JPH0623437B2 - Method for producing carbon and boron nitride - Google Patents

Method for producing carbon and boron nitride

Info

Publication number
JPH0623437B2
JPH0623437B2 JP17556087A JP17556087A JPH0623437B2 JP H0623437 B2 JPH0623437 B2 JP H0623437B2 JP 17556087 A JP17556087 A JP 17556087A JP 17556087 A JP17556087 A JP 17556087A JP H0623437 B2 JPH0623437 B2 JP H0623437B2
Authority
JP
Japan
Prior art keywords
boron nitride
film
carbon
gas
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17556087A
Other languages
Japanese (ja)
Other versions
JPS6417867A (en
Inventor
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP17556087A priority Critical patent/JPH0623437B2/en
Priority to KR1019880001649A priority patent/KR900008505B1/en
Priority to EP88301364A priority patent/EP0284190B1/en
Priority to DE8888301364T priority patent/DE3876120T2/en
Priority to US07/159,610 priority patent/US4869923A/en
Priority to CN88101061A priority patent/CN1036078C/en
Publication of JPS6417867A publication Critical patent/JPS6417867A/en
Priority to US07/329,877 priority patent/US5015494A/en
Priority to US07/329,879 priority patent/US4973494A/en
Priority to US07/380,328 priority patent/US5238705A/en
Priority to US07/790,068 priority patent/US5270029A/en
Publication of JPH0623437B2 publication Critical patent/JPH0623437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、マイクロ波を加えることによりプラズマ気相
反応をせしめ、窒素およびホウ素の含有した炭素および
窒化ホウ素を主成分とする固体物体、特に粒またはそれ
の混入した膜を形成せしめる方法に関する。
Description: FIELD OF THE INVENTION The present invention is directed to a solid body containing carbon and boron nitride containing nitrogen and boron as a main component, in which a plasma gas phase reaction is caused by applying microwaves, particularly particles. Alternatively, the present invention relates to a method of forming a film containing the same.

〔従来の技術〕[Conventional technology]

従来、薄膜の形成手段として、ECR(電子サイクロトロン
共鳴)条件即ち1×10-3〜1×10-5torrの条件下で、少
なくとも電子が1周するに十分な平均自由工程の大き
い、即ち低い圧力で炭素の活性種を作り、その発散磁場
を利用して被膜を形成する電子サイクロトロン共鳴を用
いる方法が知られている。
Conventionally, as a means for forming a thin film, under the ECR (electron cyclotron resonance) condition, that is, under the condition of 1 × 10 −3 to 1 × 10 −5 torr, the mean free path which is sufficient for at least one round of electrons is large, that is, low. A method using electron cyclotron resonance is known in which active species of carbon are produced by pressure and the divergent magnetic field is used to form a film.

〔従来の問題点〕[Conventional problems]

しかしかかる低い圧力で作られた炭素はアモルファス構
造を有しやすく、ダイヤモンドの気相成長はまったく不
可能であった。
However, carbon produced at such a low pressure tends to have an amorphous structure, and vapor phase growth of diamond was completely impossible.

加えて、WC(炭化タングステン)等の超硬金属上へのコ
ーティングがこれまでの炭素のみの膜では不可能であっ
た。
In addition, coating on superhard metals such as WC (tungsten carbide) has not been possible with conventional carbon-only films.

このため気相法で作られる微結晶粒のダイヤモンド(炭
素の単結晶体)に対し、研磨材またはコーティング材と
して使用し得るに十分な硬度を有せしめるとともに、超
硬金属に対して強固に密着したコーティングをさせるこ
とが強く求められていた。
For this reason, it gives microcrystalline diamond (a single crystal of carbon) produced by the vapor phase method sufficient hardness to be used as an abrasive or coating material, and firmly adheres to cemented carbide. There was a strong demand for the coating to be applied.

