JPS62287079A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus

Info

Publication number
JPS62287079A
JPS62287079A JP13234186A JP13234186A JPS62287079A JP S62287079 A JPS62287079 A JP S62287079A JP 13234186 A JP13234186 A JP 13234186A JP 13234186 A JP13234186 A JP 13234186A JP S62287079 A JPS62287079 A JP S62287079A
Authority
JP
Japan
Prior art keywords
plasma
vacuum
frequency power
electrode
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13234186A
Other languages
Japanese (ja)
Other versions
JPH07110996B2 (en
Inventor
Yoichi Onishi
陽一 大西
Mikio Takebayashi
幹男 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13234186A priority Critical patent/JPH07110996B2/en
Publication of JPS62287079A publication Critical patent/JPS62287079A/en
Publication of JPH07110996B2 publication Critical patent/JPH07110996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enable the removal of useless films sticking to all the constituent parts in a vacuum vessel by placing an auxiliary electrode so as to easily generate low temp. plasma even at a position at which low temp. plasma is hardly generated by conventional plasma cleaning. CONSTITUTION:This plasma CVD apparatus is composed essentially of a vacuum vessel 41, an evacuating means 49, a pressure controlling means 51, a gas feeding means, a means 43 of holding a body to be processed, a main electrode 46, an auxiliary electrode 52, and a means 53 of supplying high frequency electric power to the electrode 52. When high frequency electric power is supplied to the main electrode 46, the electrode 46 generates low temp. plasma in the space in the vacuum vessel 41 including the body 42 to be processed in a prescribed pressure state. The auxiliary electrode 52 is placed at a proper position in the vessel 41 and removes a deposit sticking to the constituent parts in the vessel 41 by low temp. plasma.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 2ベーノ 本発明は、プラノ−q CV D (Chemical
 VaporDepos i t 1on)法によって
、被加工物である試料の表面に薄膜を形成するためのプ
ラズマCVD装置に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application 2.
The present invention relates to a plasma CVD apparatus for forming a thin film on the surface of a sample, which is a workpiece, by a vapor deposition (vapor deposition) method.

従来の技術 プラズマCVD法は真空容器内に試料を保持し、形成す
べき薄膜の組成元素を含む化合物ガスを供給しながら、
高周波エネルギによって、前記の化合物ガスを励起し、
試料表面をその低温プラズマ雰囲気に配置することによ
って、試料表面に薄膜を形成(堆積)する方法である。
In the conventional plasma CVD method, a sample is held in a vacuum container, and a compound gas containing the constituent elements of the thin film to be formed is supplied.
Exciting the compound gas by high frequency energy,
This is a method of forming (depositing) a thin film on a sample surface by placing the sample surface in a low-temperature plasma atmosphere.

この方法は低温プラズマの活性さを利用しているため、
室温から40o℃程度捷での低温で薄膜形成を行なうこ
とができるという特徴がある。
This method utilizes the activity of low-temperature plasma, so
It is characterized in that thin films can be formed at low temperatures ranging from room temperature to about 40°C.

プラズマCVD法による薄膜形成上の課題は、形成薄膜
の膜質および膜厚分布の制御並びにピンホールやパーテ
ィクルの付着等の膜欠陥の問題である。また、生産面で
の課題は堆積速度の向上である。
Issues in forming thin films by plasma CVD include control of the quality and thickness distribution of the formed thin film, and problems with film defects such as pinholes and particle adhesion. Another issue in terms of production is improving the deposition rate.

従がって、良質のプラズマCVD膜を均一に試1、  
      3″′−・ 料表面に形成するためには、薄膜形成時の低温プラズマ
の分布およびその安定度、試料加熱分布並びに試料保持
温度等のプロセス条件に工夫が必要である。
Therefore, it is necessary to uniformly test a high quality plasma CVD film.
3"'-. In order to form a film on the surface of a material, it is necessary to devise process conditions such as the distribution and stability of low-temperature plasma during thin film formation, sample heating distribution, and sample holding temperature.

以下図面を参照しながら、上述した従来のプラズマ気相
成長装置の一例について説明する。
An example of the above-mentioned conventional plasma vapor phase growth apparatus will be described below with reference to the drawings.

第2図に従来のプラズマ気相成長装置を示す。FIG. 2 shows a conventional plasma vapor phase growth apparatus.

