JPS6340800A - Method for synthesizing high-hardness boron nitride - Google Patents

Method for synthesizing high-hardness boron nitride

Info

Publication number
JPS6340800A
JPS6340800A JP18184886A JP18184886A JPS6340800A JP S6340800 A JPS6340800 A JP S6340800A JP 18184886 A JP18184886 A JP 18184886A JP 18184886 A JP18184886 A JP 18184886A JP S6340800 A JPS6340800 A JP S6340800A
Authority
JP
Japan
Prior art keywords
boron nitride
substrate
diamond
film
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18184886A
Other languages
Japanese (ja)
Other versions
JPH0649637B2 (en
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18184886A priority Critical patent/JPH0649637B2/en
Publication of JPS6340800A publication Critical patent/JPS6340800A/en
Publication of JPH0649637B2 publication Critical patent/JPH0649637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a BN coated layer having extremely high hardness by forming a diamond coated layer on the surface of a substrate, then supplying a mixture obtained by mixing a B material and an N material in a specified ratio, and forming BN by microwave plasma CVD, etc. CONSTITUTION:A diamond intermediate layer 2 is formed in 0.01-100mum thickness by microwave plasma CVD on a substrate 1 for a silicon wafer, an Mo material, a W material, a carbide tool, etc. The substrate is placed in a reaction chamber 5. The B material such as gaseous diborane (B2H6) and the N material such as gaseous N2 and gaseous NH3 are introduced from a gaseous reactant feeder 7, and mixed so that the atomic ratio of B/N is controlled to 1-10. A microwave from a microwave generator 12 is simultaneously introduced into the reaction chamber 5 through a waveguide 13 to keep a substrate 4 at >=800 deg.C. As a result, a cubic BN layer 3 having extremely high hardness, excellent thermal conductivity, and chemical stability is formed on the surface of the diamond coated layer 2 of the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非常に高硬度を有するのみならず、熱伝導率
にとみ、化学的に安定で、加えてダイヤモンドとは異々
り鉄族金属に対する;耐性にも優れることから、切削工
具、耐摩工具などの工具材料、さらにはヒートシンクな
どの電子材料として用いられている立方晶窒化ホウ素を
、気相より基材表面に析出させる方法に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention not only has extremely high hardness, but also has excellent thermal conductivity and is chemically stable. This relates to a method for depositing cubic boron nitride, which has excellent resistance to metals and is used as tool materials such as cutting tools and wear-resistant tools, as well as electronic materials such as heat sinks, on the surface of substrates from the gas phase. It is.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■〜■の方法等が知られていた。
Conventionally, methods for producing cubic boron nitride have been known, such as the following methods (1) to (2).

■ 特公昭60−181262号公報に示されるように
、ホウ素を含有する蒸発源から基体上にホウ素分を蒸着
させると共に、少なくとも窒素を含めイオン種を発生せ
しめるイオン発生源から基体上に該イオン種を照射して
、該基体上に窒化ホウ素を生成させる窒化ホウ素膜の製
造方法。
■ As shown in Japanese Patent Publication No. 60-181262, boron is evaporated onto the substrate from an evaporation source containing boron, and at the same time, the ion species are deposited onto the substrate from an ion source that generates ionic species containing at least nitrogen. A method for producing a boron nitride film, which comprises irradiating the substrate with boron nitride to produce boron nitride on the substrate.

■ 「ジャーナル オプ マテリアル サイエンス レ
ターズ(Journal of materialsc
ience 1etters )、4(1985)51
〜54頁」に示されるように、Ht + N、プラズマ
によるボロンの化学輸送を行うことにより、立方晶窒化
ホウ素を生成する方法。
■ “Journal of Materials Science Letters”
Ience 1etters), 4 (1985) 51
54, a method for producing cubic boron nitride by chemically transporting boron using Ht + N and plasma.

■ 〔第9回イオン工学(Ion 5ourceIon
Assisted Technology )シンポジ
ウム(1985年、東京)議事録、「イオン源とイオン
を基礎とした応用技術」〕に示されるように、HCDガ
ンでボロンを蒸発させながら、ホローアノードからN2
をイオン化して基板に放射し、基板には高周波を印加し
て、セルフバイアス効果を持たせて立方晶窒化ホウ素を
生成する方法。
■ [9th Ion Engineering (Ion 5ourceIon
As shown in the proceedings of the Assisted Technology Symposium (Tokyo, 1985), ``Ion Sources and Ion-Based Applied Technologies'', N2 was evaporated from the hollow anode while boron was evaporated with an HCD gun.
This method generates cubic boron nitride by ionizing and irradiating it to the substrate, applying high frequency to the substrate, and creating a self-bias effect.

