な電気的に浮かせた被加工物保持手段としての試料台
、44は試料台43の内部に搭載された加熱装置、45
は交流電源、46は周波数601&の高周波が供給され
る電極、47はガス流量制御装置、48は周波数50曲
の高周波電源、49は真空容器41内の圧力を大気圧以
下の真空度にするだめの真空排気手段としての真空ポン
プ、50は真空容器41と真空ポンプ49との間を気密
に接続する真空排気用のパイプ、61は真空容器41の
圧力を制御するだめの圧力制御装置、62は、試料台4
3に高周波電力を供給するための電源、53は、電気的
に浮かせた試料台43をアース接地または電源62と任
意に選択して接続することが可能な接続器である。
43 is a sample stand as an electrically floating workpiece holding means that holds the sample 42 and has a heating device inside and can heat the sample 42; 44; 45 is a heating device mounted inside the sample stage 43;
46 is an AC power source, 46 is an electrode to which a high frequency wave with a frequency of 601 is supplied, 47 is a gas flow rate control device, 48 is a high frequency power source with a frequency of 50 tunes, and 49 is a device for reducing the pressure inside the vacuum container 41 to a degree of vacuum below atmospheric pressure. 50 is a vacuum evacuation pipe that airtightly connects the vacuum container 41 and the vacuum pump 49; 61 is a pressure control device for controlling the pressure in the vacuum container 41; 62 is a vacuum pump as an evacuation means; , sample stage 4
A power source 53 for supplying high frequency power to the sample stage 3 is a connector that can arbitrarily select and connect the electrically floating sample stage 43 to earth ground or the power source 62.

以上のように構成されたプラズマCVD装置について以
下第1図を用いてその動作を説明する。
The operation of the plasma CVD apparatus configured as described above will be explained below with reference to FIG.

まず、真空容器41内を真空ポンプ49によって、30
mTorr以下の真空変寸で真空排気した1oベーノ 後、試料42表面に形成すべき薄膜の組成元素を含む化
合物ガス、すなわち、モノシラン(S NH4) 1ア
lモニア(NH3)、窒素(N2)の混合ガスを各々を
各々1sSCCM、31SCCM、142SCCMのガ
ス流量で、ガス流量制御装置47より真空容器41内に
導入し、かつ、真空容器41内の圧力を圧力制御装置5
1を操作して、260mTorrに保持する。
First, the vacuum pump 49 pumps the inside of the vacuum container 41 for 30 minutes.
After vacuum evacuation with a vacuum change of less than mTorr, a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 42, namely, monosilane (S NH4), 1 alumonia (NH3), and nitrogen (N2), was added. The mixed gases are introduced into the vacuum container 41 from the gas flow rate controller 47 at gas flow rates of 1 sSCCM, 31 SCCM, and 142 SCCM, respectively, and the pressure inside the vacuum container 41 is controlled by the pressure controller 5.
1 and maintain it at 260 mTorr.

また、試料42は試料台43によって300℃の温度に
加熱制御する。次に、電極46に高周波電源48よシ周
波数50曲の高周波電力を供給することによって、試料
42を含む空間に低温プラズマを発生させる。ここで、
試料台43は、アース接地しておく。以上の結果、試料
42上に屈折率1.998±0.02、膜厚分布±3係
のシリコンナイトライド膜を形成することができた。
Further, the sample 42 is heated and controlled to a temperature of 300° C. by the sample stage 43. Next, low-temperature plasma is generated in the space containing the sample 42 by supplying high-frequency power at a frequency of 50 to the high-frequency power supply 48 to the electrode 46 . here,
The sample stage 43 is grounded. As a result, it was possible to form a silicon nitride film on the sample 42 with a refractive index of 1.998±0.02 and a thickness distribution of ±3.

次に、プラズマクリーニングを行う際の動作を説明する
Next, the operation when performing plasma cleaning will be explained.

