JPS63210010A - Production of carbon - Google Patents

Production of carbon

Info

Publication number
JPS63210010A
JPS63210010A JP62041748A JP4174887A JPS63210010A JP S63210010 A JPS63210010 A JP S63210010A JP 62041748 A JP62041748 A JP 62041748A JP 4174887 A JP4174887 A JP 4174887A JP S63210010 A JPS63210010 A JP S63210010A
Authority
JP
Japan
Prior art keywords
nitrogen
carbon
space
plasma
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62041748A
Other languages
Japanese (ja)
Other versions
JPH0471034B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62041748A priority Critical patent/JPS63210010A/en
Priority to KR1019880001649A priority patent/KR900008505B1/en
Priority to EP88301364A priority patent/EP0284190B1/en
Priority to DE8888301364T priority patent/DE3876120T2/en
Priority to US07/159,610 priority patent/US4869923A/en
Priority to CN88101061A priority patent/CN1036078C/en
Publication of JPS63210010A publication Critical patent/JPS63210010A/en
Priority to US07/329,877 priority patent/US5015494A/en
Priority to US07/329,879 priority patent/US4973494A/en
Priority to US07/380,328 priority patent/US5238705A/en
Priority to US07/790,068 priority patent/US5270029A/en
Publication of JPH0471034B2 publication Critical patent/JPH0471034B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbonaceous material contg. nitrogen and having superior strength when a reactive gas made of carbide as starting material is brought into a plasma vapor phase reaction with microwaves to produce the carbonaceous material, by adding hydrogen and nitrogen (compd.) to the reactive gas. CONSTITUTION:A substrate 10 is set in the plasma generating space 1 of a microwave plasma CVD device and the space 1 is evacuated by a pump. A gas 6 such as Ar or hydrogen is introduced into the space 1, microwaves are projected from a microwave generator 4 and a magnetic field is applied from magnets 5, 5' to generate high density plasma. A gas 7 contg. a reactive gas made of carbide such as acetylene, hydrogen and a small amt. of nitrogen or a nitrogen compd. such as ammonia is then introduced into the reaction system and brought into a plasma vapor phase reaction under 0.1-300Torr pressure to form a carbon-base body contg. nitrogen such as a diamond film on the substrate 10.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はマイクロ波電界を加えることによりプラズマ気
相反応をせしめ、硬度の大きい炭素を主成分とする固体
物体、好ましくはダイヤモンド粒またはそれの混入した
膜を形成せしめる方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention causes a plasma gas phase reaction by applying a microwave electric field, and generates a solid object mainly composed of hard carbon, preferably diamond particles or the like. The present invention relates to a method for forming a film that is

〔従来の技術〕[Conventional technology]

従来、薄膜の形成手段としてECR(電子サイクロトロ
ン共鳴)条件即ちI X 10−’〜l X 10−’
torrの条件下で、少なくとも電子が1周するに十分
な平均自由工程の大きい、即ち低い圧力で炭素の活性種
を作り、その発散磁場を利用して被膜を形成する電子サ
イクロトロン共鳴(ECRともいう)を用いる方法が知
られている。
Conventionally, as a means for forming a thin film, ECR (electron cyclotron resonance) conditions, that is, I x 10-' to l x 10-'
Electron Cyclotron Resonance (ECR) is a process in which carbon active species are created at a low pressure with a large mean free path sufficient for at least one electron to make one revolution under torr conditions, and a film is formed using the divergent magnetic field. ) is known.

〔従来の問題点〕[Conventional problems]

しかしかかる低い圧力で作られた炭素はアモルラアス構
造を有しやすく、ダイヤモンドの気相成長はまったく不
可能であった。加えてこの気相法で作られるダイヤモン
ドの硬度を自然界に存在するダイヤモンドにより近づけ
ることもまったく不可能であった。
However, carbon produced under such low pressure tends to have an amorphous structure, making it completely impossible to grow diamond in the vapor phase. In addition, it has been impossible to bring the hardness of diamonds produced by this vapor phase method closer to those of diamonds that exist in nature.

このため気相法で作られる微結晶粒のグイヤモラド(炭
素の単結晶体)に対し、研磨材として使用し得るに十分
な硬度を有せしめることが強く求められていた。
For this reason, there has been a strong demand for microcrystalline guyamorado (single crystal carbon) produced by the vapor phase method to have sufficient hardness to be used as an abrasive.

