JPH0456770A - Method for cleaning plasma cvd device - Google Patents

Method for cleaning plasma cvd device

Info

Publication number
JPH0456770A
JPH0456770A JP16608490A JP16608490A JPH0456770A JP H0456770 A JPH0456770 A JP H0456770A JP 16608490 A JP16608490 A JP 16608490A JP 16608490 A JP16608490 A JP 16608490A JP H0456770 A JPH0456770 A JP H0456770A
Authority
JP
Japan
Prior art keywords
frequency
plasma cvd
cleaning
power source
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16608490A
Other languages
Japanese (ja)
Inventor
Katsumi Oyama
勝美 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP16608490A priority Critical patent/JPH0456770A/en
Publication of JPH0456770A publication Critical patent/JPH0456770A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases

Abstract

PURPOSE:To rapidly clean the plasma CVD device without generating AlF3 at the time of cleaning the reaction furnace of the device with a glow discharge by specifying the frequency of a high-frequency power source and the mixing ratio of CF4 to O2. CONSTITUTION:The supply of a gaseous reactant is stopped after a specified number of wafers 6 are treated by plasma CVD, then CF4 and O2 are introduced from inlets 31 and 32 in the mixing ratio CF4(CF4+O2)=(0.6 to 0.9) and mixed in the nozzle part 30, and the mixture is injected from a shower electrode 40. A high-frequency voltage at 13.56 MHz frequency is impressed from a high-frequency power source 7 in this gaseous mixture atmosphere to generate a glow discharge, hence the reaction product deposited on the inner wall of a reaction furnace 10 and on the electrode 40, etc., is etched and removed, and the device is cleaned. The feed power of the power source 7 is preferably controlled to about 400-600 W, and the pressure of the gaseous mixture in the furnace 10 to about 3.0-8.0 Torr.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はプラズマCVD装置のクリーニング方法に関
し、詳しくは、CVD装置の反応炉内の電極にAλF3
を発生させることなく反応炉内をドライクリーニングす
る方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for cleaning a plasma CVD apparatus, and more specifically, the present invention relates to a method for cleaning a plasma CVD apparatus.
The present invention relates to a method for dry cleaning the inside of a reactor without generating.

[従来の技術] 半導体ICの製造においては、ウェハの表面に酸化シリ
コンなどの薄膜を形成する工程がある。
[Prior Art] In the manufacture of semiconductor ICs, there is a step of forming a thin film of silicon oxide or the like on the surface of a wafer.

薄膜の形成方法には化学的気相成長法(CVD)が用い
られており、CVD法は大別すると、常圧法、減圧法お
よびプラズマ法の3種類がある。最近の超LSIにおい
ては高集積化に対応して高品質で高精度な薄膜が要求さ
れ、従来の常圧、または減圧CVD法では対応が困難と
なり、プラズマCVD法が注目されている。この方法は
真空中において反応ガスをグロー放電させてプラズマ化
して反応に必要なエネルギーを得るもので、ステップカ
バレージ(まわり込み、またはパターン段差部の被覆性
)が良好で、また膜質が強くて耐湿性が優れているなど
の特長があり、さらに成膜速度(デポレート)が減圧法
に比べて極めて速い点が有利である。
Chemical vapor deposition (CVD) is used as a method for forming thin films, and CVD methods can be roughly divided into three types: normal pressure method, reduced pressure method, and plasma method. In recent VLSIs, high-quality and highly-accurate thin films are required in response to high integration, making it difficult to meet the demands of conventional normal pressure or low-pressure CVD methods, and plasma CVD methods are attracting attention. In this method, the reaction gas is glow-discharged in a vacuum to turn it into plasma to obtain the energy necessary for the reaction.It has good step coverage (wrapping around or coverage of pattern steps), and has a strong film quality that is moisture resistant. It has features such as superior properties, and has the advantage that the deposition rate is extremely fast compared to the reduced pressure method.