また、これまではかかるECR の存在領域でないいわゆる
1〜760torr 特に10torr以上の高い圧力で被膜形成をさ
せんとしても、プラズマが発生せず、高密度プラズマを
利用することは不可能とされていた。特にかかる高い圧
力で結晶性を有する被膜を形成することは不可能と考え
られていた。しかし本発明人は、1〜760 torr好ましく
は3〜100torr の高い圧力でも高密度プラズマを作り得
ること、そしてかかるプラズマはECR ではなく新しいモ
ード(これをここでは「混成共鳴」という)であること
を見出した。
Further, until now, even if a film was formed at a high pressure of 1 to 760 torr, especially 10 torr or more, which is not such an ECR existence region, plasma was not generated and it was considered impossible to use high density plasma. . In particular, it has been considered impossible to form a film having crystallinity at such a high pressure. However, the inventor of the present invention is capable of producing a high density plasma even at a high pressure of 1 to 760 torr, preferably 3 to 100 torr, and that such plasma is a new mode (here, referred to as "hybrid resonance") rather than ECR. Found.

また、かかる高い圧力において炭化物気体にアンモニ
ア、弗化窒素、窒素等の窒化物気体およびホウ素化物気
体であるB2H6、BFを混合することにより、これまでの
気相法により作られるダイヤモンドに比べて30〜200%も
の強い硬度を有せしめ得るに加えて超硬金属上にも密着
させてコーティングをし得ることを見出した。
Further, at such a high pressure, a carbide gas is mixed with a nitride gas such as ammonia, nitrogen fluoride, or nitrogen, and B 2 H 6 or BF 3 which is a boride gas. It has been found that in addition to having a hardness as strong as 30 to 200%, it can be coated on a cemented carbide metal in close contact with it.

〔問題を解決すべき手段〕[Means to solve the problem]

本発明は、窒素またはアンモニアとジボラン(B2H6)また
は弗化ホウ素(BF3) が水素とともに加えられた炭化物気
体を1〜760torr 好ましくは3 〜100torr の高い圧力で
高密度プラズマ化せしめ、窒素およびホウ素が添加され
た炭素と窒化ホウ素を主成分(双方合わせて90%以上の
成分比を有する)とする混合物体または多層物体、好ま
しくは結晶粒または被膜の形成を行うものである。
The present invention is a nitrogen or ammonia and diborane (B 2 H 6) or carbide gas boron trifluoride (BF 3) was added together with hydrogen 1~760torr preferably allowed high density plasma at a pressure of 3 ~100Torr, It is intended to form a mixed body or a multi-layer body containing carbon and boron nitride to which nitrogen and boron are added as a main component (both have a component ratio of 90% or more in total), preferably a crystal grain or a coating film.

これらの被形成用物体を混成共鳴空間またはそれより離
れた活性状態を保持した空間内に配設して、反応生成物
を物体の表面にコーティングさせる。この目的のため、
マイクロ波電力の電界強度が最も大きくなる領域または
その近傍に被形成面を有する物体を配設する。また、高
密度プラズマを1〜760torr の高い圧力で発生、持続さ
せるため、この空間の生成物気体の単位空間あたりの濃
度をこれまでのECR CVD 法に比べて10〜10倍程度の
高濃度にする。するとかかる高い圧力においてのみ初め
て分解または反応をさせることができる材料である炭素
および窒化ホウ素を主成分とする被膜形成が可能とな
る。例えば、ダイヤモンド、i−カーボン(ダイヤモン
ドまたは微結晶粒を有する炭素被膜)である。かかる
時、比形成面上にまず窒化ホウ素またはこれを主成分と
する被膜を形成し、その上に炭素または炭素を主成分と
する多層構造の被膜を形成してもよい。
These objects to be formed are arranged in the hybrid resonance space or a space apart from the object which holds an active state, and the reaction products are coated on the surface of the object. For this purpose
An object having a surface to be formed is arranged in or near a region where the electric field strength of microwave power is maximized. Moreover, since the high-density plasma is generated and maintained at a high pressure of 1 to 760 torr, the concentration of the product gas in this space per unit space is about 10 2 to 10 5 times higher than that of the conventional ECR CVD method. Adjust the concentration. Then, it becomes possible to form a film containing carbon and boron nitride, which are materials that can be decomposed or reacted only at such a high pressure, as main components. For example, diamond, i-carbon (diamond or carbon coating having fine crystal grains). At this time, first, a boron nitride film or a film containing the same as the main component may be formed on the ratio forming surface, and carbon or a multi-layered film containing carbon as the main component may be formed thereon.