また、これまではかかるECRの存在領域でないいわゆ
る0、1〜300torr特に3torr以上の高い圧
力での被膜形成をさせんとしても、プラズマが発生せず
、高密度プラズマを利用することは不可能とされていた
。特にかかる高い圧力で結晶性を有する被膜を形成する
ことはこれまで不可能と考えられていた。しかし本発明
人は0.1〜300 torr好ましくは3〜30to
rrの高い圧力でも高密度プラズマを作り得ること、そ
してかかるプラズマはECRではなく新しいモー゛ド(
これをここでは「混成共鳴」という)であることを見出
した。また、かかる高い圧力において炭化物気体にアン
モニア、窒素等の窒化物気体を混合することによりこれ
までの気相法により作られるダイヤモンドに比べて30
〜20ozもの強い硬度を有せしめ得ることを見出した
Furthermore, even if we try to form a film at a high pressure of so-called 0, 1 to 300 torr, especially 3 torr or more, which is not the area where such ECR exists, no plasma is generated and it is impossible to use high-density plasma. It had been. It was previously considered impossible to form a crystalline film under such high pressure. However, the inventor of the present invention
It is possible to create high-density plasma even at high pressures such as rr, and such plasma is not ECR but a new mode (
We discovered that this is called "hybrid resonance" here. In addition, by mixing nitride gases such as ammonia and nitrogen with carbide gases under such high pressure, diamonds made by conventional gas phase methods have a 30%
It has been found that hardness can be as strong as ~20 oz.

〔問題を解決すべき手段〕[Means to solve the problem]

本発明は、窒素またはアンモニアが水素とともに加えら
れた炭化物気体を0.1〜300torr好ましくは3
〜3Qtorrの高い圧力で高密度プラズマ化せしめ、
窒素が添加された炭素を主成分とする物体、好ましくは
ダイヤモンド粒または被膜の形成を行うものである。
In the present invention, a carbide gas to which nitrogen or ammonia is added together with hydrogen is heated to a pressure of 0.1 to 300 torr, preferably 3 torr.
High pressure of ~3Qtorr creates high-density plasma,
The method involves forming an object mainly composed of carbon to which nitrogen is added, preferably diamond grains or a coating.

これらの被形成用物体を混成共鳴空間またはそれより離
れた活性状態を保持した空間内に配設して、反応生成物
を物体の表面にコーティングさせる。この目的のため、
マイクロ波電力の電界強度が最も大きくなる領域または
その近傍に被形成面を有する物体を配設する。また、高
密度プラズマを0.1〜300 torrの高い圧力で
発生、持続させるため、カラムを有する空間にまずlX
l0−’〜1×10−’torrの低真空下でECR(
電子サイクロトロン共鳴)を生ぜしめる。気体を導入し
、1×10−I〜3X 10” torr好ましくは3
〜30torrと高い空間圧力にプラズマ状態を持続し
つつ変化せしめ、この空間の生成物気体の単位空間あた
りの濃度をこれまでのECRCVD法に比べて102〜
10’倍程度の高濃度にする。するとかかる高い圧力に
おいてのみ初めて分解または反応をさせることができる
材料である炭素を主成分とする被膜形成が可能となる。
These objects to be formed are arranged in the hybrid resonance space or a space apart from the hybrid resonance space that maintains an active state, and the reaction product is coated on the surface of the object. For this purpose,
An object having a surface to be formed is disposed in or near a region where the electric field strength of microwave power is maximum. In addition, in order to generate and sustain high-density plasma at a high pressure of 0.1 to 300 torr, the space containing the column is first heated with lX
ECR (
(electron cyclotron resonance). Introduce a gas at 1 x 10-I to 3 x 10” torr, preferably 3
The plasma state is maintained and changed to a high space pressure of ~30 torr, and the concentration of product gas per unit space in this space is 102 ~
Make the concentration about 10' times higher. This makes it possible to form a film whose main component is carbon, which is a material that can decompose or react only under such high pressure.

例えば、ダイヤモンド、i−カーボン(ダイヤモンドま
たは微結晶粒を有する炭素被膜)である。
For example, diamond, i-carbon (diamond or carbon coating with microcrystalline grains).

かかる時、ダイヤモンドは凹凸を有する基板の凸部のか
どに選択的に成長しやすい。
In such a case, diamond tends to selectively grow at the edges of the convex portions of the substrate having irregularities.