第2図におりて、1は真空状態の維持が可能な真空容器
、2はプラズマCVD膜が形成される試料、3は試料2
を保持し、かつ、内部に加熱用のヒータを有し、試料2
を加熱することが可能な試料台、4は試料台3の内部に
搭載されたヒータ、5はヒータ4に交流電力を供給する
ための交流電源、6は例えば50K)(z  の高周波
電力が供給される電極、7は周波数50 KHz  の
高周波電源、8は真空容器1内の圧力を大気圧以下の真
空度に真空排気するための真空ポンプ、9は真空容器1
と真空ポンプ80間を気密に接続する真空排気用のパイ
プ、1Qは真空容器1内の圧力を管内抵抗を可変にし、
すなわち真空ポンプ8の有効排気速度を可変にして制御
するバタンライバルブ、11はガス流量制御装置を介し
て化合物ガスを真空容器1内に導入するためのガスノズ
ルである。
In Figure 2, 1 is a vacuum container that can maintain a vacuum state, 2 is a sample on which a plasma CVD film is formed, and 3 is a sample 2.
and has an internal heater for heating sample 2.
4 is a heater mounted inside the sample stage 3, 5 is an AC power source for supplying AC power to the heater 4, and 6 is, for example, 50K) (supplied with high frequency power of z). 7 is a high frequency power source with a frequency of 50 KHz, 8 is a vacuum pump for evacuating the pressure inside the vacuum container 1 to a degree of vacuum below atmospheric pressure, 9 is a vacuum pump for vacuum container 1
A vacuum evacuation pipe 1Q airtightly connects the vacuum pump 80 and the vacuum pump 80, and the pipe 1Q changes the pressure inside the vacuum container 1 by varying the resistance inside the pipe.
That is, a valve valve 11 is a gas nozzle for introducing a compound gas into the vacuum vessel 1 via a gas flow rate control device.

以上のよう忙構成されたプラズマ気相成長装置について
、以下その動作について説明する。
The operation of the plasma vapor phase growth apparatus configured as described above will be explained below.

まず真空容器1内を真空ポンプ8により、60mTor
r以下の真空度まで真空排気した後、試料2表面に形成
すべき薄膜の組成元素を含む化合物ガスをガスノズル1
1から流量制御装置で制御しながら真空容器1内に導入
する。さらにバタフライバルブ1oを操作し、薄膜形成
条件である圧力すなわち100〜40 o mTorr
に真空容器1内を制御する。また試料2は試料台3によ
って工力℃程度の温度に加熱制御する。次に、電極6に
周波数50 KHz  の高周波電力を供給することに
よって、前記化合物ガスを励起し、試料2表面をそのプ
ラズマ雰囲気にさらすことによって、試料2表面にプラ
ズマCVD膜を形成する。
First, the inside of the vacuum container 1 is heated to 60mTor by the vacuum pump 8.
After evacuation to a vacuum level below
1 into the vacuum container 1 while being controlled by a flow rate controller. Furthermore, by operating the butterfly valve 1o, the pressure, which is the thin film forming condition, is adjusted to 100 to 40 o mTorr.
The inside of the vacuum container 1 is controlled to. Further, the sample 2 is heated and controlled by the sample stage 3 to a temperature of about 0.degree. C. by force. Next, the compound gas is excited by supplying high-frequency power with a frequency of 50 KHz to the electrode 6, and the surface of the sample 2 is exposed to the plasma atmosphere, thereby forming a plasma CVD film on the surface of the sample 2.

ところで、試料2表面にプラズマCVD膜を形成する際
には、電極6、試料台3、真空容器1等6′−パ 々の真空容器1内構成部品にも類似の膜(無効な膜)が
堆積する。すなわち、類似の膜が真空容器1内構成部品
に累積する。この類似の膜は比較的密着力が弱く、その
膜厚増加と共に、真空容器1内にフレークを発生させる
。その結果試f42表面にパーティクルが多量に付着し
、試料2表面に形成したプラズマCVD膜に膜欠陥を生
じさせる。
By the way, when forming a plasma CVD film on the surface of the sample 2, a similar film (ineffective film) is also formed on the electrode 6, sample stage 3, vacuum container 1, etc. 6' and other components inside the vacuum container 1. accumulate. That is, similar films accumulate on the components within the vacuum vessel 1. This similar film has relatively weak adhesion, and as the film thickness increases, flakes are generated within the vacuum vessel 1. As a result, a large amount of particles adhere to the surface of sample F42, causing film defects in the plasma CVD film formed on the surface of sample 2.