この窒素およびホウ素を主成分とするダイヤモンドを含
む炭素膜の成膜機構は、被膜形成過程において形成され
つつある被膜の密の部分の構成物(例えば結晶部分)を
残し、かつそこで選択的に成長せしめ、粗の部分の構成
(例えばアモルファス部分)をプラズマ化した水素また
は酸素により除去して、即ちエッチングをさせつつ行わ
んとするものである。そして形成された被膜の少なくと
も一部に結晶性を有する被膜を形成せんとするものであ
る。
The film formation mechanism of the carbon film containing diamond containing nitrogen and boron as the main components leaves the constituents (for example, crystal parts) of the dense part of the film being formed in the film formation process and selectively grows there. At the very least, the structure of the rough portion (for example, the amorphous portion) is removed by hydrogen or oxygen plasmatized, that is, etching is performed. Then, a film having crystallinity is formed on at least a part of the formed film.

以下に実施例を示し、さらに本発明を説明する。Hereinafter, the present invention will be described with reference to examples.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波プ
ラズマCVD 装置を示す。
FIG. 1 shows a microwave plasma CVD apparatus capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラズ
マ発生空間(1),補助空間(2),磁場を発生する電磁石(5),
(5′)およびその電源(25),マイクロ波発振器(4),排気
系を構成するターボ分子ポンプ(17),ロータリーポンプ
(14),圧力調整バルブ(11),(15),基板ホルダ(10′),被
膜形成用物体(10),マイクロ波導入窓(15),ガス系(6),
(7),(8),水冷系(18),(18′),ハロゲンランプ(20),反
射鏡(21),加熱用空間(3) より構成されている。
In this figure, this device has a plasma generation space (1) that can be maintained under reduced pressure, an auxiliary space (2), an electromagnet (5) that generates a magnetic field,
(5 ') and its power supply (25), microwave oscillator (4), turbo molecular pump (17) that constitutes the exhaust system, rotary pump
(14), pressure control valve (11), (15), substrate holder (10 '), film forming object (10), microwave introduction window (15), gas system (6),
(7), (8), water cooling system (18), (18 '), halogen lamp (20), reflecting mirror (21), heating space (3).

まず薄膜形成用物体(10)を基板ホルダ(10′) 上に設置
し、ゲート弁(16)よりプラズマ発生空間(1)に配設す
る。この基板ホルダ(10′) はマイクロ波および磁場を
できるだけ乱させないためステンレス製とした。
First, the thin film forming object (10) is placed on the substrate holder (10 ') and is placed in the plasma generation space (1) from the gate valve (16). This substrate holder (10 ') was made of stainless steel so as not to disturb the microwave and magnetic field as much as possible.

作製工程として、まずこれら全体をターボ分子ポンプ(1
7),ロータリーポンプにより1×10-6torr以下に真空排
気する。次に非生成物気体(分解反応後固体を構成しな
い気体)例えば水素(6) を300SCCMガス系(7) を通して
プラズマ発生領域(1) に導入し、外部より2.45GHz の周
波数のマイクロ波を1KWの強さで加える。磁場約2Kガウ
スを磁石(5),(5′)より印加して、高密度プラズマをプ
ラズマ発生空間(1) にて発生させる。この高密度プラズ
マ領域より高エネルギを持つ非生成物気体または電子が
基板ホルダ(10′) 上の物体(10)の表面上に到り、表面
を清浄にする。
As a manufacturing process, first of all, these are turbo molecular pumps (1
7) Evacuate to 1 × 10 -6 torr or less with a rotary pump. Next, a non-product gas (a gas that does not form a solid after the decomposition reaction), such as hydrogen (6), is introduced into the plasma generation region (1) through the 300SCCM gas system (7), and a microwave of 2.45GHz frequency is applied from the outside to 1KW. Add with strength. A magnetic field of about 2K Gauss is applied from the magnets (5) and (5 ') to generate high-density plasma in the plasma generation space (1). Non-product gases or electrons with higher energy than this high density plasma region reach the surface of the object (10) on the substrate holder (10 ') and clean the surface.