このダイヤモンドを含む炭素膜の成膜機構は、被膜形成
過程において形成されつつある被膜の密の部分の構成物
(例えば結晶部分)を残し、かつそこで選択的に成長せ
しめ、粗の部分の構成(例えばアモルファス部分)をプ
ラズマ化した水素により除去して、即ちエツチングをさ
せつつ行わんとするものである。そして形成された被膜
の少なくとも一部に結晶性を有する被膜を形成せんとす
るものである。
The formation mechanism of this diamond-containing carbon film leaves behind the components (e.g., crystalline parts) in the dense parts of the film that are being formed during the film formation process, and allows them to grow selectively there. For example, the amorphous portion) is removed using hydrogen plasma, that is, etching is performed. The purpose is to form a film having crystallinity on at least a portion of the formed film.

すなわち本発明はマイクロ波を用いたプラズマCVD法
に磁場の力を加え、マイクロ波の電場と磁場との相互作
用を用いている。しかし、lXl0−’〜I X 10
− ’ torrで有効なECR(エレクトロンサイク
ロトロン共鳴)条件を用いていない。本発明はこのプラ
ズマ状態を0.1〜300 torrの高い圧力の領域
に移し、このl X 10−’〜3 X 10” to
rrの高い圧力で高密度高エネルギのプラズマを利用し
た被膜形成を行わしめたものである。その混成共鳴空間
での高エネルギ状態を利用して、例えば活性炭素を多量
に発生させ、再現性に優れ、均一な膜厚、均質な特性の
被膜、例えばダイヤモンド、i−カーボン膜等の被膜の
形成を可能としたものである。
That is, the present invention adds the force of a magnetic field to the plasma CVD method using microwaves, and uses the interaction between the electric field and the magnetic field of the microwaves. However, lXl0-'~IX10
- ECR (electron cyclotron resonance) conditions effective at 'torr are not used. The present invention moves this plasma state to a high pressure region of 0.1 to 300 torr, and this
The coating is formed using high-density, high-energy plasma at a high pressure of rr. Utilizing the high energy state in the hybrid resonance space, for example, a large amount of activated carbon can be generated to produce films with excellent reproducibility, uniform thickness, and homogeneous properties, such as diamond and i-carbon films. This enabled the formation of

また加える磁場の強さが任意に変更可能な為、電子のみ
ではなく特定のイオンの共鳴条件を設定することができ
る特徴がある。
Furthermore, since the strength of the applied magnetic field can be changed arbitrarily, it is possible to set resonance conditions not only for electrons but also for specific ions.

また本発明の構成に付加して、マイクロ波と磁場との相
互作用により高密度プラズマを発生させた後、物体面上
まで至るまでの間でも高エネルギを与えつづけると、マ
イクロ波電界の最大となる領域即ち高密度プラズマ発生
領域より0.5〜10cm離れた位置(反応性気体の活
性状態を保持できる位置)においても高エネルギ状態に
励起された炭素原子が存在し、より大きな空間でダイヤ
モンドやi−カーボン膜を形成することが可能である。
Additionally, in addition to the configuration of the present invention, after generating high-density plasma by the interaction between microwaves and a magnetic field, if high energy is continued until it reaches the object surface, the maximum microwave electric field Carbon atoms excited to a high-energy state exist even in a region 0.5 to 10 cm away from the high-density plasma generation region (a position where the active state of the reactive gas can be maintained), and diamond and carbon atoms exist in a larger space. It is possible to form an i-carbon film.

本発明はかかる空間に筒状のカラムを配設し、このカラ
ム内に被膜形成用物体を配設し、その表面に被膜形成を
行った。
In the present invention, a cylindrical column is disposed in such a space, a film-forming object is disposed within the column, and a film is formed on the surface of the column.

以下に実施例を示し、さらに本発明を説明する。Examples will be shown below to further explain the present invention.

〔実施例〕〔Example〕

第1図に本発明にて用いた磁場印加可能なマイクロ波プ
ラズマCVD装置を示す。
FIG. 1 shows a microwave plasma CVD apparatus capable of applying a magnetic field used in the present invention.