そこで、定期的に真空容器1内構成部品に付着した無効
な膜を除去する必要がある。その手段として、プラズマ
クリーニング法が用いられる。これは、真空容器1内に
ガスノズル11よりハロゲンガスを導入し、所定の圧力
に保持した後、電極6に高周波電力を供給することによ
って、真空容器1内に低温プラズマを発生させ、低温プ
ラズマ中の活性種によって、無効な膜をドライエツチン
グするものである。例えは、試料2表面に窒化シリコン
膜を堆積させるプラズマCVD装置の場合には、前記ハ
ロゲンガスは、六7ツ化イオウ(SF6)や四フッ化炭
素(OF4)と酸素(o2)との混合ガスが用いられる
Therefore, it is necessary to periodically remove the ineffective film adhering to the components inside the vacuum vessel 1. A plasma cleaning method is used as a means for this purpose. This involves introducing halogen gas into the vacuum chamber 1 through the gas nozzle 11, maintaining it at a predetermined pressure, and then supplying high-frequency power to the electrode 6 to generate low-temperature plasma within the vacuum chamber 1. The activated species of this method dry-etch the ineffective film. For example, in the case of a plasma CVD apparatus that deposits a silicon nitride film on the surface of the sample 2, the halogen gas is a mixture of sulfur hexagonide (SF6), carbon tetrafluoride (OF4), and oxygen (O2). Gas is used.

6ベーノ 発明が解決しようとする問題点 しかしながら上記従来のような構成では下記の問題点を
有していた。すなわち第2図に示したプラズマCVD装
置の場合には、図中A部分つま9試料台3の上部空間で
は活性度の高い低温プラズマが得られるため、プラズマ
クリーニングが良好であるが、例えば、図中B部つ″!
、シ試料台3の下部空間では、はとんど低温プラズマが
発生しないため、無効な膜を除去することが困難である
。従って、装置を停止し、例えばプラン等で機械的にそ
れらの膜を除去する必要があり、プラズマCVD装置の
作業性を悪化させる。
6 Problems to be Solved by the Beno Invention However, the conventional configuration described above had the following problems. In other words, in the case of the plasma CVD apparatus shown in FIG. 2, high-activity low-temperature plasma is obtained in the space above the sample stage 3 at A part 9 in the figure, so plasma cleaning is good. Middle B club tsu''!
, Since low-temperature plasma is hardly generated in the space below the sample stage 3, it is difficult to remove an ineffective film. Therefore, it is necessary to stop the apparatus and mechanically remove those films using, for example, a plan, which deteriorates the workability of the plasma CVD apparatus.

このように従来のプラズマCVD装置では、プラズマク
リーニングによって無効な膜を除去することが非常に困
難な部分があり、操作上、作業性を悪化させるという問
題点を有していた。
As described above, in the conventional plasma CVD apparatus, there are parts in which it is extremely difficult to remove an ineffective film by plasma cleaning, and there is a problem in that the workability is deteriorated in terms of operation.

本発明は上記問題点に鑑み、プラズマCVD装置の真空
器1内構底部品のどの部分に付着した無効な膜をも効率
良くプラズマクリーニングすることが可能なプラズマC
VD装置を提供することを目的とするものである。
In view of the above-mentioned problems, the present invention has been developed using a plasma C that is capable of efficiently plasma cleaning an ineffective film attached to any part of the bottom part of the vacuum chamber 1 of a plasma CVD apparatus.
The purpose is to provide a VD device.