次にこの反応系に水素(6) とガス系(7),(8) より生成物
気体(分解・反応後固体を構成する気体)例えば炭化物
気体(アセチレン(C2H2)、エチレン(C2H4)、メチルアル
コール(CH3OH),エチルアルコール(C2H5OH)またはメタン
(CH4) 等)を30SCCMの流量で導入する。この時炭化水素
は水素により0.1〜5%の十分薄い濃度に希釈した。本発
明方法はこれに加えてアンモニア(NH3) または窒素(N2)
の如き窒化物気体を(7) より、またジボラン(BF3) を
(8) よりそれぞれ等量(B/N=1/1)加えた。さらにBF
NHとの和は炭化水素気体に比べて1〜50%の濃度比に
て加えた。すると、すでに発生しているプラズマ状態を
保持しつつ空間の圧力は1〜7.6 ×10torr好ましくは
10〜100torr 例えば30torrの圧力に変更される。この空
間の圧力を高くすることにより、単位空間あたりの生成
物気体の濃度を大きくでき被膜成長速度を大きくでき
る。そして高エネルギに励起された炭素原子、ホウ素原
子、窒素原子が生成され、800 〜1000℃にヒータ(20)お
よびプラズマエネルギにより加熱された基板ホルダ(1
0′) 上の物体(10)上にこの窒素およびホウ素が混入し
た炭素が堆積またはこれと混合した窒化ホウ素が形成さ
れる。
Next, in this reaction system, hydrogen (6) and gas systems (7) and (8) are used to produce a product gas (a gas that forms a solid after decomposition / reaction) such as a carbide gas (acetylene (C 2 H 2 ), ethylene (C 2 H 4 ), methyl alcohol (CH 3 OH), ethyl alcohol (C 2 H 5 OH) or methane
(CH 4 ) etc.) is introduced at a flow rate of 30 SCCM. At this time, the hydrocarbon was diluted with hydrogen to a sufficiently thin concentration of 0.1 to 5%. In addition to this, the method of the present invention uses ammonia (NH 3 ) or nitrogen (N 2 )
Nitride gas like (7) and diborane (BF 3 )
Equal amounts (B / N = 1/1) were added from (8). And BF 3
The sum with NH 3 was added at a concentration ratio of 1 to 50% compared to the hydrocarbon gas. Then, the pressure of the space is 1 to 7.6 × 10 2 torr, while maintaining the already generated plasma state,
10 to 100 torr For example, the pressure is changed to 30 torr. By increasing the pressure in this space, the concentration of the product gas per unit space can be increased and the film growth rate can be increased. Then, carbon atoms, boron atoms, and nitrogen atoms excited by high energy are generated, and the substrate holder (1) heated to 800 to 1000 ° C. by the heater (20) and plasma energy
0 ') Boron nitride is formed on the upper body (10) by depositing or admixing the carbon mixed with nitrogen and boron.

第1図において、磁場は2つのリング状の磁石(5),
(5′)を用いたヘルムホルツコイル方式を採用した。さ
らに、4分割した空間(30)に対し電場・磁場の強度を調
べた結果を第2図に示す。
In Fig. 1, the magnetic field consists of two ring-shaped magnets (5),
The Helmholtz coil method using (5 ') is adopted. Furthermore, Fig. 2 shows the results of examining the electric and magnetic field strengths in the space (30) divided into four.

第2図(A) において、横軸(X軸)は空間(30)の横方向
(反応性気体の放出方向)であり、縦軸(R軸)は磁石の
直径方向を示す。図面における曲線は磁場の等磁位面を
示す。そしてその線上に示されている数字は磁石(5) が
約2000ガウスの時に得られる磁場の強さを示す。磁石
(5) の強度を調整すると、電極・磁場の相互作用を有す
る空間(100)(875ガウス±185 ガウス以内)で大面積に
おいて磁場の強さを基板の被形成面の広い面積にわたっ
て概略均一にさせることができる。図面は等磁場面を示
し、特に線(26)が875 ガウスとなる共鳴の条件を生ずる
等磁場面である。
In FIG. 2 (A), the horizontal axis (X axis) is the horizontal direction of the space (30) (reactive gas discharge direction), and the vertical axis (R axis) is the diameter direction of the magnet. The curves in the drawings show the isomagnetic surface of the magnetic field. And the number shown on the line shows the strength of the magnetic field obtained when the magnet (5) is about 2000 gauss. magnet
By adjusting the strength of (5), the magnetic field strength can be made approximately uniform over a large area of the substrate formation surface in a large area in the space (100) (within 875 Gauss ± 185 Gauss) where the electrode and magnetic field interact. Can be made. The drawing shows the isofields, in particular the line (26) which produces the condition of resonance at which 875 Gauss.