同図において、この装置は減圧状態に保持可能なプラズ
マ発生空間(1)、補助空間(2)、磁場を発生ずる電
磁石(5) 、 (5′)およびその電源(25)、マ
イクロ波発振器(4)、排気系を構成するターボ分子ポ
ンプ(8)、ロータリーポンプ(14)、圧力調整バル
ブ(11)。
In the figure, this device includes a plasma generation space (1) that can be maintained in a reduced pressure state, an auxiliary space (2), electromagnets (5) and (5') that generate magnetic fields, their power source (25), and a microwave oscillator ( 4), a turbo molecular pump (8), a rotary pump (14), and a pressure adjustment valve (11) that constitute the exhaust system.

基板ホルダ(10°)、被膜形成用物体(10) 、マ
イクロ波導入窓(15)、ガス系(6) 、 (7) 
、水冷系(18)、 (18’)。
Substrate holder (10°), film forming object (10), microwave introduction window (15), gas system (6), (7)
, water cooling system (18), (18').

ハロゲンランプ(20) 、反射鏡(21) 、加熱用
空間(3)より構成されている。
It consists of a halogen lamp (20), a reflecting mirror (21), and a heating space (3).

まず薄膜形成用物体(10)を基板ホルダ(10”)上
に設置し、ゲート弁(16)よりプラズマ発生空間(1
)に配設する。この基板ホルダ(10°)はマイクロ波
および磁場をできるだけ乱させないため石英製とした。
First, the thin film forming object (10) is placed on the substrate holder (10''), and the plasma generation space (10) is opened from the gate valve (16).
). This substrate holder (10°) was made of quartz so as not to disturb the microwave and magnetic field as much as possible.

作製工程として、まずこれら全体をターボ分子ポンプ(
8)、ロータリーポンプによりI X 10−’tor
r以下に真空排気する。次に非生成物気体(分解反応後
置体を構成しない気体)例えばアルゴン、ヘリュームま
たは水素(6)を303CCMガス系(7)を通してプ
ラズマ発生領域(1)に導入し、この圧力をl X 1
0− ’ torrとする。外部より2.45GHzの
周波数のマイクロ波を500Wの強さで加える。磁場約
2にガウスを磁石(5) 、 (5’ )より印加して
、高密度プラズマをプラズマ発生空間(1)にて発生さ
せる。この高密度プラズマ領域より高エネルギを持つ非
生成物気体または電子が基板ホルダ(10”)上の物体
(lO)の表面上に到り、表面を清浄にする。
As part of the fabrication process, the entire structure was first assembled using a turbo molecular pump (
8), I x 10-'tor by rotary pump
Evacuate to below r. Next, a non-product gas (a gas that does not constitute a post-decomposition reaction body) such as argon, helium, or hydrogen (6) is introduced into the plasma generation region (1) through the 303 CCM gas system (7), and the pressure is increased to l x 1
0-'torr. Microwaves with a frequency of 2.45 GHz and a strength of 500 W are applied from the outside. A magnetic field of about 2 Gauss is applied from magnets (5) and (5') to generate high-density plasma in the plasma generation space (1). From this high-density plasma region, high-energy non-product gas or electrons reach the surface of the object (IO) on the substrate holder (10'') and clean the surface.

次にこの反応系に水素とガス系(7)より生成物気体(
分解・反応後置体を構成する気体)例えば炭化物気体(
アセチレン(CJg)、エチレン(C2H,)またはメ
タン(C114)等)を305CCHの流量で導入する
。この時炭化水素は水素によりO11〜5χの十分薄い
濃度に希釈した0本発明方法はこれに加えてアンモニア
(Nl13)または窒素(N8)の如き窒化物気体を炭
化水素気体に比べて0.1〜5χの濃度比にて加えた。
Next, a product gas (
gas constituting the post-decomposition/reaction body) such as carbide gas (
Acetylene (CJg), ethylene (C2H, ) or methane (C114, etc.) is introduced at a flow rate of 305 CCH. At this time, the hydrocarbon is diluted with hydrogen to a sufficiently thin concentration of O11 to 5χ.In addition, the method of the present invention uses a nitride gas such as ammonia (Nl13) or nitrogen (N8) at a concentration of 0.1% compared to the hydrocarbon gas. It was added at a concentration ratio of ~5χ.