問題点を解決するための手段 本発明は」二部問題点を解決するために、真空状態の維
持が可能な真空容器と、真空容器内を減圧雰囲気にする
ための真空排気手段と、真空容器内の圧力を所定の値に
するための圧力制御手段と、真空容器内にガスを導入す
るためのガス供給手段と、被加工物を保持する被加工物
保持手段と、真空容器内に位置し、高周波電力が供給さ
れ所定の圧力状態で少なくとも被加工物を含む空間に低
温プラズマを発生させる主電極と、主電極に高周波電力
を供給するための高周波電源と、真空容器内構成部品に
付着した堆積物全低温プラズマによって除去するために
真空容器内適所に設けた少なくとも1つの補助電極と、
補助電極に高周波電力を供給するための高周波電力供給
手段とを備えたことを特徴とするものである。
Means for Solving the Problems The present invention solves the problems in two parts: a vacuum container capable of maintaining a vacuum state, a vacuum evacuation means for creating a reduced pressure atmosphere inside the vacuum container, and a vacuum container. A pressure control means for controlling the pressure inside the vacuum container to a predetermined value, a gas supply means for introducing gas into the vacuum container, a workpiece holding means for holding the workpiece, and a , a main electrode that is supplied with high-frequency power and generates low-temperature plasma in a space containing at least the workpiece under a predetermined pressure state; a high-frequency power source that supplies high-frequency power to the main electrode; at least one auxiliary electrode positioned in the vacuum vessel for removal of deposits by means of a low-temperature plasma;
The device is characterized by comprising a high-frequency power supply means for supplying high-frequency power to the auxiliary electrode.

作  用 本発明は」二部した構成であって、主電極は、プラズマ
CVD膜を試別に堆積させる際及び通常のプラズマクリ
ーニングする際、それぞれの作業目的に応じて制御され
た真空容器内の雰囲気中に低温プラズマを発生させて、
被加工物保持手段上の試料表面にプラズマCVD膜を堆
積させ、また通常のプラズマクリーニングを行うことが
できる。
Function The present invention has a two-part structure, in which the main electrode is used to control the atmosphere in a vacuum container controlled according to the purpose of each work, when depositing a plasma CVD film separately and when performing normal plasma cleaning. By generating low-temperature plasma inside the
A plasma CVD film can be deposited on the sample surface on the workpiece holding means, and normal plasma cleaning can be performed.

一方補助電極は真空容器内の適所に設けることができ、
前記主電極による通常のプラズマクリーニングではクリ
ーニングのための低温プラズマが発生しにくい部分、つ
捷り真空容器内の被加工物保持手段下の空間部分に配置
し、その部分に低温プラズマを発生させて、プラズマク
リーニングヲ行わせるようにすることができる。
On the other hand, auxiliary electrodes can be placed at appropriate locations within the vacuum vessel.
The main electrode is placed in a space below the workpiece holding means in the shredding vacuum container, which is a part where low-temperature plasma for cleaning is difficult to generate in normal plasma cleaning using the main electrode, and low-temperature plasma is generated in that part. , plasma cleaning can be performed.

実施例 以下本発明の一実施例のプラズマCVD装置について図
面を参照しながら説明する。
EXAMPLE Hereinafter, a plasma CVD apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例におけるプラズマ気相
成長装置の概略断面図を示すものである。
FIG. 1 shows a schematic cross-sectional view of a plasma vapor phase growth apparatus in a first embodiment of the present invention.

第1図において、41は真空状態の維持が可能な真空容
器、42i17IプラズマCVD膜が形成される被加工
物としての試料、43は試料42を保持9−・ し、かつ、内部に加熱装置を有し試別42を加熱するこ
とが可能なアース接地された被加工物保持手段としての
試料台、44は試別台43の内部に搭載された加熱装置
、45は交流電源、46は周波数50KHz  の高周
波電力が供給される主電極、47はガス流量制御装置、
48は周波数50 KHzの高周波電源、49は真空容
器41内の圧力を大気圧以下の真空度にするための真空
排気手段としての真空ポンプ、50は真空容器41と真
空ポンプ49との間を気密に接続する真空排気用のパイ
プ、61は真空容器41内の圧力を制御するための圧力
制御装置、52は高周波電力が供給される補助電極であ
って、試別台43の下となる真空容器41内底部に設置
されている。53は補助電極、52に高周波電力を供給
する電源である。
In FIG. 1, 41 is a vacuum container capable of maintaining a vacuum state, 42 is a sample as a workpiece on which a plasma CVD film is formed, and 43 is a container that holds the sample 42 and has a heating device inside. 44 is a heating device mounted inside the sample table 43, 45 is an AC power source, and 46 is a frequency of 50 KHz. a main electrode to which high-frequency power is supplied; 47 is a gas flow rate control device;
48 is a high frequency power source with a frequency of 50 KHz; 49 is a vacuum pump as a vacuum evacuation means for reducing the pressure inside the vacuum container 41 to a degree of vacuum below atmospheric pressure; and 50 is a vacuum pump for airtightly connecting the vacuum container 41 and the vacuum pump 49. 61 is a pressure control device for controlling the pressure inside the vacuum container 41; 52 is an auxiliary electrode to which high-frequency power is supplied; 41 is installed at the inner bottom. Reference numeral 53 denotes an auxiliary electrode, and a power source that supplies high frequency power to 52.