[解決しようとする課題] プラズマCVD装置でシリコン酸化膜またはンリコン窒
化膜を連続して生成すると、反応炉の内壁面や電極など
に反応生成物が付着し、これがある程度以上になると剥
離してプラズマ放電を阻害し、また剥離した生成物が異
物となって被処理のシリコンウェハを汚染し、その品質
が低下する。
[Problem to be solved] When silicon oxide films or silicon nitride films are continuously produced in a plasma CVD device, reaction products adhere to the inner wall surface of the reactor, electrodes, etc., and when they reach a certain level, they peel off and the plasma Discharge is inhibited, and the peeled off products become foreign matter that contaminates the silicon wafer to be processed, deteriorating its quality.

これに対して、適当な枚数のウェハの処理ごとに、プラ
ズマエツチングにより反応炉の内壁や電極などをクリー
ニングしなければならない。
On the other hand, the inner walls of the reactor, electrodes, etc. must be cleaned by plasma etching every time a suitable number of wafers are processed.

従来のクリーニング方法は、CF4と02の混合ガスを
使用し、これに高周波電圧を加圧してグロー放電し、エ
ツチングにより反応生成物の異物を除去するものであっ
たが、電極のアルミニュームAλとCF4の弗素が化合
して弗化アルミニューム(AJI F3 )が生じ、こ
れが1対の電極の中心部にスパッタされて付着する現象
があった。AlF2が電極に付着すると、次の薄膜の生
成時に堆積速度の変化や膜厚のムラが発生し、また、か
えって異物が多発するなどCVD装置の性能が劣化する
。さらに、付着したAlF2を除去する作業が別途に必
要となるなど、半導体ICの品質と製造歩留まりが低下
する欠点があった。
The conventional cleaning method uses a mixed gas of CF4 and 02, pressurizes it with a high frequency voltage to cause glow discharge, and removes foreign substances from the reaction product by etching. There was a phenomenon in which fluorine in CF4 was combined to produce aluminum fluoride (AJIF3), which was sputtered and attached to the center of a pair of electrodes. If AlF2 adheres to the electrode, the deposition rate will change and the film thickness will become uneven when the next thin film is formed, and the performance of the CVD apparatus will deteriorate, such as the occurrence of more foreign matter. Furthermore, there is a drawback that the quality and manufacturing yield of semiconductor ICs are lowered, such as requiring a separate operation to remove the adhered AlF2.

この発明は以上に鑑みてなされたもので、AlF2を発
生することなくプラズマCVDaitの反応炉をクリー
ニングすることができる方法を提供することを目的とす
るものである。
The present invention has been made in view of the above, and an object thereof is to provide a method capable of cleaning a plasma CVDait reactor without generating AlF2.

[課題を解決するための手段] この発明は、プラズマCVD装置の反応炉内にCF4と
02の混合ガスを導入し、この混合ガスの雰囲気下で、
高周波電源により高周波電圧を加圧してグロー放電を発
生させて行うクリーニングにおいて、高周波電源の周波
数を13.56KH2とし、CF4と02の混合割合を
、CF4/(CF4 +OO)= (0,6〜0.9)
の範囲とするプラズマCVD装置のクリーニング方法で
ある。
[Means for Solving the Problems] The present invention introduces a mixed gas of CF4 and 02 into the reactor of a plasma CVD apparatus, and in an atmosphere of this mixed gas,
In cleaning performed by pressurizing high-frequency voltage with a high-frequency power source to generate glow discharge, the frequency of the high-frequency power source is 13.56KH2, and the mixing ratio of CF4 and 02 is CF4/(CF4 +OO) = (0,6~0 .9)
This is a cleaning method for a plasma CVD apparatus that covers the following range.

上記において、高周波電源の供給パワーを400〜60
0Wとし、反応炉内の混合ガスの圧力を3.0〜8.O
To r rとする。
In the above, the supply power of the high frequency power supply is 400 to 60
0W, and the pressure of the mixed gas in the reactor is 3.0~8. O
To r r.

[作用コ この発明によるクリーニング方法においては、従来の方
法と同様にCF4  (4弗化炭素)と酸素02の混合
ガスに高周波電圧を加圧し、グロー放電させるものであ
るが、従来の高周波電源の周波数は50KHzの比較的
に低い周波数であった。
[Function] In the cleaning method according to the present invention, a high-frequency voltage is applied to a mixed gas of CF4 (carbon tetrafluoride) and oxygen 02 to cause a glow discharge, as in the conventional method, but the conventional high-frequency power source The frequency was a relatively low frequency of 50 KHz.