■ 〔雑波;「真空」第28巻第27号(1985年)
29〜34頁〕に示されるように、ホウ素原子含有固体
に電子ビーム(EB)を当てることによりホウ素を蒸発
させ、それに窒素原子含有ガスを流しこみ、ホウ素及び
窒素を同時にイオン化することにより、基板表面に立方
晶窒化ホウ素を生成する方法。
■ [Miscellaneous Waves; "Vacuum" Vol. 28, No. 27 (1985)
29-34], boron is evaporated by applying an electron beam (EB) to a boron-containing solid, and a nitrogen-containing gas is poured into it to simultaneously ionize boron and nitrogen. A method of producing cubic boron nitride on the surface.

〔発明が解決しようとする問題点〕 しかしながら、前記■の方法はイオンビームを発生する
装置及びその集束装置が高価であることが欠点である。
[Problems to be Solved by the Invention] However, the method (2) has a drawback in that the ion beam generating device and its focusing device are expensive.

前記■の方法は、高出力のRFプラズマを成膜に利用し
ており、かつ低圧で成膜を行って論るため、反応系から
の不純物が混入しやすい。
The method (2) uses high-power RF plasma for film formation and is discussed under low pressure, so impurities from the reaction system are likely to mix in.

前記■の方法は、■の方法と同じくイオンビームを発生
する装置及びその集束装置が高価であることと、不活性
ガスの原子が析出した立方晶窒化ホウ素に取り込まれる
、という欠点を有する。
Like method (2), method (2) has the disadvantages that the ion beam generating device and its focusing device are expensive, and that the atoms of the inert gas are incorporated into the precipitated cubic boron nitride.

前記■の方法は、ホウ素が比較的低融点であることから
ホウ素が突沸しやすく、そのためEBによって膜厚制御
をすることが困難である。
In the method (2) above, since boron has a relatively low melting point, boron tends to cause bumping, and therefore it is difficult to control the film thickness by EB.

以上のように■〜■のいずれの方法も種々の欠点を有す
るが、中でも最大の欠点は、立方晶窒化ホウ素そのもの
を満足できる程度に成膜し得す、六方晶窒化ホウ素もし
くはアモルファスな窒化ホウ素が膜に混在すること及び
該膜内に大きな熱応力が生じ、膜厚がある厚さを越える
と剥離してしまうことである。
As mentioned above, all methods ① to ③ have various drawbacks, but the biggest drawback is that cubic boron nitride itself can be deposited to a satisfactory degree, but hexagonal boron nitride or amorphous boron nitride cannot be used. are present in the film, large thermal stress is generated within the film, and if the film exceeds a certain thickness, it will peel off.

本発明はこのような従来法の欠点・困難点を解決した新
規な立方晶窒化ホウ素の製造方法を目的とするものであ
って、基板表面に硬質窒化硼素を安定に析出することが
でき、例えば工具等に被覆して優れた切削性、耐摩耗性
、耐欠損性を与えうる硬質窒化硼素の製造方法を提供せ
んとするものである。
The object of the present invention is to provide a novel method for producing cubic boron nitride that solves the drawbacks and difficulties of the conventional methods, and allows hard boron nitride to be deposited stably on the surface of a substrate, such as The object of the present invention is to provide a method for producing hard boron nitride that can be coated on tools and the like to provide excellent machinability, wear resistance, and chipping resistance.

〔問題点を解決するための手段〕[Means for solving problems]

系原料から高硬度窒化ホウ素を析出させることを特徴と
する高硬度窒化ホウ素の合成法である。
This is a method for synthesizing high-hardness boron nitride, which is characterized by precipitating high-hardness boron nitride from system raw materials.

上記においてホウ素系原料及び窒素系原料のホウ素と窒
素の原子比B/NをQ、1〜10の範囲とすることなら
びにダイヤモンド被覆層の厚さを101μm〜100μ
mの範囲とすることは、特に好ましい実施態様である。
In the above, the boron-to-nitrogen atomic ratio B/N of the boron-based raw material and the nitrogen-based raw material is Q, in the range of 1 to 10, and the thickness of the diamond coating layer is 101 μm to 100 μm.
A particularly preferred embodiment is a range of m.

本発明者らは基材表面に先ずダイヤ薄膜を中間層として
成膜し、次に該ダイヤ薄膜の上に立方晶窒化ホウ素を析
出せしめることで前記の問題点が解決され、細枠な立方
晶窒化ホウ素が亀裂や剥離なく生成でき、従ってこれを
工具等の被覆に用いれば非常に優れた切削性、耐摩耗性
The present inventors have solved the above problem by first forming a diamond thin film as an intermediate layer on the surface of the substrate, and then depositing cubic boron nitride on the diamond thin film. Boron nitride can be produced without cracking or peeling, so if it is used to coat tools, etc., it has excellent machinability and wear resistance.