すると、すでに発生しているプラズマ状態を保持しつつ
空間の圧力をlXl0−’〜3X10”torr好まし
くは3〜30torr例えば10torrの圧力に変更
させる。この空間の圧力を高くすることにより単位空間
あたりの生成物気体の濃度を大きくでき被膜成長速度を
大きくできる。そして高エネルギに励起された炭素原子
が生成され、800〜1000℃にヒータ(20)によ
り加熱され、基板ホルダ(10’ )上の物体(10)
上にこの炭素が堆積し、0.1−100μの粒径のダイ
ヤモンド又はi−カーボン膜が形成される。
Then, while maintaining the already generated plasma state, the pressure in the space is changed to lXl0-' to 3X10'' torr, preferably 3 to 30 torr, for example 10 torr.By increasing the pressure in this space, the pressure per unit space is increased. The concentration of the product gas can be increased and the film growth rate can be increased. Carbon atoms excited with high energy are generated and heated to 800 to 1000°C by the heater (20), and the object on the substrate holder (10') (10)
This carbon is deposited on top to form a diamond or i-carbon film with a grain size of 0.1-100μ.

第1図において、磁場は2つのリング状の磁石(5)、
(5’)を用いたヘルムホルツコイル方式を採用した。
In Figure 1, the magnetic field consists of two ring-shaped magnets (5),
A Helmholtz coil method using (5') was adopted.

さらに、4分割した空間(30)に対し電場・磁場の強
度を調べた結果を第2図に示す。
Furthermore, FIG. 2 shows the results of examining the strength of the electric and magnetic fields for the space (30) divided into four parts.

第2図(A)において、横軸(X軸)は空間(30)の
横方向(反応性気体の放出方向)であり、縦軸(R軸)
は磁石の直径方向を示す。図面における曲線は磁場の等
磁位面を示す。そしてその線上に示されている数字は磁
石(5)が約2000ガウスの時に得られる磁場の強さ
を示す。磁石(5)の強度を調整すると、電極・磁場の
相互作用を有する空間(100)(875ガウス±18
5ガウス以内)で大面積において磁場の強さを基板の被
形成面の広い面積にわたって概略均一にさせることがで
きる。図面は等磁場面を示し、特に線(26)が875
ガウスとなる共鳴の条件を生ずる等磁場面である。
In FIG. 2 (A), the horizontal axis (X-axis) is the horizontal direction of the space (30) (reactive gas release direction), and the vertical axis (R-axis)
indicates the diameter direction of the magnet. The curves in the drawings indicate equipotential surfaces of the magnetic field. The number shown on the line indicates the strength of the magnetic field obtained when the magnet (5) is about 2000 Gauss. By adjusting the strength of the magnet (5), the space (100) (875 Gauss ± 18
(within 5 Gauss), it is possible to make the strength of the magnetic field approximately uniform over a large area over a wide area of the formation surface of the substrate. The drawing shows an isomagnetic scene, in particular the line (26) at 875
It is an isomagnetic scene that produces the conditions for Gaussian resonance.

この共鳴条件を生ずる空間(100)は第2図(B)に
示す如く、電場が最大となる領域となるようにしている
。第2図(B)の横軸は第2図(^)と同じく反応性気
体の流れる方向を示し、縦軸は電場(電界強度)の強さ
を示す。
The space (100) that produces this resonance condition is designed to be a region where the electric field is maximum, as shown in FIG. 2(B). The horizontal axis of FIG. 2(B) indicates the direction in which the reactive gas flows, as in FIG. 2(^), and the vertical axis indicates the strength of the electric field (electric field strength).

もちろんドーナツ型に被膜を形成せんとする場合はそれ
でもよい。
Of course, if a donut-shaped coating is to be formed, this may be used.

領域(100)に対してその原点対称の反対の側でも電
場が最大であり、かつ磁場が広い領域にわたって一定と
なる領域を有する。基板の加熱を行う必要がない場合は
かかる空間での被膜形成も有効である。しかしマイクロ
波の電場を乱すことなく加熱を行う手段が得にくい。
There is also a region on the opposite side of the origin symmetrical to region (100) where the electric field is maximum and the magnetic field is constant over a wide region. When there is no need to heat the substrate, film formation in such a space is also effective. However, it is difficult to find a way to perform heating without disturbing the microwave electric field.

これらの結果、基板の出し入れ、加熱の容易さを考慮し
、均一かつ均質な被膜とするためには第2図(^)の領
域(100)が3つの領域の中では最も工業的に量産性
の優れた位置と推定される。。
As a result, considering the ease of loading and unloading the substrate and the ease of heating, the area (100) in Figure 2 (^) is the most industrially mass-producible of the three areas in order to obtain a uniform and homogeneous coating. Estimated to be in an excellent location. .