この発明の発明者の実験によると加圧する周波数が、A
 J F aの付着に大きく関与しているのではないか
と考えられた。すなわち、従来の50KH2の代わりに
、遥かに高い周波数13.56KH2(電波法により一
般的に工業生産機器に許可された特定周波数)を使用し
、従来と同一の混合ガスによりクリーニングを行うと、
電極に対するAlF2の付着が全熱、または殆どないこ
とが見出された。ただし、AlF2の付着の周波数に対
する依存特性は、周波数が特定周波数に限定されている
ために種々の周波数について実験されず、その理論的解
釈は推測の域を出ないが、周波数によりイオンの流動特
性が変わり、高い周波数では流動しにくくてAJIのス
パッタが少ないのではないかと考えられる。いずれにし
ても、AlF2が付着しないことは実用上極めて有利で
ある。なお、周波数13.56MHzの電源は容易に設
備することができ、既にCVD装置に設けられているも
のである。
According to experiments by the inventor of this invention, the frequency of pressurization is A
It was thought that it may be largely involved in the adhesion of JFa. In other words, if we use a much higher frequency of 13.56KH2 (a specific frequency generally permitted for industrial production equipment according to the Radio Law) instead of the conventional 50KH2, and perform cleaning with the same mixed gas as before,
It was found that there was no or very little adhesion of AlF2 to the electrode. However, the dependence of AlF2 adhesion on frequency has not been tested at various frequencies because the frequency is limited to a specific frequency, and the theoretical interpretation remains speculative. It is thought that this may be due to the fact that at high frequencies, it is difficult to flow and there is less AJI spatter. In any case, it is extremely advantageous in practice that AlF2 does not adhere. Note that a power source with a frequency of 13.56 MHz can be easily installed and is already provided in the CVD apparatus.

次に、周波数を13.56MHzとして、CF4と02
の混合割合を種々変化してクリーニングの速度(クリー
ニングレート)を計測したところ、CF4 / (CF
4 +02 )が(0,6〜0.9)で最大値となり、
これ以外の割合では速度が急激に低下することが判明し
た。この場合AJ!F3は勿論発生しない。以上の実験
を根拠とし、この発明においては、高周波電源の周波数
として13゜56MHzを採用し、混合ガスの混合割合
、CF4 / (CF4 +02 )を(0,6〜0.
9)の範囲に設定してAlF2が発生せず、速度の速い
クリーニングを行うものである。
Next, with the frequency set to 13.56MHz, CF4 and 02
When the cleaning speed (cleaning rate) was measured by varying the mixing ratio of CF4/(CF
4 +02) becomes the maximum value at (0,6~0.9),
It was found that at ratios other than this, the speed decreased rapidly. In this case AJ! Of course, F3 does not occur. Based on the above experiments, in this invention, 13°56MHz is adopted as the frequency of the high-frequency power supply, and the mixing ratio of the mixed gas, CF4 / (CF4 +02), is set at (0.6 to 0.0.
9) to perform cleaning at a high speed without generating AlF2.

次に、続く実験によりクリーニングレートは反応炉内の
混合ガスの圧力と、高周波電源より供給されるパワーに
大きく依存することが知られた。
Next, subsequent experiments revealed that the cleaning rate largely depends on the pressure of the mixed gas in the reactor and the power supplied by the high-frequency power source.

たたし、これらはプラズマCVD装置の形状寸法に依存
する筈である。そこで、従来実用されているプラズマC
VD装置に対して、混合ガスの圧力と高周波電源の供給
パワーを、前記の圧力(3゜0〜8.0)To r r
と、パワーの範囲(400〜600)Wに特定し、従来
の方法に比べて極めて高速のクリーニングがなされるも
のである。
However, these should depend on the shape and dimensions of the plasma CVD apparatus. Therefore, the conventional plasma C
For the VD device, the pressure of the mixed gas and the power supplied from the high frequency power source were adjusted to the above pressure (3°0 to 8.0) Torr.
This method specifies the power range (400 to 600 W), and performs cleaning at an extremely high speed compared to conventional methods.