以上のように構成されたプラズマCVD装置について以
下第1図を用いてその動作を説明する。
The operation of the plasma CVD apparatus configured as described above will be explained below with reference to FIG.

壕ず、真空容器41内を真空ポンプ49によって、30
mTorr以下の真空変寸で真空排気した後、試別42
表面に形成すべき薄膜の組成元系を含む10″−″ 化合物ガス、すなわち、モノシラン(S I H4) 
、アンモニア(NH3)、W素(N2)の混合ガスを各
々を各々13SCCM、31SCCM、142SCCM
のガス流量で、ガス流量制御装置47より真空容器41
内に導入し、かつ、真空容器41内の圧力を圧力制御装
置51を操作して、260 mTorrに保持する。
Without a trench, the inside of the vacuum container 41 is pumped by a vacuum pump 49 for 30 minutes.
After evacuation with a vacuum change of less than mTorr, test sample 42
10″-″ compound gas containing the compositional system of the thin film to be formed on the surface, i.e., monosilane (S I H4)
, ammonia (NH3), and W element (N2) at 13SCCM, 31SCCM, and 142SCCM, respectively.
At a gas flow rate of , the gas flow rate controller 47
The pressure inside the vacuum vessel 41 is maintained at 260 mTorr by operating the pressure control device 51.

また、試別42は試料台43によって300℃の温度に
加熱制御する。次に、主電極46に高周波電源48よシ
周波数50 KHz  の高周波電力を供給することに
よって、試料42を含む空間に低温プラズマを発生させ
る。以上の結果、試別42上に屈折率1.998±0.
02、膜厚分布±3tI)のシリコンナイトライド膜を
形成することができた。
Further, the sample 42 is heated and controlled to a temperature of 300° C. by the sample stage 43. Next, low-temperature plasma is generated in the space containing the sample 42 by supplying high-frequency power with a frequency of 50 KHz from the high-frequency power source 48 to the main electrode 46 . As a result, the refractive index on the sample 42 was 1.998±0.
02, a silicon nitride film with a film thickness distribution of ±3tI) could be formed.

次に、プラズマクリーニングを行う際の動作を説明する
Next, the operation when performing plasma cleaning will be explained.

まず、試料42を真空容器41内より取り出した後、真
空容器41内を真空ポンプ49によって、11 A−7 申 量制御装置47よシ真空容器41内に導入し、かつ、真
空容器41内の圧力を圧力制御装置51を操作して、3
00 mTo r rに保持する。次に、主電極46に
高周波電源48より周波数50KHzO高周波電力を供
給することによって、低温プラズマを発生させる。この
第1ステツプの通常プラズマクリーニングでは第1図中
斜線で示したA部つまシ試料台43上空間部に位置する
真空容器41内構成部品に堆積した膜が除去される。
First, after taking out the sample 42 from inside the vacuum container 41, the inside of the vacuum container 41 is introduced into the vacuum container 41 by the vacuum pump 49, and the volume control device 47 is introduced into the vacuum container 41. 3 by operating the pressure control device 51 to control the pressure.
Hold at 00 mTorr r. Next, low-temperature plasma is generated by supplying high-frequency power with a frequency of 50 KHzO from the high-frequency power source 48 to the main electrode 46 . In this first step of normal plasma cleaning, the film deposited on the components inside the vacuum vessel 41 located in the space above the sample stage 43 in section A indicated by diagonal lines in FIG. 1 is removed.

次に、高周波電源48の出力を停止し、続いて、補助電
極52に周波数50 KHz  の高周波電力を電源5
3よシ供給し、低温プラズマを発生させる。
Next, the output of the high frequency power source 48 is stopped, and then high frequency power with a frequency of 50 KHz is applied to the auxiliary electrode 52 by the power source 5.
3. Supply low temperature plasma to generate low temperature plasma.