炭火損性を有する工具が得られることを見出した。It has been found that a tool that is resistant to charcoal damage can be obtained.

本発明においてダイヤ薄膜を中間層として利用したのは
、下記表1に示すようにダイヤモンドと立方晶窒化ホウ
素の緒特性は非常に類似しており、熱膨張率の差による
亀裂や内部応力によるはぐりは起りにくく、ダイヤモン
ドと立方晶窒化ホウ素の密着性が良いからである。
The reason for using a diamond thin film as an intermediate layer in the present invention is that diamond and cubic boron nitride have very similar properties as shown in Table 1 below, and cracks due to differences in coefficient of thermal expansion and internal stress are not caused. This is because gouging is less likely to occur and the adhesion between diamond and cubic boron nitride is good.

表  1 またダイヤモンドと立方晶窒化ホウ素の結晶構造はそれ
ぞれダイヤモンド型構造、閃亜鉛型)j4造であるが、
後者の構造は前者における炭素原子を一つおきにBとN
で置き換えだものであるため、前者と後者は構造自体同
一のものである。従って窒化ホウ素はダイヤモンド薄膜
上においてダイヤモンド構造と同一の結晶成長ができる
ので、純粋な立方晶窒化ホウ素が生成できることを見出
したからでちる。
Table 1 Furthermore, the crystal structures of diamond and cubic boron nitride are diamond-type structure and zincblende-type structure, respectively.
The latter structure has B and N for every other carbon atom in the former.
Since this is a replacement, the former and latter have the same structure. Therefore, it was discovered that boron nitride can grow on a diamond thin film in a manner similar to the diamond structure, so that pure cubic boron nitride can be produced.

本発明はまず基材表面にダイヤモンド薄膜を中間層とし
て成膜するが、この成膜手段は特に限定されるところl
ハなく、公知の方法例えばマイクロ波プラズマCVD1
、熱フイラメントCVD法、イオンビームミニ法、イオ
ン化蒸着法、直流プラズマCVT)法、高周波プラズマ
CVD法、スパッタリング法、化学輸送法等が用いられ
る。
In the present invention, first, a diamond thin film is formed as an intermediate layer on the surface of a base material, but this film forming method is particularly limited.
Alternatively, known methods such as microwave plasma CVD1 can be used.
, a thermal filament CVD method, an ion beam mini method, an ionization vapor deposition method, a direct current plasma CVD method, a high frequency plasma CVD method, a sputtering method, a chemical transport method, and the like.

ダイヤ被覆層のI厚さは、α01μm〜100μm の
範囲が好ましい。
The I thickness of the diamond coating layer is preferably in the range α01 μm to 100 μm.

ダイヤ被1 iiの厚さがCLol  μmより薄いと
、ダイヤ被覆層が薄すぎる為、ダイヤ被覆層の膜厚が不
均一となり、被覆されない部分も出てくる。従って、立
方晶窒化ホウ素が析出しない部分も現れる。またダイヤ
被覆層の厚さが100μm より厚いと、ダイヤ被覆層
の内部応力が大きくなり、基材とダイヤ被覆層の間で剥
離が起きやすいので好ましくない。
If the thickness of the diamond coating 1 ii is thinner than CLol μm, the diamond coating layer will be too thin, and the thickness of the diamond coating layer will be uneven, and some parts will not be covered. Therefore, some portions appear where cubic boron nitride does not precipitate. Further, if the thickness of the diamond coating layer is greater than 100 μm, the internal stress of the diamond coating layer becomes large, and peeling between the base material and the diamond coating layer is likely to occur, which is not preferable.

次に、該ダイヤ検覆層の表面に立方晶窒化ホウ素膜を形
成するが、この成膜手段としては、やはり特に限定され
るところはなく、公知の方法例えばイオンブレーティン
グ法、イオンビーム蒸着法、イオン化蒸着法、パルスプ
ラズマCvD法、レーザーCVD法、プラズマ化学輸送
法、活性化反応蒸着法、ホローカンードーARE法、エ
レクトロンビーム−ARE法、デュアルビームスバッタ
リング法、反応性スパッタリング法、C○、レーザー蒸
着法等が用いられる。
Next, a cubic boron nitride film is formed on the surface of the diamond inspection layer, but the method for forming this film is not particularly limited, and may be any known method such as ion blating method or ion beam evaporation method. , Ionization vapor deposition method, Pulsed plasma CVD method, Laser CVD method, Plasma chemical transport method, Activated reaction vapor deposition method, Hollow Cando ARE method, Electron beam-ARE method, Dual beam sputtering method, Reactive sputtering method, C○, Laser A vapor deposition method or the like is used.