[実施例コ 以下、この発明の具体例について図面を参照して詳細に
説明する。
[Embodiments] Hereinafter, specific examples of the present invention will be described in detail with reference to the drawings.

第1図はこの発明のクリーニング方法が適用されるプラ
ズマCVD装置1の構造を示す。図において、筐体(反
応炉) 10は気密とされ、そのベース101にヒータ
ー21と均熱板22とよりなるサセプタ20を固設し、
これを接地電極とする。筐体の蓋板102に金属製のノ
ズル部30を固定し、その下部にアルミニューム製の円
盤状のシャワー電極40を絶縁リング103により支持
する。シャワー電極に対して高周波電圧を加圧する高周
波電源7が設けられる。反応処理においては、筐体lO
の側面に設けられた搬入/搬出路50のゲート51を開
き、キャリッジ52によりウェハ6を搬入して均熱板2
2に載置する。ゲートを閉じて筐体内部を真空とした後
、ヒーターにより均熱板が加熱され、これに載置された
ウェハが所定の温度となると、インレット31゜32よ
り所定の反応ガスおよびキャリヤーガスが吸入されてノ
ズル部30の内部で混合され、シャワー電極の噴射孔4
1より噴射される。ここで、シャワー電極に高周波電圧
が加圧されるとグロー放電により反応ガスがプラズマ化
し、反応による生成物がウェハの表面に蒸着して薄膜が
形成される。
FIG. 1 shows the structure of a plasma CVD apparatus 1 to which the cleaning method of the present invention is applied. In the figure, a case (reactor) 10 is made airtight, and a susceptor 20 consisting of a heater 21 and a heat equalizing plate 22 is fixed to its base 101.
This is used as the ground electrode. A metal nozzle part 30 is fixed to a lid plate 102 of the casing, and an aluminum disk-shaped shower electrode 40 is supported by an insulating ring 103 at the bottom thereof. A high frequency power source 7 is provided that applies a high frequency voltage to the shower electrode. In reaction processing, the housing lO
Open the gate 51 of the loading/unloading path 50 provided on the side surface of
Place it on 2. After the gate is closed and the inside of the housing is evacuated, the heating plate is heated by a heater, and when the wafer placed on the plate reaches a predetermined temperature, predetermined reaction gas and carrier gas are sucked in from the inlets 31 and 32. is mixed inside the nozzle part 30, and the injection hole 4 of the shower electrode is
It is injected from 1. Here, when a high frequency voltage is applied to the shower electrode, the reaction gas is turned into plasma by glow discharge, and the products of the reaction are deposited on the surface of the wafer to form a thin film.

反応後のガスは矢印の経路を通って排気口+04より外
部に排出される。以上の反応処理により、筐体(反応炉
)の内壁やシャワー電極、均熱板などに反応生成物が付
着するので、所定の枚数のウェハの処理が終了すると反
応ガスの供給を停止し、インレット31と32よりCF
4と02が導入され、ノズル部30で混合されてシャワ
ー電極より噴射され、付着した反応生成物がエツチング
により除去される。
The gas after the reaction is discharged to the outside from the exhaust port +04 through the path indicated by the arrow. Due to the above reaction process, reaction products adhere to the inner wall of the housing (reactor), the shower electrode, the soaking plate, etc., so when the predetermined number of wafers have been processed, the supply of reaction gas is stopped and the inlet CF from 31 and 32
4 and 02 are introduced, mixed in the nozzle section 30 and sprayed from the shower electrode, and the attached reaction products are removed by etching.