この第2ステツプのプラズマクリーニングでは、第1図
中交差斜線で示したB部つまり試料台43下空間部に位
置する真空容器41内構成部品に堆積した膜が除去され
る。
In this second step of plasma cleaning, the film deposited on the components inside the vacuum vessel 41 located in a portion B indicated by crossed diagonal lines in FIG. 1, that is, in the space below the sample stage 43, is removed.

以上のように本実施例によれば、プラズマCVD装置の
真空容器41内において、通常プラズマクリーニングで
は低温プラズマが発生しにくい部分に補助電極52を配
置し、電源63より高周波電力を補助電極62に供給す
ることによって、補助電極62を含む空間に低温プラズ
マを発生させることができるため、真空容器41内の通
常プラズマクリーニングではクリーニングし難い部分の
構成部品に付着した無効な膜をも効率良くプラズマクリ
ーニングすることができる。
As described above, according to this embodiment, the auxiliary electrode 52 is arranged in the vacuum chamber 41 of the plasma CVD apparatus in a part where low-temperature plasma is difficult to generate in normal plasma cleaning, and high-frequency power is applied to the auxiliary electrode 62 from the power source 63. By supplying low-temperature plasma to the space including the auxiliary electrode 62, it is possible to efficiently plasma-clean ineffective films attached to components in parts of the vacuum container 41 that are difficult to clean with normal plasma cleaning. can do.

なお本実施例では、補助電極62に高周波電力を供給す
るために、電源53を利用したが、高周波電源48から
高周波電力を加えても良く、また第1のプラズマクリー
ニング及び第2のプラズマクリーニングを同時に行なっ
ても良い。また、高周波電力の周波数は50 KHz 
 としたが380KHz。
In this embodiment, the power source 53 is used to supply high frequency power to the auxiliary electrode 62, but high frequency power may be applied from the high frequency power source 48, and the first plasma cleaning and the second plasma cleaning may be performed. You can do them at the same time. In addition, the frequency of high frequency power is 50 KHz
However, it was 380KHz.

13 、56MHz等の周波数においても同様の結果が
得られておシ、本発明の効果は周波数の依存性はない。
Similar results were obtained at frequencies such as 13MHz and 56MHz, and the effect of the present invention is not dependent on frequency.

発明の効果 本発明によれば、前記構成および作用を有するのでプラ
ズマCVD装置の真空容器内において、通常のプラズマ
クリーニングでは低温プラズマが発生しにぐい部分にも
補助電極によって、低温プ13ベー/ ラズマを発生させることができ、真空容器内のどの部分
の構成部品に付着した無効な膜をも効率良く、容易にか
つ、くまなくプラズマクリーニングによって除去するこ
とができる。
Effects of the Invention According to the present invention, since it has the above-described structure and operation, the auxiliary electrode allows low-temperature plasma 13B/plasma to be applied to areas in the vacuum chamber of a plasma CVD apparatus where low-temperature plasma is difficult to generate with normal plasma cleaning. This makes it possible to efficiently, easily and thoroughly remove ineffective films attached to any component within the vacuum vessel by plasma cleaning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるプラズマCVD装置
の概略断面図、第2図は従来のプラズマCVD装置の概
略断面図である。 41・・・・・・真空容器、42・・・・・・試料、4
3・・・・・・試料台、44・・・・・・加熱装置、4
6・・・−・・交流電源、46・・・・・・主電極、4
7・・・・・・ガス流量制御装置、48・・・・・・高
周波電源、49・甲・・真空ポンプ、60・・・・・・
パイプ、61・・・・・・圧力制御装置、62・・・・
・・補助電極、53・・・・・・電源。
FIG. 1 is a schematic sectional view of a plasma CVD apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional plasma CVD apparatus. 41... Vacuum container, 42... Sample, 4
3... Sample stand, 44... Heating device, 4
6...--AC power supply, 46... Main electrode, 4
7...Gas flow rate control device, 48...High frequency power supply, 49.A...Vacuum pump, 60...
Pipe, 61... Pressure control device, 62...
...Auxiliary electrode, 53...Power supply.