まず、試料42を真空容器41内よシ取り出した後、真
空容器41内を真空ポンプ49によって、11 ベーン □↑ 3omTorr以下の真空度まで真空排気した後、六フ
ッ化硫素(SF6)ガスを200SCCMのガス流量で
、ガス流量制御装置47より真空容器41内に導入し、
かつ、真空容器41内の圧力を圧力制御装置51を操作
して、30o m T o r rに保持する。次に3
極46に高周波電源48より周波数50klkの高周波
電力を供給することによって、低温プラズマを発生させ
る。ここで試料台43はアース接地しておく。この第1
ステツプのプラズマクリーニングでは第1図中斜福線で
示したA部に位置する真空容器41内構成部品に堆積し
た膜が除去される。
First, after taking out the sample 42 from inside the vacuum container 41, the inside of the vacuum container 41 is evacuated to a vacuum level of 11 vanes □↑ 3 omTorr or less using the vacuum pump 49, and then sulfur hexafluoride (SF6) gas is pumped into the vacuum container 41. A gas flow rate of 200 SCCM is introduced into the vacuum container 41 from the gas flow rate control device 47,
In addition, the pressure inside the vacuum container 41 is maintained at 30 m Torr by operating the pressure control device 51. Next 3
A low-temperature plasma is generated by supplying high-frequency power with a frequency of 50 klk from a high-frequency power source 48 to the pole 46 . Here, the sample stage 43 is grounded. This first
In the plasma cleaning step, the film deposited on the components inside the vacuum vessel 41 located at a portion A indicated by the oblique line in FIG. 1 is removed.

次に、高周波電源48の出力を停止し、続いて、アース
接地された試料台43を電位的に浮かせ、電源52より
周波数50曲の高周波電力を供給して、低温プラズマを
発生させる。この第2ステツプのプラズマクリーニング
では、第1図中交差斜線で示したB部に位置する真空容
器41内構成部品に堆積した膜が除去される。
Next, the output of the high-frequency power source 48 is stopped, and then the grounded sample stage 43 is floated in potential, and high-frequency power with a frequency of 50 tunes is supplied from the power source 52 to generate low-temperature plasma. In this second step of plasma cleaning, the film deposited on the components inside the vacuum vessel 41 located at a portion B indicated by cross hatching in FIG. 1 is removed.

以上のように本実施例によれば、試料台43が電位的に
浮いておシ、通常のプラズマクリーニングする際には、
試料台43をアース接地して、電極46に高周波電力を
供給することによって低温プラズマを発生させ、次に、
試料台43に電源52よす高周波電力を供給することに
よって、試料台43の下部すなわち、低温プラズマが発
生しにくい部分にも容易に低温プラズマを発生させるこ
とができるため、真空容器41内構成部品に付着した無
効な膜を効率良くプラズマクリーニングすることができ
る。
As described above, according to this embodiment, the sample stage 43 floats in potential, and during normal plasma cleaning,
A low-temperature plasma is generated by grounding the sample stage 43 and supplying high-frequency power to the electrode 46, and then,
By supplying high-frequency power from the power source 52 to the sample stage 43, low-temperature plasma can be easily generated even in the lower part of the sample stage 43, that is, the part where low-temperature plasma is difficult to generate. It is possible to efficiently plasma clean the ineffective film attached to the surface.

なお本実施例では、試料台43に高周波電力を供給する
ために電源52を設けたが、高周波電源48を利用して
も良い。また高周波電力の周波数を50kl(Zとした
が、380曲、13.561%等の周波数についても同
様の効果が得られており、本発明の効果は周波数に依存
するものでは々い。
In this embodiment, the power source 52 is provided to supply high frequency power to the sample stage 43, but the high frequency power source 48 may also be used. Further, although the frequency of the high-frequency power was set to 50kl (Z), similar effects were obtained for frequencies such as 380 songs and 13.561%, and the effects of the present invention are not dependent on frequency.

発明の効果 本発明によれば、試料台が電気的に浮いており、通常の
プラズマクリーニングする際には、試料台をアース接地
して電極に高周波電力を供給すると13 ベーン とによって、低温プラズマを発生させ、次に試料台に電
源より高周波電力を供給することによ−て、試料台の下
部、すなわち、前記通常のプラズマクリーニングでは低
温プラズマが発生しにくい部分にも容易に低温プラズマ
を発生させることができるため、真空容器内構成部品の
どの部分に付着した無効な膜をも効率良く、容易に、プ
ラズマクリーニングによって除去することができる。
Effects of the Invention According to the present invention, the sample stage is electrically floating, and when performing normal plasma cleaning, when the sample stage is grounded and high frequency power is supplied to the electrodes, low temperature plasma is generated by the 13 vanes. Then, by supplying high-frequency power to the sample stage from a power source, low-temperature plasma can be easily generated even in the lower part of the sample stage, that is, in the area where low-temperature plasma is difficult to generate with the above-mentioned normal plasma cleaning. Therefore, an ineffective film attached to any part of the components inside the vacuum container can be efficiently and easily removed by plasma cleaning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるプラズマCVD装置
の概略断面図、第2図は従来のプラズマCVD装置の概
略断面図である。 41・・・・・・真空容器、42・・・・・試料、43
・・・・・・試料台、44・・・・・・加熱装置、45
・・・・・・交流電源、46・・・・・・電極、47・
・・・・・ガス流量制御装置、4日・・・・・・高周波
電源、49・・・・・・真空ポンプ、50・・・・・・
パイプ、61・・・・・・圧力制御装置、62・・・・
・・電源、53・・・・・接続器。
FIG. 1 is a schematic sectional view of a plasma CVD apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional plasma CVD apparatus. 41... Vacuum container, 42... Sample, 43
...Sample stage, 44...Heating device, 45
... AC power supply, 46 ... Electrode, 47.
...Gas flow control device, 4th...High frequency power supply, 49...Vacuum pump, 50...
Pipe, 61... Pressure control device, 62...
...Power supply, 53...Connector.