第2図(a) 、(b) 、(c)は、この発明のクリ
ーニング方法を上記のプラズマCVD装置に適用する場
合の根拠となる実験データを示すもので、図(a)は混
合ガスノ混合割合CF4/ (CF4 +02 )に対
するクリーニングレート(オングストローム/m1n)
の曲線である。図により混合割合が0゜6〜0.9の範
囲で最大となり、それ以外で急激に低下することが判明
する。図(b)は、高周波電源のパワー(W)に対する
曲線で、2乗以上に増加しており、パワーが大きいほど
速くクリーニングされることが判る。図(c)は、反応
炉内の混合ガスの圧力に対するもので、(3,0〜8.
0)Torrで高速のクリーニングレートかえられるこ
とが判る。
Figures 2 (a), (b), and (c) show experimental data that serve as the basis for applying the cleaning method of the present invention to the above-mentioned plasma CVD apparatus. Cleaning rate (Angstrom/m1n) for the ratio CF4/ (CF4 +02)
The curve is It is clear from the figure that the mixing ratio is maximum in the range of 0.6 to 0.9, and rapidly decreases in other regions. Figure (b) shows a curve against the power (W) of the high-frequency power source, which increases to the second power or more, and it can be seen that the higher the power, the faster the cleaning is performed. Figure (c) shows the pressure of the mixed gas in the reactor (3,0 to 8.
0) It can be seen that the cleaning rate can be changed to a high speed with Torr.

この発明においては、高周波電源の周波数を13.56
MHzに設定し、上記の実験データにより、供給パワー
を400〜eoow1混合ガスの混合割合CF4/ (
CF4 +02 )を0.6〜0゜9とし、圧力を3.
0〜8.0To r rに維持する。この混合割合と、
圧力の維持はインッ) 31.32に対スる供給バルブ
のガス流量をマスフローコントローラ(図示省略)によ
り自動制御することにより行われ、各電極シャワー電極
と均熱板)にAJ2F3が付着することなく、反応炉の
内壁や各電極などに付着した反応生成物が高速度でクリ
ーニングされるのである。
In this invention, the frequency of the high frequency power source is set to 13.56.
MHz, and according to the above experimental data, the supply power was set to 400~eoow1 mixed gas mixture ratio CF4/ (
CF4 +02) was set to 0.6 to 0°9, and the pressure was set to 3.
Maintain at 0-8.0 Torr. This mixing ratio and
The pressure is maintained by automatically controlling the gas flow rate of the supply valve for the in) 31.32 using a mass flow controller (not shown), and prevents AJ2F3 from adhering to each electrode (shower electrode and heat soaking plate). The reaction products adhering to the inner walls of the reactor, each electrode, etc. are cleaned at a high speed.

[発明の効果] 以上の説明により明らかなように、この発明によるクリ
ーニング方法においては、CF 4と02の混合ガスに
よるクリーニングの場合、発生するAlF2の量もしく
は程度が、高周波電源の周波数に依存することに注目し
、実験により13.56MHzの周波数によりAJ! 
F3が全熱、またはほとんど電極に付着しないことが確
認され、また、混合ガスの混合割合の最適値が実験によ
りえられ、さらにクリーニングレートが依存する電源の
供給パワー、混合ガスの混合割合、反応炉内のガス圧力
を、実用されているプラズマCVD装置に対シて最適値
に特定したもので、別種のガスを用いることな〈従来の
混合ガスにより、無用有害なAJF3が電極に付着する
ことなく高速のクリーニングがなされ、プラズマCVD
装置のスルーブツトや、形成された薄膜の品質の向上に
寄与するところには大きいものがある。
[Effects of the Invention] As is clear from the above explanation, in the cleaning method according to the present invention, in the case of cleaning with a mixed gas of CF4 and 02, the amount or degree of AlF2 generated depends on the frequency of the high frequency power source. By paying attention to this, we experimentally determined that AJ! with a frequency of 13.56MHz!
It has been confirmed that F3 does not adhere to the electrode due to the total heat or almost no heat, and the optimum value of the mixing ratio of the mixed gas has been obtained through experiments. The gas pressure in the furnace is specified to the optimum value for the plasma CVD equipment in use, and it eliminates the need to use a different type of gas. High-speed cleaning is performed without using plasma CVD.
There are many things that contribute to improving the throughput of the device and the quality of the thin films formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明によるプラズマCVD装置のクリー
ニング方法を適用するプラズマCVD装置の構造図、第
2図(a)、(b)および(c)は、この発明によるプ
ラズマCVD装置のクリーニング方法の根拠となった実
験データの曲線図である。 1・・・プラズマCVD装置、10・・・筐体(反応炉
)、+01・・・ベース、     102・・・蓋板
、103・・・絶縁リング、+04・・・排気口、20
・・・サセプタ、21・・・ヒーター22・・・均熱板
、30・・・ノズル部、31.32・・・インレット、
40・・・シャワー電極、41・・・噴射孔、50・・
・搬入/搬出路、51・・・ゲート、52・・・キャリ
ッジ、6・・・ウェハ、     7・・・高周波電源
。 CF4 /(CF4−02) (Torr)
FIG. 1 is a structural diagram of a plasma CVD apparatus to which the method of cleaning a plasma CVD apparatus according to the present invention is applied, and FIGS. 2(a), (b), and (c) show the method of cleaning a plasma CVD apparatus according to the present invention. It is a curve diagram of experimental data that served as the basis. DESCRIPTION OF SYMBOLS 1... Plasma CVD apparatus, 10... Housing (reactor), +01... Base, 102... Lid plate, 103... Insulating ring, +04... Exhaust port, 20
... Susceptor, 21... Heater 22... Soaking plate, 30... Nozzle part, 31.32... Inlet,
40... Shower electrode, 41... Injection hole, 50...
- Loading/unloading path, 51...gate, 52...carriage, 6...wafer, 7...high frequency power supply. CF4/(CF4-02) (Torr)