この結果、本発明では領域(100)に基板(10)を
配設すると、この基板が円形であった場合、半径100
mmまで、好ましくは半径50m5までの大きさで均一
、均質に被膜形成が可能となった。
As a result, in the present invention, when the substrate (10) is disposed in the area (100), if this substrate is circular, the radius is 100.
It became possible to uniformly and homogeneously form a film with a radius of up to 50 m5.

さらに大面積とするには、例えばこの4倍の面積におい
て同じ(均一な膜厚とするには、周波数を2.45GH
zではなく 1 、225GIIzとすればこの空間の
直径(第2図(A)の右方向)を2倍とすることができ
る。
To make the area even larger, for example, the frequency should be set to 2.45 GH to make the film thickness the same (to make the film thickness uniform) over an area four times as large as this.
By setting 1,225GIIz instead of z, the diameter of this space (toward the right in FIG. 2(A)) can be doubled.

第3図は第2図における基板(10)の位置での円形空
間の磁場(A)および電場(B)の等磁場、等電場の図
面である。第3図(B)より明らかなごとく電場は最大
25にV/mにまで達せしめ得ることがわかる。
FIG. 3 is a diagram of equal magnetic fields and equal electric fields of the magnetic field (A) and electric field (B) in a circular space at the position of the substrate (10) in FIG. 2. FIG. As is clear from FIG. 3(B), the electric field can reach a maximum of 25 V/m.

また比較のために同条件下で磁場を印加せずに薄膜形成
を行った。その時基板上に形成された薄膜はグラファイ
ト膜であった。
For comparison, a thin film was formed under the same conditions without applying a magnetic field. The thin film formed on the substrate at that time was a graphite film.

本実施例にて形成された薄膜の電子線回折像をとったと
ころ、アモルファス特有のハローパターンとともにダイ
ヤモンド(単結晶粒)のスポットがみられ、!−カーボ
ン膜となっていた。さらにマイクロ波電力を上げて形成
してゆくに従い、ハローパターンが少しづつ消えてゆき
700−またはそれ以上でダイヤモンド構造がより多く
混入した被膜となった。
When we took an electron beam diffraction image of the thin film formed in this example, we found diamond (single crystal grain) spots along with a halo pattern unique to amorphous. -It was a carbon film. As the microwave power was further increased and the formation progressed, the halo pattern gradually disappeared, and at 700 mm or more, the film became a film in which more diamond structures were mixed.

〔効果〕〔effect〕

本発明は水素で窒化物気体の混入した炭化水素を希釈し
てダイヤモンド粒または膜を形成すると同時にこのダイ
ヤモンド中の格子欠陥が近接および外部からのストレス
で進行することを防ぐことができる。そのため、この中
に窒素を添加したものである。そしてこの窒素をダイヤ
モンドの形成と同時にアンモニアまたは窒素を炭化水素
に比べて0.1〜5χの濃度に加えた。するとこのアン
モニアまたは窒素はプラズマ化し、形成されるダイヤモ
ンド粒に0.01〜1重量%の割合で窒素を混入させる
ことができる。
The present invention can form diamond grains or films by diluting hydrocarbons mixed with nitride gas with hydrogen, and at the same time can prevent lattice defects in the diamond from progressing due to adjacent and external stress. Therefore, nitrogen is added to this. The nitrogen was then added at the same time as the diamond was formed, with ammonia or nitrogen added to a concentration of 0.1 to 5x compared to the hydrocarbon. Then, this ammonia or nitrogen becomes plasma, and nitrogen can be mixed into the formed diamond grains at a ratio of 0.01 to 1% by weight.

この炭素粒を窒素の有無およびその量を比較するため、
研磨材化し外部より研p作業を行う。これにより間接的
強度テストにより微結晶のダイヤモンドに対し硬度テス
トを行った結果、この添加のない場合に比べて2倍以上
も研磨効果の減少が少な(、即ちダイヤモンド粒の摩耗
による微細化を防ぐことができた。われる割合が長(な
った。
In order to compare the presence or absence of nitrogen and the amount of nitrogen in these carbon particles,
It is made into an abrasive material and the polishing work is done from outside. As a result of conducting an indirect strength test on microcrystalline diamond hardness, it was found that the reduction in polishing effect was more than twice that of the case without this addition (i.e., it prevented the diamond grains from becoming finer due to wear). I was able to do so.