Claims (1)

【特許請求の範囲】[Claims] 真空状態の維持が可能な真空容器と、真空容器内を減圧
雰囲気にするための真空排気手段と、真空容器内の圧力
を所定の値にするための圧力制御手段と、真空容器内に
ガスを導入するためのガス供給手段と、真空容器内に位
置し、高周波電力が供給され所定の圧力状態で真空容器
内の少なくとも被加工物を含む空間に低温プラズマを発
生させる電極と、真空容器に位置して電気的に浮いてお
り、アース接地または高周波電力を供給することが可能
であり、被加工物を保持する被加工物保持手段とを備え
たプラズマCVD装置。
A vacuum container capable of maintaining a vacuum state, a vacuum evacuation means for creating a reduced pressure atmosphere in the vacuum container, a pressure control means for bringing the pressure inside the vacuum container to a predetermined value, and a gas injecting into the vacuum container. a gas supply means for introducing the gas, an electrode located in the vacuum container and supplied with high-frequency power to generate low-temperature plasma in a space containing at least the workpiece in the vacuum container under a predetermined pressure state, and an electrode located in the vacuum container. 1. A plasma CVD apparatus that is electrically floating, capable of supplying earth grounding or high-frequency power, and comprising a workpiece holding means for holding a workpiece.
JP13234086A 1986-06-06 1986-06-06 Plasma cvd apparatus Pending JPS62287078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13234086A JPS62287078A (en) 1986-06-06 1986-06-06 Plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13234086A JPS62287078A (en) 1986-06-06 1986-06-06 Plasma cvd apparatus

Publications (1)

Publication Number Publication Date
JPS62287078A true JPS62287078A (en) 1987-12-12

Family

ID=15079048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13234086A Pending JPS62287078A (en) 1986-06-06 1986-06-06 Plasma cvd apparatus

Country Status (1)

Country Link
JP (1) JPS62287078A (en)

Similar Documents

Publication Publication Date Title
US4576698A (en) Plasma etch cleaning in low pressure chemical vapor deposition systems
US5454903A (en) Plasma cleaning of a CVD or etch reactor using helium for plasma stabilization
JPH09148322A (en) Method for forming silicon oxide film and plasma cvd film forming apparatus
JP2002505804A (en) Method and apparatus for metallizing silicon semiconductor device contacts with high aspect ratio
JP3146112B2 (en) Plasma CVD equipment
JP3286951B2 (en) Plasma CVD film forming method and apparatus
JP3227949B2 (en) Plasma processing method and apparatus
JPH0456770A (en) Method for cleaning plasma cvd device
JPH07201749A (en) Formation method for thin film
JP2726414B2 (en) Method for producing silicon-based thin film
JPS62287078A (en) Plasma cvd apparatus
JPS6314422A (en) Plasma chemical vapor desposition method
JPS62287079A (en) Plasma cvd apparatus
JP2537822B2 (en) Plasma CVD method
JP2646582B2 (en) Plasma CVD equipment
JPS60147113A (en) Manufacture of silicon film
TWI301290B (en) Method of cleaning deposition chamber
JP2742381B2 (en) Method of forming insulating film
JPH0797557B2 (en) Plasma CVD method
JPH11307521A (en) Plasma cvd equipment and its use
JPH01136970A (en) Method for cleaning plasma cvd apparatus
JPH0237963A (en) Electrical heating member
JPH0729829A (en) Method and system for dc discharge plasma processing
KR920002169B1 (en) Plasma discharge deposition process and a suitable apparatus therefor
JP2609844B2 (en) Epitaxy growth method