この共鳴条件を生ずる空間(100) は第2図(B) に示す如
く、電場が最大となる領域となるようにしている。第2
図(B) の横軸は第2図(A) と同じく反応性気体の流れる
方向を示し、縦軸は電場(電界強度)の強さを示す。
As shown in Fig. 2 (B), the space (100) in which this resonance condition occurs is the region where the electric field is maximum. Second
The horizontal axis of the figure (B) shows the flowing direction of the reactive gas as in the case of the second figure (A), and the vertical axis shows the strength of the electric field (electric field strength).

もちろんドーナツ型に被膜を形成せんとする場合はそれ
でもよい。
Needless to say, when a doughnut-shaped film is formed.

領域(100) に対してその原点対称の反対の側でも電場が
最大であり、かつ磁場が広い領域にわたって一定となる
領域を有する。基板の加熱を行う必要がない場合はかか
る空間での被膜形成も有効である。しかしマイクロ波の
電場を乱すことなく加熱を行う手段が得にくい。
On the opposite side of the region (100) with respect to its origin symmetry, there is a region where the electric field is maximum and the magnetic field is constant over a wide region. When it is not necessary to heat the substrate, forming a film in such a space is also effective. However, it is difficult to obtain a means for heating without disturbing the electric field of the microwave.

これらの結果、基板の出し入れ、加熱の容易さを考慮
し、均一かつ均質な被膜とするためには第2図(A) の領
域(100) が3つの領域の中では最も工業的に量産性の優
れた位置と推定される。。
As a result, in consideration of the ease of loading / unloading the substrate and heating, the area (100) in Fig. 2 (A) is the most industrially mass-producible among the three areas in order to obtain a uniform and homogeneous film. It is estimated that the location is excellent. .

この結果、本発明では領域(100) に基板(10)を配設する
と、この基板が円形であった場合、半径100mm まで、好
ましくは半径50mmまでの大きさで均一、均質に被膜形成
が可能となった。
As a result, according to the present invention, when the substrate (10) is arranged in the region (100), if the substrate is circular, it is possible to form a uniform and uniform film with a size up to a radius of 100 mm, preferably up to a radius of 50 mm. Became.

さらに大面積とするには、例えばこの4倍の面積におい
て同じく均一な膜厚とするには、周波数を2.45GHz では
なく1.225GHzとすればこの空間の直径(第2図(A) のR
方向)を2倍とすることができる。
To make the area even larger, for example, in order to obtain the same uniform film thickness in this 4 times area, if the frequency is set to 1.225 GHz instead of 2.45 GHz, the diameter of this space (R in Fig. 2 (A))
Direction) can be doubled.

第3図は第2図における基板(10)の位置での円形空間の
磁場(A) および電場(B) の等磁場、等電場の図面であ
る。第3図(B) より明らかなごとく電場は最大25KV/mに
まで達せしめ得ることがわかる。
FIG. 3 is a drawing of the magnetic field (A) and the electric field (B) in the circular space at the position of the substrate (10) in FIG. It is clear from Fig. 3 (B) that the electric field can reach up to 25 KV / m.

また比較のために同条件下で磁場を印加せずに薄膜形成
を行った。その時基板上に形成された薄膜はグラファイ
ト膜であった。
For comparison, a thin film was formed under the same conditions without applying a magnetic field. The thin film formed on the substrate at that time was a graphite film.

本実施例にて形成された薄膜の電子線回析像をとったと
ころ、窒化ホウ素の多結晶体と結晶炭素即ちダイヤモン
ド(単結晶粒)のスポットがみられ、窒化ホウ素とダイ
ヤモンドの複合膜となっていた。さらにマイクロ波電力
を1KW より5KW に上げてゆくに従い、形成された膜の構
造はダイヤモンド構造がより多く混入した被膜となっ
た。
When an electron diffraction image of the thin film formed in this example was taken, spots of polycrystalline boron nitride and crystalline carbon, that is, diamond (single crystal grain) were observed, and a composite film of boron nitride and diamond was formed. Was becoming. Furthermore, as the microwave power was increased from 1 KW to 5 KW, the structure of the formed film became a film in which more diamond structure was mixed.