Claims (1)

【特許請求の範囲】[Claims] 真空状態の維持が可能な真空容器と、真空容器内を減圧
雰囲気にするための真空排気手段と、真空容器内の圧力
を所定の値にするための圧力制御手段と、真空容器内に
ガスを導入するためのガス供給手段と、被加工物を保持
する被加工物保持手段と、真空容器内に位置し、高周波
電力が供給され所定の圧力状態で少なくとも被加工物を
含む空間に低温プラズマを発生させる主電極と、主電極
に高周波電力を供給するための高周波電源と、真空容器
内構成部品に付着した堆積物を低温プラズマによって除
去するために真空容器内適所に設けた少なくとも1つの
補助電極と、補助電極に高周波電力を供給するための高
周波電力供給手段とを備えたことを特徴とするプラズマ
CVD装置。
A vacuum container capable of maintaining a vacuum state, a vacuum evacuation means for creating a reduced pressure atmosphere in the vacuum container, a pressure control means for bringing the pressure inside the vacuum container to a predetermined value, and a gas injecting into the vacuum container. a gas supply means for introducing the workpiece; a workpiece holding means for holding the workpiece; a main electrode for generating electricity, a high-frequency power source for supplying high-frequency power to the main electrode, and at least one auxiliary electrode provided at an appropriate location within the vacuum vessel for removing deposits attached to components within the vacuum vessel by low-temperature plasma. A plasma CVD apparatus comprising: and high-frequency power supply means for supplying high-frequency power to an auxiliary electrode.
JP13234186A 1986-06-06 1986-06-06 Plasma CVD equipment Expired - Lifetime JPH07110996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13234186A JPH07110996B2 (en) 1986-06-06 1986-06-06 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13234186A JPH07110996B2 (en) 1986-06-06 1986-06-06 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPS62287079A true JPS62287079A (en) 1987-12-12
JPH07110996B2 JPH07110996B2 (en) 1995-11-29

Family

ID=15079071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13234186A Expired - Lifetime JPH07110996B2 (en) 1986-06-06 1986-06-06 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH07110996B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140470A (en) * 1989-10-27 1991-06-14 Hitachi Ltd Plasma cvd device and cleaning method for inside of reaction chamber thereof
KR100415435B1 (en) * 1999-09-21 2004-01-31 주성엔지니어링(주) Apparatus for fabricating semiconductor devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3953247B2 (en) 2000-01-11 2007-08-08 株式会社日立国際電気 Plasma processing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140470A (en) * 1989-10-27 1991-06-14 Hitachi Ltd Plasma cvd device and cleaning method for inside of reaction chamber thereof
KR100415435B1 (en) * 1999-09-21 2004-01-31 주성엔지니어링(주) Apparatus for fabricating semiconductor devices

Also Published As

Publication number Publication date
JPH07110996B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JPH09148322A (en) Method for forming silicon oxide film and plasma cvd film forming apparatus
JP3286951B2 (en) Plasma CVD film forming method and apparatus
JPS62287079A (en) Plasma cvd apparatus
JP2726414B2 (en) Method for producing silicon-based thin film
JPH0456770A (en) Method for cleaning plasma cvd device
JPS6314422A (en) Plasma chemical vapor desposition method
JPH04277628A (en) Removal of unreacted gas and reaction-suppressing apparatus
JP2537822B2 (en) Plasma CVD method
JPS63129629A (en) Plasma cvd method
JPS62287078A (en) Plasma cvd apparatus
JPS61256639A (en) Plasma vapor deposition apparatus
JP2511845B2 (en) Processing equipment for vapor phase growth
JPH0119467B2 (en)
JPH01136970A (en) Method for cleaning plasma cvd apparatus
JPH01104778A (en) Plasma cvd device
JPS61256640A (en) Plasma chemical vapor deposition apparatus
JPS62287077A (en) Plasma vapor growth device
JPH0111721Y2 (en)
JPH0729829A (en) Method and system for dc discharge plasma processing
JPS61283113A (en) Epitaxial growth method
JPS6290921A (en) Method for epitaxial growth
JPS61260623A (en) Plasma vapor growth equipment
JPH08261535A (en) Dust removal apparatus, semiconductor processing apparatus, and vapor deposition apparatus
JPH10189461A (en) Plasma treating apparatus
JPH04214618A (en) Thin film formation method and device