立方晶窒化ホウ素被覆層の厚さとしてはQ、01〜10
0 μmの範囲が好ましい。0.01 μm未満では膜
厚が薄すぎて該膜厚が不均一となり、立方晶窒化ホウ素
層が被覆されない部分も出てくる。また100 μmを
超えると、立方晶窒化ホウ素層の内部応力が大きくなり
立方晶窒化ホウ素とダイヤ層の間で剥離が起きやすい。
The thickness of the cubic boron nitride coating layer is Q, 01 to 10
A range of 0 μm is preferred. If it is less than 0.01 μm, the film thickness will be too thin and the film thickness will be non-uniform, and some portions will not be covered with the cubic boron nitride layer. Moreover, if it exceeds 100 μm, the internal stress of the cubic boron nitride layer becomes large and peeling easily occurs between the cubic boron nitride and the diamond layer.

本発明においては窒化ホウ素膜を合成する原料として、
ホウ素系原料のホウ素原子数と窒素系原料の窒素原子数
の比B/Nを(11〜10の範囲とすることが好ましい
。こればB/N(0,1であると非晶質状の窒化ホウ素
が析出されやすく、B/N)10であるとホウ素が過剰
となり非晶質状のホウ素が形成されやすいからである。
In the present invention, as a raw material for synthesizing a boron nitride film,
The ratio B/N of the number of boron atoms in the boron-based raw material to the number of nitrogen atoms in the nitrogen-based raw material is preferably in the range of 11 to 10. This is because boron nitride is likely to be precipitated, and when B/N) is 10, boron is excessive and amorphous boron is likely to be formed.

本発明に用いうるホウ素系原料としては、例えば固体ホ
ウ素、固体窒化ホウ素(BN)、ジボラン(BtHa 
)ガス、臭化ホウ素ガス、塩化ホウ素ガス等が挙げられ
、また窒素系原料としては例えばHz * NHs等が
挙げられる。
Examples of boron-based raw materials that can be used in the present invention include solid boron, solid boron nitride (BN), diborane (BtHa
) gas, boron bromide gas, boron chloride gas, etc., and examples of the nitrogen-based raw material include Hz*NHs.

2g1図は本発明により得られた高硬度窒化ホウ素被覆
を説明する断面図であって、1は基材、2はダイヤモン
ド被覆層、3は高硬度窒化ホウ素被覆層を示す。
Figure 2g1 is a cross-sectional view illustrating the high hardness boron nitride coating obtained by the present invention, in which 1 is the base material, 2 is the diamond coating layer, and 3 is the high hardness boron nitride coating layer.

なお本発明に用いる基材としては例えば結晶シリコン、
モリブデン板、タングステン板、超硬工具等やその他高
硬度窒化ホウ素被覆の特性を生かしての応用が考えられ
かつダイヤモンド及び硬質窒化ホウ素合成法の基材とし
て適用可能な材料を用いることができる。
Note that the base material used in the present invention includes, for example, crystalline silicon,
Applications such as molybdenum plates, tungsten plates, carbide tools, etc., and other materials that take advantage of the characteristics of high-hardness boron nitride coatings can be considered, and materials that can be used as base materials for diamond and hard boron nitride synthesis methods can be used.

〔実施例〕〔Example〕

実施例1 シリコンウエノ・−を基板とし、その表面にマイクロ波
プラズマCVDによりダイヤモンド中間層を5 μm厚
さ程度に被覆したのち、第2図に示す如きマイクロ波プ
ラズマCVD装置を用いて窒化ホウ素膜を形成した。ダ
イヤモンド被覆等板4を反応室5内の基板支持台乙に載
置し、反応ガス供給装置7からコック8を介して反応室
5内にシボラフ5Cr:、/−及び窒素1occ/−を
流した。該反応室5内の圧力はコック9.排気装置10
.排気口11により50Tarrに調整し、基板4の温
度はマイクロ波プラズマを調整して800℃とした。マ
イクロ波発振器12の出力を400wとし、該マイクロ
波をウェーブガイド13により反応室5に導き、この条
件にて5時開成膜を行った。
Example 1 A silicon urethane substrate was used, and the surface thereof was coated with a diamond intermediate layer to a thickness of approximately 5 μm by microwave plasma CVD, and then a boron nitride film was coated using a microwave plasma CVD apparatus as shown in FIG. was formed. The diamond-coated plate 4 was placed on the substrate support stand B in the reaction chamber 5, and Cibolaf 5Cr:,/- and nitrogen 1occ/- were flowed into the reaction chamber 5 from the reaction gas supply device 7 via the cock 8. . The pressure inside the reaction chamber 5 is controlled by a cock 9. Exhaust device 10
.. The temperature was adjusted to 50 Tarr using the exhaust port 11, and the temperature of the substrate 4 was adjusted to 800° C. by adjusting the microwave plasma. The output of the microwave oscillator 12 was set to 400 W, and the microwave was guided into the reaction chamber 5 by the wave guide 13, and film formation was performed at 5 o'clock under these conditions.