〔効果〕〔effect〕

本発明は水素でホウ素化物気体と窒化物気体の混入した
炭化水素を希釈してダイヤモンド粒または膜を形成し
た。かくすると、このダイヤモンド中の格子欠陥が近接
および外部からのストレスで進行することを防ぐことが
できる。そして窒化ホウ素をバインダとして超硬金属例
えば炭化タングステン上に炭素または窒化ホウ素を主成
分とする被膜を形成することにより密着性を上げかつ切
削工具としての硬さを上げることが可能となった。
According to the present invention, a diamond grain or film is formed by diluting a hydrocarbon mixed with a boride gas and a nitride gas with hydrogen. In this way, it is possible to prevent the lattice defects in the diamond from advancing due to stresses from the proximity and the outside. By forming a coating film containing carbon or boron nitride as a main component on a cemented carbide metal such as tungsten carbide using boron nitride as a binder, it has become possible to improve the adhesion and the hardness as a cutting tool.

本発明において、反応性気体の1つを弗化物例えばBF
またはNFとすることにより、プラズマ形成時に弗素が
発生する。この弗素は被形成面上の汚物をエッチングす
るのに有効であった。
In the present invention, one of the reactive gases is a fluoride such as BF 3
Alternatively, by using NF 3 , fluorine is generated during plasma formation. This fluorine was effective in etching dirt on the surface to be formed.

本発明方法はダイヤモンドの硬度を向上させるため周期
表では最も近い窒素およびホウ素を用いた。しかし格子
欠陥が局部的な力により進行することを防ぐと同時に、
超硬金属表面での密着性向上が可能であればアルミニュ
ーム(Al),リン(P) を0.001 〜1重量%の割合で混入
し、ダイヤモンドと窒化ホウ素との混合物または多層膜
内にすることは有効である。
The method of the present invention used the closest nitrogen and boron in the periodic table to improve the hardness of diamond. However, at the same time as preventing lattice defects from progressing due to local force,
If it is possible to improve the adhesion on the cemented carbide surface, mix aluminum (Al) and phosphorus (P) in a ratio of 0.001 to 1% by weight to form a mixture of diamond and boron nitride or a multilayer film. Is valid.

また本発明方法において、窒素化物はアンモニア(NH3),
弗化窒素(NF3) または窒素(N2)を用いた。しかしNO2,N
O,N2Oを用いてもよい。
In the method of the present invention, the nitride is ammonia (NH 3 ),
Nitrogen fluoride (NF 3 ) or nitrogen (N 2 ) was used. But NO 2 , N
O, N 2 O may be used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CVD 装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図は電場・磁場相互作用をさせた位置での磁場およ
び電場の特性を示す。 1……プラズマ発生空間 4……マイクロ波発振器 5,5′……外部磁場発生器 17……ターボ分子ポンプ 10……被膜形成用物体または基板 10′……基板ホルダ 20……ハロゲンランプ 21……反射鏡 100 ……最大電場となる空間
FIG. 1 shows an outline of a microwave CVD apparatus using a magnetic field / electric field interaction used in the present invention. FIG. 2 shows the magnetic field and electric field characteristics by computer simulation. FIG. 3 shows the characteristics of the magnetic field and the electric field at the position where the electric field-magnetic field interaction is caused. 1 ... Plasma generation space 4 ... Microwave oscillator 5,5 '... External magnetic field generator 17 ... Turbo molecular pump 10 ... Object or substrate for film formation 10' ... Substrate holder 20 ... Halogen lamp 21 ... … Reflector 100 …… The space that becomes the maximum electric field