その結果、ダイヤモンド粒の如き硬度材としての実用性
を大きく高めることができた。
As a result, the practicality of the material as a hard material such as diamond grains could be greatly improved.

本発明方法はダイヤモンドの硬度を向上させるため周期
率表では最も近い窒素を用いた。しかし格子欠陥が局部
的な力により進行することを防ぐことができるものであ
ればホウ素(B)、アルミニューム(AI)、  リン
(P)またはこれらと窒素の一部とを0.001〜1重
量%の割合で混入し、ダイヤモンド混合物にすることは
有効である。
The method of the present invention uses nitrogen, which is closest in the periodic table, to improve the hardness of diamond. However, if it is possible to prevent lattice defects from progressing due to local forces, boron (B), aluminum (AI), phosphorus (P), or a part of these and nitrogen can be used in an amount of 0.001 to 1. It is effective to mix it in a proportion of % by weight to form a diamond mixture.

また本発明方法において、窒素の添加はアンモニア(M
HI)または窒素(N2)を用いた。しかしNo2゜N
O,N13を用いてもよい。
Furthermore, in the method of the present invention, the addition of nitrogen is replaced by ammonia (M
HI) or nitrogen (N2). But No2゜N
O, N13 may also be used.

また、図面において気体は側より右方向に流れるように
した。しかし左側より右側方向であっても、上より下方
向であっても、また下より上方向であってもよい。
Also, in the drawings, the gas was made to flow from the side to the right. However, it may be from the left side to the right side, from the top to the bottom, or from the bottom to the top.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる磁場・電場相互作用を用いたマ
イクロ波CvD装置の概略を示す。 第2図はコンピュータシミュレイションによる磁場およ
び電場特性を示す。 第3図は電場・磁場相互作用をさせた位置での磁場およ
び電場の特性を示す。 1・・・・プラズマ発生空間 4・・・・マイクロ波発振器 5.5′・・・外部磁場発生器 8・・・・ターボ分子ポンプ 10・・・・被膜形成用物体または基板10’  ・・
・基板ホルダ 20・・・・ハロゲンランプ 21・・・・反射鏡
FIG. 1 schematically shows a microwave CvD apparatus using magnetic field/electric field interaction used in the present invention. FIG. 2 shows the magnetic field and electric field characteristics by computer simulation. Figure 3 shows the characteristics of the magnetic field and electric field at a position where the electric field and magnetic field interact. 1... Plasma generation space 4... Microwave oscillator 5.5'... External magnetic field generator 8... Turbo molecular pump 10... Film forming object or substrate 10'...
・Substrate holder 20...Halogen lamp 21...Reflector

Claims (1)

【特許請求の範囲】 1、500MHz以上の周波数のマイクロ波を用いて、
炭化物の反応性気体より炭素を主成分とする物体を作製
するプラズマ気相反応方法であって、前記反応性気体に
水素および窒素または窒素の化合物を同時に添加して窒
素が混入した炭素を主成分とする物体を作製することを
特徴とする炭素作製方法。 2、特許請求の範囲第1項において、マイクロ波に加え
て磁場を同時に印加し電場および磁場の相互作用を用い
て0.1〜300torrの圧力範囲で窒素を含有する
ダイヤモンドを有する炭素を主成分とする物体を作製す
ることを特徴とする炭素作製方法。
[Claims] Using microwaves with a frequency of 1,500 MHz or more,
A plasma gas phase reaction method for producing an object mainly composed of carbon from a reactive gas of carbide, wherein hydrogen and nitrogen or a compound of nitrogen are simultaneously added to the reactive gas to produce an object mainly composed of carbon mixed with nitrogen. A carbon production method characterized by producing an object. 2. In claim 1, by applying a magnetic field in addition to microwaves at the same time and using the interaction of the electric field and the magnetic field, the main component is carbon containing diamond containing nitrogen in a pressure range of 0.1 to 300 torr. A carbon production method characterized by producing an object.
JP62041748A 1987-02-24 1987-02-24 Production of carbon Granted JPS63210010A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62041748A JPS63210010A (en) 1987-02-24 1987-02-24 Production of carbon
KR1019880001649A KR900008505B1 (en) 1987-02-24 1988-02-15 Microwave enhanced cvd method for depositing carbon
EP88301364A EP0284190B1 (en) 1987-02-24 1988-02-18 Enhanced cvd method for deposition of carbon
DE8888301364T DE3876120T2 (en) 1987-02-24 1988-02-18 CHEMICAL GAS PHASE DEPOSITION METHOD FOR PRODUCING A CARBON LAYER.
CN88101061A CN1036078C (en) 1987-02-24 1988-02-24 Microwave enhanced CVD method for depositing carbon
US07/159,610 US4869923A (en) 1987-02-24 1988-02-24 Microwave enhanced CVD method for depositing carbon
US07/329,877 US5015494A (en) 1987-02-24 1989-03-28 Microwave enhanced CVD method for depositing diamond
US07/329,879 US4973494A (en) 1987-02-24 1989-03-29 Microwave enhanced CVD method for depositing a boron nitride and carbon
US07/380,328 US5238705A (en) 1987-02-24 1989-07-17 Carbonaceous protective films and method of depositing the same
US07/790,068 US5270029A (en) 1987-02-24 1991-11-12 Carbon substance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62041748A JPS63210010A (en) 1987-02-24 1987-02-24 Production of carbon