以上の結果ダイヤモンド被覆シリコンウェハーには厚さ
4 μm程度の窒化ホウ素膜が生成し、これ<X線回析
により解析したところ、2θ=4&2°付近で鋭いピー
クを検出できたので、得られた窒化ホウ素膜が立方晶窒
化ホウ素であると同定できだ。
As a result, a boron nitride film with a thickness of about 4 μm was formed on the diamond-coated silicon wafer, and when this film was analyzed by X-ray diffraction, a sharp peak was detected near 2θ = 4 & 2°. The boron nitride film was identified as cubic boron nitride.

実施例2 基板としてモリブデン基板を用い、熱フイラメントCV
D法によりダイヤモンドを厚さ10μm程度被覆して中
間層としたのち、第2図のマイクロ波プラズマCVD装
置を用いて、窒化ホウ素膜を形成した。反応ガスとして
は臭化ホウ素4Ct:、/−及びアンモニアa CC/
 =を流し、反応室内圧力10  Torr 、基板温
度900℃とした。マイクロ波出力400Wにて8時開
成膜、を行つた結果、ダイヤ被覆基板表面には厚さ6μ
m楊度の窒化ホウ素膜が生成した。この膜についてX線
回折により解析したところ、2θ=4五2°付近に鋭い
ピークを検出できたので、立方晶窒化ホウ素膜であると
同定できた。
Example 2 Using a molybdenum substrate as a substrate, thermal filament CV
After coating diamond to a thickness of about 10 μm to form an intermediate layer using the D method, a boron nitride film was formed using the microwave plasma CVD apparatus shown in FIG. The reaction gases are boron bromide 4Ct:,/- and ammonia a CC/
= was allowed to flow, the reaction chamber pressure was 10 Torr, and the substrate temperature was 900°C. As a result of opening the film at 8 o'clock with a microwave output of 400 W, a thickness of 6 μm was formed on the surface of the diamond-coated substrate.
A boron nitride film with a thickness of 100 m was produced. When this film was analyzed by X-ray diffraction, a sharp peak was detected near 2θ=452°, so it was identified as a cubic boron nitride film.

実施例5 基板としてシリコンウェハーを用い、化学輸送法により
ダイヤモンドを厚さもμm程度被覆して中間層としたの
ち、第3図に示す如きタングステン−フィラメント装置
を用いて窒化ホウ素膜を形成した。ダイヤモンド被覆基
板4を反応室5内の基板支持台6に載置し、反応ガス供
給装置7からコック8を介して反応室5内に、反応ガス
として塩化ホウ素6 cc / =+及びアンモニア8
cr−7層を流した。該反応管5内の圧力はコック9.
排気装置10.排気口11により5゜Torrに調整し
、基板支持台内部のヒータにより基板4の温度を100
0℃【、タングステンフィラメント14の温度を200
0℃とした。
Example 5 A silicon wafer was used as a substrate, and diamond was coated to a thickness of about .mu.m to form an intermediate layer by a chemical transport method, and then a boron nitride film was formed using a tungsten filament apparatus as shown in FIG. A diamond-coated substrate 4 is placed on a substrate support 6 in a reaction chamber 5, and 6 cc/=+ of boron chloride and 8 cc of ammonia are supplied as reaction gases into the reaction chamber 5 from a reaction gas supply device 7 via a cock 8.
The cr-7 layer was run. The pressure inside the reaction tube 5 is controlled by the cock 9.
Exhaust device 10. The exhaust port 11 adjusts the temperature to 5° Torr, and the heater inside the substrate support table raises the temperature of the substrate 4 to 100° Torr.
0℃ [, the temperature of the tungsten filament 14 is 200℃
The temperature was 0°C.

な督12は反応炉である。以上の条件にて6時間酸、膜
を行った結果、ダイヤモンド被覆基板表面に厚さ4μm
程度の窒化ホウ素膜が生成した。
Director 12 is a reactor. As a result of applying acid and film for 6 hours under the above conditions, a thickness of 4 μm was formed on the surface of the diamond-coated substrate.
A boron nitride film of about 100% was formed.

この膜につきX線回折を行ったところ、実施例1.2と
同様に立方晶窒化ホウ素であると同定できだ。
When this film was subjected to X-ray diffraction, it was identified as cubic boron nitride, as in Example 1.2.