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマCVD装置の反応炉内に、CF_4とO
_2の混合ガスを導入し、該混合ガスの雰囲気下で、高
周波電源により高周波電圧を加圧してグロー放電を発生
させて行うクリーニングにおいて、該高周波電源の周波
数を13.56MHzとし、上記CF_4とO_2の混
合割合を、CF_4/(CF_4+O_0)=(0.6
〜0.9)の範囲とすることを特徴とする、プラズマC
VD装置のクリーニング方法。
(1) CF_4 and O
In cleaning by introducing the mixed gas of _2 and generating glow discharge by applying high-frequency voltage with a high-frequency power supply in the atmosphere of the mixed gas, the frequency of the high-frequency power supply is set to 13.56 MHz, and the above CF_4 and O_2 The mixing ratio of CF_4/(CF_4+O_0)=(0.6
~0.9), plasma C
How to clean a VD device.
(2)上記において、上記高周波電源の供給パワーを4
00〜600Wとし、上記反応炉内の混合ガスの圧力を
3.0〜8.0Torrとする、請求項1記載のプラズ
マCVD装置のクリーニング方法。
(2) In the above, the supply power of the high frequency power source is 4
2. The method for cleaning a plasma CVD apparatus according to claim 1, wherein the pressure of the mixed gas in the reactor is 3.0 to 8.0 Torr.
JP16608490A 1990-06-25 1990-06-25 Method for cleaning plasma cvd device Pending JPH0456770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16608490A JPH0456770A (en) 1990-06-25 1990-06-25 Method for cleaning plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16608490A JPH0456770A (en) 1990-06-25 1990-06-25 Method for cleaning plasma cvd device

Publications (1)

Publication Number Publication Date
JPH0456770A true JPH0456770A (en) 1992-02-24

Family

ID=15824689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16608490A Pending JPH0456770A (en) 1990-06-25 1990-06-25 Method for cleaning plasma cvd device

Country Status (1)