Publications (2)

Publication Number Publication Date
JPS63210010A true JPS63210010A (en) 1988-08-31
JPH0471034B2 JPH0471034B2 (en) 1992-11-12

Family

ID=12617044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62041748A Granted JPS63210010A (en) 1987-02-24 1987-02-24 Production of carbon

Country Status (1)

Country Link
JP (1) JPS63210010A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217471A (en) * 1989-02-16 1990-08-30 Semiconductor Energy Lab Co Ltd Manufacture of carbon-based film
JPH03274269A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Method for synthesizing diamondlike thin film and diamondlike thin film
JPH07172988A (en) * 1992-06-11 1995-07-11 General Electric Co <Ge> Cvd diamond thin film with smooth surface and its preparation
US6652969B1 (en) 1999-06-18 2003-11-25 Nissin Electric Co., Ltd Carbon film method for formation thereof and article covered with carbon film and method for preparation thereof
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
JP2006250767A (en) * 2005-03-11 2006-09-21 National Institute For Materials Science Diamond film, its manufacturing method, electrochemical element, and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217471A (en) * 1989-02-16 1990-08-30 Semiconductor Energy Lab Co Ltd Manufacture of carbon-based film
JPH03274269A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Method for synthesizing diamondlike thin film and diamondlike thin film
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film
JPH07172988A (en) * 1992-06-11 1995-07-11 General Electric Co <Ge> Cvd diamond thin film with smooth surface and its preparation
US5523121A (en) * 1992-06-11 1996-06-04 General Electric Company Smooth surface CVD diamond films and method for producing same
US6652969B1 (en) 1999-06-18 2003-11-25 Nissin Electric Co., Ltd Carbon film method for formation thereof and article covered with carbon film and method for preparation thereof
JP2006250767A (en) * 2005-03-11 2006-09-21 National Institute For Materials Science Diamond film, its manufacturing method, electrochemical element, and its manufacturing method
JP4639334B2 (en) * 2005-03-11 2011-02-23 独立行政法人物質・材料研究機構 Diamond film, manufacturing method thereof, electrochemical device, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0471034B2 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
KR900008505B1 (en) Microwave enhanced cvd method for depositing carbon
JPH0623430B2 (en) Carbon production method
US7125588B2 (en) Pulsed plasma CVD method for forming a film
JPS63210275A (en) Method for removing unnecessary carbon matter in apparatus for producing carbon
US5183685A (en) Diamond film deposition by ECR CVD using a catalyst gas
JPS63210010A (en) Production of carbon
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS61183198A (en) Production of diamond film
JPH0420984B2 (en)
JPH0420985B2 (en)
JPH0623437B2 (en) Method for producing carbon and boron nitride
JPS61201698A (en) Diamond film and its production
JPS63169387A (en) Formation of thin film
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JP2660244B2 (en) Surface treatment method
JPH04132684A (en) Method for forming diamond thin film
JP2691399B2 (en) Plasma processing method
JP2995339B2 (en) How to make a thin film
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JPH0248494A (en) Method for preparing carbon
JPH01103988A (en) Production of hard film by ion cyclotron resonance method
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPH0524992B2 (en)
JPS63169386A (en) Formation of thin film
JPH0814022B2 (en) How to remove unwanted materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term