以上のように本発明の実施例1〜5の条件によυいずれ
も立方晶窒化ホウ素膜が作製できることが確認できたの
で、これらの条件を用いてチップに本発明の窒化ホウ素
被覆(コーティング)を行ったもの(実施例、1〜3)
について切削テストを行った。
As described above, it was confirmed that cubic boron nitride films could be produced in all cases under the conditions of Examples 1 to 5 of the present invention, and therefore, using these conditions, a chip was coated with the boron nitride of the present invention. (Examples, 1 to 3)
A cutting test was conducted on the

まだコーティングなしのチップ(比較例2)及び、同種
のチップにイオンブレーティング法によりTiNコーテ
ィングを行ったチップ(比較例1)についても、比較の
ため例切削テストを行った。なお基材としたチップには
、we基超超硬合金あるに一10超硬合金TNMG35
2〔住友電工■製〕を用いた。
For comparison purposes, cutting tests were also conducted on an uncoated chip (Comparative Example 2) and a chip of the same type coated with TiN by ion blating (Comparative Example 1). The chip used as the base material is a we-based cemented carbide, Ni-10 cemented carbide TNMG35.
2 [manufactured by Sumitomo Electric ■] was used.

なお、立方晶窒化ホウ素被覆層及びTiN被覆層厚はい
ずれも5μmとした。
Note that the thickness of the cubic boron nitride coating layer and the TiN coating layer were both 5 μm.

チップの切削テストの条件を表2に示す。Table 2 shows the conditions for the chip cutting test.

表  2 表3に切削テストの結果を示す。なお以下CBNと略記
のものは立方晶窒化ホウ素を意味する。
Table 2 Table 3 shows the results of the cutting test. Note that the abbreviation CBN hereinafter means cubic boron nitride.

表  5 以上の結果から、本発明によるダイヤモンド被覆層を中
間層として立方晶窒化ホウ素を被覆したチップが耐摩耗
性に優れていることが明らかである。
Table 5 From the above results, it is clear that the chips coated with cubic boron nitride using the diamond coating layer as an intermediate layer according to the present invention have excellent wear resistance.

第4図は超硬合金チップの鋼旋削における耐摩耗性テス
ト結果を、切削時間(膳)とにげ面摩耗量(−)の関係
で示しだグラフである。第4図中イは超硬合金チップ、
住友電工鱒)製、5NG432を基材として本発明ケこ
よりダイヤモンド被覆(熱フィラメントCVD1.CH
410a/m、H,10QCt/m、フィラメント温度
2000℃、基板温度800℃、圧力100 Torr
 )  と立方晶窒化ホウ素被覆(マイクロ波プラズマ
CVD法、馬”a 5 CC/ −+ N210 CC
/ 悶、 基板温度900℃、圧力50 Torr )
  を施した本発明品、口は同じ基材に反応性イオンブ
レーティング法を用いTiC被覆を施した従来品、・・
は被覆なしの基材チップである比較品のテスト結果をあ
られす。なおテスト条件は、被削材S CM 415、
切削速度xoom/=+で行った。
FIG. 4 is a graph showing the wear resistance test results of cemented carbide tips in steel turning in terms of the relationship between the cutting time (cutting time) and the amount of wear on the exposed surface (-). A in Figure 4 is a cemented carbide tip,
Diamond coating (thermal filament CVD1.CH) manufactured by Sumitomo Electric Co., Ltd., using 5NG432 as a base material
410a/m, H, 10QCt/m, filament temperature 2000℃, substrate temperature 800℃, pressure 100 Torr
) and cubic boron nitride coating (microwave plasma CVD method, 5 CC/-+ N210 CC
/ Agony, substrate temperature 900℃, pressure 50 Torr)
The product of the present invention is coated with TiC using the reactive ion blating method on the same base material.
Here are the test results for a comparative product, which is an uncoated base chip. The test conditions were: work material S CM 415;
The cutting speed was xoom/=+.

第5図は超硬合金チップの鋳鉄旋削における切削性能テ
スト結果を、切削速度(m/−m)と寿命時間(―)の
関係で示したグラフである。
FIG. 5 is a graph showing the cutting performance test results for cast iron turning using cemented carbide tips in terms of the relationship between cutting speed (m/-m) and life time (-).

第5図中二は超硬合金チップ、住友゛電工■製、TM0
122を基材として本発明によりダイヤモンド被覆(マ
イクロ波プラズマCVD法、CH420Cr:、7m 
、 H,100Cr、7m 、圧力20Torr、基板
温度800℃)と立方晶窒化ホウ素被覆(熱フイラメン
トCVD法、]31FIs 4 CC/ ―。
The second part in Figure 5 is a cemented carbide tip, manufactured by Sumitomo Electric, TM0.
Diamond coating (microwave plasma CVD method, CH420Cr:, 7 m
, H, 100Cr, 7m, pressure 20Torr, substrate temperature 800°C) and cubic boron nitride coating (thermal filament CVD method, ]31FIs 4 CC/-.

NH3b cr、/= 、 H,10o a、、/= 
、フィラメント温度2200℃、基板温度900℃、圧
力40Torr )  を7@こした本発明品、ホは同
じ基材に・rオンブレーティング法を用いてk140s
被覆を施こした従来品、へは被覆なしの等材チップであ
る比較品のテスト結果をあられす。なお被削材ばFCD
30で行った。
NH3b cr, /= , H,10o a,, /=
, filament temperature 2200°C, substrate temperature 900°C, pressure 40 Torr).
Here are the test results for the conventional coated product and the comparative product, which is an uncoated chip of the same material. In addition, if the work material is FCD
I went at 30.

第6図は超硬合金チップの鋳鉄切削における耐欠損性テ
スト結果を、衝撃回数と欠損までの時間(―)の関係で
示したグラフである。第6図中トは超硬合金チップ、住
友電工■製、5NG432′fl材として本発明により
ダイヤモンド被覆(マイクロ波プラズマCVD法、CH
410a:、/x* 、 H,s o cr、、/―、
基板温度1000℃。
FIG. 6 is a graph showing the fracture resistance test results of cemented carbide tips in cutting cast iron in terms of the relationship between the number of impacts and the time until fracture (-). Figure 6 shows a cemented carbide chip, manufactured by Sumitomo Electric, 5NG432'fl material coated with diamond according to the present invention (microwave plasma CVD method, CH
410a:, /x*, H, so cr,, /-,
Substrate temperature 1000℃.

圧力s OTarr )  と立方晶窒化ホウ素被覆(
イオンブレーティング法、B系原料、固体ホウ素。
pressure s OTarr ) and cubic boron nitride coating (
Ion blating method, B-based raw material, solid boron.

N、2occ/=、基板温度500℃、圧力lX10−
”Pa、)を施した本発明品、チは同じ基材にイオンブ
レーティング法を用いTiN被覆を施した従来品、りは
同じ基材にCVD法を用いTiC被覆を施した従来品、
ヌは被覆表しの基材チップである比較品、のテスト結果
をあられす。なお被削材はFCD45.切削速度zso
m/−で行った。
N, 2occ/=, substrate temperature 500℃, pressure 1X10-
"Pa,)" is the present invention's product, "H" is a conventional product in which the same base material is coated with TiN using the ion blating method, "R" is a conventional product in which the same base material is coated with TiC using the CVD method,
Here are the test results for a comparative product, which is a base material chip with a coating. The work material is FCD45. Cutting speed zso
I went with m/-.

上記第4図ないし第6図の結果より、本発明による立方
晶窒化ホウ素被覆を行ったチップは、切削性能、耐摩耗
性、耐欠損性のいずれも従来品、比較品に比し非常に優
れていることが明かにわかる。また以上のテストの他に
、耐熱衝撃性、熱伝導性、硬度、高温での鉄族金属に対
する耐性にも秀れていることが判明した。
From the results shown in Figures 4 to 6 above, the insert coated with cubic boron nitride according to the present invention has excellent cutting performance, wear resistance, and chipping resistance compared to conventional and comparative products. It is clearly seen that In addition to the above tests, it was also found to have excellent thermal shock resistance, thermal conductivity, hardness, and resistance to iron group metals at high temperatures.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は基材表面にまずダイヤモン
ド被覆形成し該ダイヤモンド層にざらに立方晶窒化ホウ
素膜を形成することにより、アモルファスな窒化ホウ素
の混在や、膜剥離といった不都合なく基材表面に硬質窒
化ホウ素を安定に析出することができる。
As explained above, the present invention first forms a diamond coating on the surface of a base material, and then roughly forms a cubic boron nitride film on the diamond layer, thereby eliminating the problem of amorphous boron nitride being mixed in or peeling off of the film. Hard boron nitride can be stably precipitated.

本発明により工具等を被覆したものは、切削性、耐摩耗
性、耐欠損性、さらに耐熱衝撃性、熱伝導性、硬度、高
温での鉄属金属に対する耐性に秀れるので、切削部材、
耐摩耗性部材及び耐熱部材の被覆膜として利用して非常
に効果が大きい。
The coated tools and the like according to the present invention have excellent machinability, wear resistance, chipping resistance, thermal shock resistance, thermal conductivity, hardness, and resistance to ferrous metals at high temperatures, so cutting members,
It is very effective when used as a coating film for wear-resistant members and heat-resistant members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により基材に高硬度窒化ホウ素を被覆し
たものの断面図である。 第2図及び第5図はそれぞれ本発明の実施態様を説明す
るだめの概略断面図であって、第2図はプラズマCVD
法、第3図はタングステンフィラメント法の場合を示す
。 第4図ないし第6図は超硬合金チップを基材として被覆
した本発明品、従来品ならびに被覆なしの比較品につい
ての性能比較試験をグラフ表示しだ図であって、第4図
は鋼旋削における耐摩耗性テスト、第5図は鋳鉄旋削に
おける切削性能テスト、第6図は鋳鉄の耐欠損性テスト
の結果をそれぞれ示している。
FIG. 1 is a sectional view of a substrate coated with high hardness boron nitride according to the present invention. 2 and 5 are schematic cross-sectional views for explaining embodiments of the present invention, and FIG. 2 is a plasma CVD
Figure 3 shows the case of the tungsten filament method. Figures 4 to 6 are graphical representations of performance comparison tests of a product of the present invention coated with a cemented carbide chip as a base material, a conventional product, and a comparative product without coating. Fig. 5 shows the results of a wear resistance test in turning, and Fig. 6 shows the results of a cutting performance test in cast iron turning, and Fig. 6 shows the results of a fracture resistance test of cast iron.

Claims (3)

【特許請求の範囲】[Claims] (1)基材表面にダイヤモンド被覆層を形成した後、該
被覆層表面にホウ素系原料及び窒素系原料から高硬度窒
化ホウ素を析出させることを特徴とする高硬度窒化ホウ
素の合成法。
(1) A method for synthesizing high-hardness boron nitride, which comprises forming a diamond coating layer on the surface of a base material, and then precipitating high-hardness boron nitride from a boron-based raw material and a nitrogen-based raw material on the surface of the coating layer.
(2)ホウ素系原料及び窒素系原料のホウ素と窒素の原
子比B/Nを0.1〜10の範囲とする特許請求の範囲
第(1)項記載の高硬度窒化ホウ素の合成法。
(2) The method for synthesizing high hardness boron nitride according to claim (1), wherein the boron-to-nitrogen atomic ratio B/N of the boron-based raw material and the nitrogen-based raw material is in the range of 0.1 to 10.
(3)ダイヤモンド被覆層が厚さ0.01μm〜100
μmの範囲である特許請求の範囲第(1)項記載の高硬
度窒化ホウ素の合成法。
(3) The thickness of the diamond coating layer is 0.01 μm to 100 μm.
A method for synthesizing high hardness boron nitride according to claim (1), wherein the hardness is in the μm range.
JP18184886A 1986-08-04 1986-08-04 High hardness boron nitride synthesis method Expired - Lifetime JPH0649637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18184886A JPH0649637B2 (en) 1986-08-04 1986-08-04 High hardness boron nitride synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18184886A JPH0649637B2 (en) 1986-08-04 1986-08-04 High hardness boron nitride synthesis method

Publications (2)

Publication Number Publication Date
JPS6340800A true JPS6340800A (en) 1988-02-22
JPH0649637B2 JPH0649637B2 (en) 1994-06-29

Family

ID=16107878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18184886A Expired - Lifetime JPH0649637B2 (en) 1986-08-04 1986-08-04 High hardness boron nitride synthesis method

Country Status (1)

Country Link
JP (1) JPH0649637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973494A (en) * 1987-02-24 1990-11-27 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for depositing a boron nitride and carbon
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
CN102649331A (en) * 2012-05-08 2012-08-29 南京航空航天大学 Tool with super-hard film coating and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973494A (en) * 1987-02-24 1990-11-27 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for depositing a boron nitride and carbon
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6265070B1 (en) 1988-03-07 2001-07-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6583481B2 (en) 1988-03-07 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US7144629B2 (en) 1988-03-07 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
CN102649331A (en) * 2012-05-08 2012-08-29 南京航空航天大学 Tool with super-hard film coating and preparation method thereof

Also Published As

Publication number Publication date
JPH0649637B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
EP0474369A1 (en) Diamond-like carbon coatings
JPH04958B2 (en)
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS6369973A (en) Production of cubic boron nitride film
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH0623437B2 (en) Method for producing carbon and boron nitride
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPH07150337A (en) Production of nitride film
JPH0667797B2 (en) Diamond synthesis method
JPS62260063A (en) Method for synthesizing high hardness boron nitride
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JP3417902B2 (en) Manufacturing method for high-hardness metal products
JPH04310515A (en) Highly hard ceramic coating film and its production
JPS6360285A (en) Method for coating substrate surface by plasma vapor deposition
JPH04202663A (en) Formation of boron nitride film and apparatus therefor
JPS63297561A (en) Method for synthesizing high-hardness boron nitride
JPH0725523B2 (en) Titanium nitride thin film
JPH04124258A (en) Formation of boron nitride thin film