Country Link
JP (1) JPH0456770A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425842A (en) * 1992-06-09 1995-06-20 U.S. Philips Corporation Method of manufacturing a semiconductor device using a chemical vapour deposition process with plasma cleaning of the reactor chamber
US5522412A (en) * 1993-08-11 1996-06-04 Tokyo Electron Kabushiki Kaisha Vacuum treatment apparatus and a cleaning method therefor
WO1998001899A1 (en) * 1996-07-10 1998-01-15 Daikin Industries, Ltd. Cleaning gas
WO2001003159A1 (en) * 1999-06-30 2001-01-11 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US6374833B1 (en) * 1999-05-05 2002-04-23 Mosel Vitelic, Inc. Method of in situ reactive gas plasma treatment
US6852242B2 (en) 2001-02-23 2005-02-08 Zhi-Wen Sun Cleaning of multicompositional etchant residues
JP2008078678A (en) * 2007-11-02 2008-04-03 Hitachi Ltd Method for processing plasma
JP2009094530A (en) * 1996-11-18 2009-04-30 Applied Materials Inc Ultra high throughput wafer vacuum processing system
CN103556127A (en) * 2013-11-13 2014-02-05 上海华力微电子有限公司 Cleaning method of vapor deposition film-forming equipment
US20150360266A1 (en) * 2014-06-17 2015-12-17 Chun-Liang Lai Container Cleaning Device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425842A (en) * 1992-06-09 1995-06-20 U.S. Philips Corporation Method of manufacturing a semiconductor device using a chemical vapour deposition process with plasma cleaning of the reactor chamber
US5522412A (en) * 1993-08-11 1996-06-04 Tokyo Electron Kabushiki Kaisha Vacuum treatment apparatus and a cleaning method therefor
USRE36925E (en) * 1993-08-11 2000-10-31 Tokyo Electron Kabushiki Kaisha Vacuum treatment apparatus and a method for manufacturing semiconductor device therein
WO1998001899A1 (en) * 1996-07-10 1998-01-15 Daikin Industries, Ltd. Cleaning gas
JP2009094530A (en) * 1996-11-18 2009-04-30 Applied Materials Inc Ultra high throughput wafer vacuum processing system
US6374833B1 (en) * 1999-05-05 2002-04-23 Mosel Vitelic, Inc. Method of in situ reactive gas plasma treatment
US6245192B1 (en) 1999-06-30 2001-06-12 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US6432831B2 (en) 1999-06-30 2002-08-13 Lam Research Corporation Gas distribution apparatus for semiconductor processing
WO2001003159A1 (en) * 1999-06-30 2001-01-11 Lam Research Corporation Gas distribution apparatus for semiconductor processing
US6852242B2 (en) 2001-02-23 2005-02-08 Zhi-Wen Sun Cleaning of multicompositional etchant residues
JP2008078678A (en) * 2007-11-02 2008-04-03 Hitachi Ltd Method for processing plasma
CN103556127A (en) * 2013-11-13 2014-02-05 上海华力微电子有限公司 Cleaning method of vapor deposition film-forming equipment
US20150360266A1 (en) * 2014-06-17 2015-12-17 Chun-Liang Lai Container Cleaning Device
US9744539B2 (en) * 2014-06-17 2017-08-29 Chun-Liang Lai Container cleaning device

Similar Documents

Publication Publication Date Title
JP7079686B2 (en) Film formation method and film formation equipment
JP4121269B2 (en) Plasma CVD apparatus and method for performing self-cleaning
JP3072989B1 (en) Film forming method in a film forming apparatus for forming a thin film on a semiconductor substrate
JP3595853B2 (en) Plasma CVD film forming equipment
US8278195B2 (en) Plasma CVD apparatus
TWI391034B (en) Contamination reducing liner for inductively coupled chamber
US5970383A (en) Method of manufacturing a semiconductor device with improved control of deposition layer thickness
JP2006128485A (en) Semiconductor processing apparatus
JPH09251992A (en) Method for reducing residue deposition in cvd chamber using ceramic lining and its device
JP2961000B2 (en) Self-cleaning method for reactor
US5902494A (en) Method and apparatus for reducing particle generation by limiting DC bias spike
JPH0456770A (en) Method for cleaning plasma cvd device
JP2802865B2 (en) Plasma CVD equipment
WO2006120843A1 (en) Plasma cleaning method, film forming method and plasma treatment apparatus
TW201909272A (en) Method of cleaning plasma processing
JP2002060951A (en) Gas reaction to eliminate contaminant in cvd chamber
WO2020013014A1 (en) Cleaning method and substrate processing device
JP2006319042A (en) Plasma cleaning method and method for forming film
TWI810682B (en) Method of reducing defects in a multi-layer pecvd teos oxide film
JP2003017479A (en) Precoating method, treatment method, and plasma apparatus
JP3432722B2 (en) Plasma film forming method and plasma processing apparatus
JP2894304B2 (en) Method for manufacturing semiconductor device
JPH06349810A (en) Vapor phase reaction apparatus
JPH09306899A (en) Vapor phase reactor
JPH06168914A (en) Etching process