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波を用いて、炭素および窒化ホウ
素を主成分とする物体を作製するプラズマ気相反応方法
であって、炭化物気体と水素と窒素または窒素化合物気
体とホウ素化物気体とを同時に導入して窒素とホウ素が
混入した炭素と窒化ホウ素とを主成分とする物体を作製
することを特徴とする炭素および窒化ホウ素の作製方
法。
1. A plasma gas phase reaction method for producing an object containing carbon and boron nitride as main components by using a microwave, wherein a carbide gas, hydrogen and nitrogen or a nitrogen compound gas and a boride gas are simultaneously produced. A method for producing carbon and boron nitride, which comprises introducing and introducing an object containing carbon and boron nitride mixed with nitrogen and boron as main components.
【請求項2】特許請求の範囲第1項において、マイクロ
波に加えて磁場を同時に印加し、電場および磁場の相互
作用を用いて1〜760torr の圧力範囲で窒素およびホウ
素を含有するダイヤモンドを有する炭素と窒化ホウ素と
を主成分とする物体を作製することを特徴とする炭素お
よび窒化ホウ素の作製方法。
2. The method according to claim 1, wherein a magnetic field is simultaneously applied in addition to the microwave, and the diamond containing nitrogen and boron is used in the pressure range of 1 to 760 torr by using the interaction between the electric field and the magnetic field. A method for producing carbon and boron nitride, which comprises producing an object mainly composed of carbon and boron nitride.
JP17556087A 1987-02-24 1987-07-13 Method for producing carbon and boron nitride Expired - Fee Related JPH0623437B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP17556087A JPH0623437B2 (en) 1987-07-13 1987-07-13 Method for producing carbon and boron nitride
KR1019880001649A KR900008505B1 (en) 1987-02-24 1988-02-15 Microwave enhanced cvd method for depositing carbon
EP88301364A EP0284190B1 (en) 1987-02-24 1988-02-18 Enhanced cvd method for deposition of carbon
DE8888301364T DE3876120T2 (en) 1987-02-24 1988-02-18 CHEMICAL GAS PHASE DEPOSITION METHOD FOR PRODUCING A CARBON LAYER.
CN88101061A CN1036078C (en) 1987-02-24 1988-02-24 Microwave enhanced CVD method for depositing carbon
US07/159,610 US4869923A (en) 1987-02-24 1988-02-24 Microwave enhanced CVD method for depositing carbon
US07/329,877 US5015494A (en) 1987-02-24 1989-03-28 Microwave enhanced CVD method for depositing diamond
US07/329,879 US4973494A (en) 1987-02-24 1989-03-29 Microwave enhanced CVD method for depositing a boron nitride and carbon
US07/380,328 US5238705A (en) 1987-02-24 1989-07-17 Carbonaceous protective films and method of depositing the same
US07/790,068 US5270029A (en) 1987-02-24 1991-11-12 Carbon substance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17556087A JPH0623437B2 (en) 1987-07-13 1987-07-13 Method for producing carbon and boron nitride

Publications (2)

Publication Number Publication Date
JPS6417867A JPS6417867A (en) 1989-01-20
JPH0623437B2 true JPH0623437B2 (en) 1994-03-30

Family

ID=15998216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17556087A Expired - Fee Related JPH0623437B2 (en) 1987-02-24 1987-07-13 Method for producing carbon and boron nitride

Country Status (1)

Country Link
JP (1) JPH0623437B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990218B2 (en) * 1991-03-26 1999-12-13 株式会社半導体エネルギー研究所 Diamond coating member production method
JP2002289616A (en) * 2001-03-28 2002-10-04 Mitsubishi Heavy Ind Ltd Method and apparatus for forming film
JP5013353B2 (en) 2001-03-28 2012-08-29 隆 杉野 Film forming method and film forming apparatus

Also Published As

Publication number Publication date
JPS6417867A (en) 1989-01-20

Similar Documents

Publication Publication Date Title
US4869923A (en) Microwave enhanced CVD method for depositing carbon
US7125588B2 (en) Pulsed plasma CVD method for forming a film
US5330802A (en) Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
KR930003605B1 (en) Microwave enhanced cvd method for coating plastic articles with carbon films and its products
US5013579A (en) Microwave enhanced CVD method for coating mechanical parts for improved wear resistance
KR20070065443A (en) Plasma cvd apparatus
US5183685A (en) Diamond film deposition by ECR CVD using a catalyst gas
JPS61183198A (en) Production of diamond film
JPH0623437B2 (en) Method for producing carbon and boron nitride
US5270029A (en) Carbon substance and its manufacturing method
EP0267513B1 (en) Microwave enhanced CVD method and apparatus
JPS63210010A (en) Production of carbon
US6677001B1 (en) Microwave enhanced CVD method and apparatus
JP2002543293A (en) Use of plasma-based reactive deposition of materials
JPH0420985B2 (en)
US5277939A (en) ECR CVD method for forming BN films
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPH07233475A (en) Formation of diamondlike thin film
JP2995339B2 (en) How to make a thin film
JP2691399B2 (en) Plasma processing method
JPS63169387A (en) Formation of thin film
JPH04124272A (en) Cubic boron nitride coating member and its production
JP2676091B2 (en) How to make a thin film
JPS62171995A (en) Production of diamond

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees