JPS6385092A - Production of diamond film - Google Patents

Production of diamond film

Info

Publication number
JPS6385092A
JPS6385092A JP22612386A JP22612386A JPS6385092A JP S6385092 A JPS6385092 A JP S6385092A JP 22612386 A JP22612386 A JP 22612386A JP 22612386 A JP22612386 A JP 22612386A JP S6385092 A JPS6385092 A JP S6385092A
Authority
JP
Japan
Prior art keywords
substrate
plasma
gas
film
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22612386A
Other languages
Japanese (ja)
Inventor
Satoru Araki
悟 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP22612386A priority Critical patent/JPS6385092A/en
Publication of JPS6385092A publication Critical patent/JPS6385092A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To economically produce a diamond film having high diamond properties at a high film-forming rate, by introducing a gas of a carbon compound into electron cyclotron resonance plasma of hydrogen gas and leading the gas onto a substrate. CONSTITUTION:A plasma formation chamber 1 divided with a partition wall 6 having an opening 7 and a reaction chamber 2 having a substrate 9 placed at a distance of 10-30cm from the partition wall 6 are previously evacuated and the opening 7 of the partition wall 6 is then closed with a shutter. Hydrogen gas is introduced from an inlet 3 into the formation chamber 1 and microwave electromagnetic energy is applied from a microwave generator through a waveguide 4. A magnetic field is simultaneously applied to a coil 5 to form an electron cyclotron resonance plasma of the hydrogen gas. A bias voltage is then applied from a high-frequency electric power source 11 for bias to an electrode supporting the substrate 9 and a gas of a carbon compound, e.g. CH4, etc., is simultaneously introduced into the reaction chamber 2. The shutter is then opened to flow the resonance plasma into the reaction chamber 2 and the flows of both are led onto the substrate 9 to form a diamond film.

Description

【発明の詳細な説明】 本発明は上に述べたイオンビーム法の改良に相当する方
法であるが、水素ガスのプラズマを電子サイクロトロン
共鳴(ECR)により予め形成してから炭素化合物の原
料ガスと接触させることを主たる特徴とする。水素ガス
のECRプラズマはこのように原料ガスの分解及び成膜
反応を行う反応室とは別個のプラズマ形成室で形成され
るもので、この水素プラズマが反応室内において炭化水
素を分解するとともに同時に基体上へも照射されるので
良質なダイヤモンド薄膜を形成することができる。EC
Rプラズマは均一なプラズマ密度とすることができ、し
かもプラズマエネルギーも十分に高いため、プラズマ流
が反応室へ入ったときに原料炭化水素の高効率の分解を
行い基体上へのダイヤモンドの高効率の成膜を行わせる
ことができることになる。しかも、本発明によれば基板
を1000℃のような高温に加熱する必要はないので基
板の保全及び熱経済もすぐれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method corresponding to the improvement of the ion beam method described above, in which a hydrogen gas plasma is formed in advance by electron cyclotron resonance (ECR) and then a carbon compound raw material gas is used. Its main feature is to bring it into contact. Hydrogen gas ECR plasma is thus formed in a plasma formation chamber separate from the reaction chamber in which the raw material gas is decomposed and the film forming reaction takes place, and this hydrogen plasma decomposes hydrocarbons in the reaction chamber and at the same time decomposes the substrate. Since it is irradiated upward as well, it is possible to form a high-quality diamond thin film. EC
Since the R plasma can have a uniform plasma density and the plasma energy is sufficiently high, when the plasma stream enters the reaction chamber, it can achieve highly efficient decomposition of the raw material hydrocarbons and highly efficient deposition of diamond onto the substrate. This means that the film can be formed. Moreover, according to the present invention, there is no need to heat the substrate to a high temperature such as 1000° C., so that maintenance of the substrate and thermal economy are also excellent.

さらに、基板に適当な高周波バイアス電圧を加えること
により、原料ガスの分解で生成された炭素イオンを基板
面へ加速させて成膜速度を高め且つダイヤモンド膜の品
質をさらに高めることができる。
Furthermore, by applying an appropriate high-frequency bias voltage to the substrate, carbon ions generated by decomposition of the source gas can be accelerated toward the substrate surface, thereby increasing the film formation rate and further improving the quality of the diamond film.

第1図は本発明の原理に従って構成したダイヤモンド成
膜装置の1例を示す。本発明の原理は他の構成によつ【
も達成しうろことは明らかであろう。さて、図示のよう
にダイヤモンド成膜装置はプラズマ成形室1と反応室2
とから成り、両室の間は開ロアを有する隔壁6で仕切ら
れており、この開口はシャッター(図示せず)により開
閉自在になっている。プラズマ形成室1には入口3から
水素ガスが導入されるようになっている。プラズマ形成
室1は導波管4を通してマイクロ波発振器(図示せず)
に接続されており、例えば2.45G Hz  などの
マイクロ波電磁エネルギーがプラズマ形成室1に加えら
れるようKなっている。これにより室1に導入される水
素ガスはプラズマ化される。プラズマ形成室1の周りK
はコイル5が配置され、ここに印加される電流により形
成される磁場によりECR共鳴プラズマを生じる。例え
ば2.45GH,のマイクロ波印加時に電子のサイクロ
トロン周波数fは次式で与えられる。
FIG. 1 shows an example of a diamond film forming apparatus constructed according to the principles of the present invention. The principle of the present invention can be applied to other configurations [
It is clear that this can also be achieved. Now, as shown in the diagram, the diamond film forming apparatus has a plasma forming chamber 1 and a reaction chamber 2.
The two chambers are separated by a partition wall 6 having an opening lower part, and this opening can be opened and closed by a shutter (not shown). Hydrogen gas is introduced into the plasma forming chamber 1 from an inlet 3. The plasma formation chamber 1 is connected to a microwave oscillator (not shown) through a waveguide 4.
The plasma forming chamber 1 is connected to the plasma forming chamber 1 so that microwave electromagnetic energy of, for example, 2.45 GHz is applied to the plasma forming chamber 1. As a result, the hydrogen gas introduced into the chamber 1 is turned into plasma. Around plasma formation chamber 1
A coil 5 is disposed, and an ECR resonance plasma is generated by a magnetic field formed by a current applied thereto. For example, when a microwave of 2.45 GH is applied, the electron cyclotron frequency f is given by the following equation.

ただしmは電子の質量、eは電荷及びBはコイル5が印
加する磁場である。f = 2.45 GHz を代入
するとB= 875 (Gauss )のときに電子は
磁場のエネルギーを吸収して共鳴現象が起き、ECR共
鳴プラズマが形成される。プラズマのエネルギーは15
〜20 eV程度が可能である。
However, m is the mass of the electron, e is the electric charge, and B is the magnetic field applied by the coil 5. Substituting f = 2.45 GHz, when B = 875 (Gauss), electrons absorb the energy of the magnetic field, a resonance phenomenon occurs, and ECR resonance plasma is formed. The energy of plasma is 15
~20 eV is possible.

プラズマ形成室1は隔壁6の開ロアにより反応室2に通
じている。開ロアのすぐ下流側には炭素化合物(例えば
CH4)のガスを導入する多数のノズル口を有する環状
管8が配置されており、これにより開ロアのシャッタが
開かれたときに流入して来るECR共鳴プラズマ中に原
料ガスである炭素化合物を導入する。この原料ガスはC
H4、C2H4、C2H2、C2H6等の炭化水素、C
H,OH,C2H50H等のアルコール類、(CH3)
C0等のケトン類など炭素化合物であればいずれでもよ
い。
The plasma formation chamber 1 communicates with the reaction chamber 2 through the open lower portion of the partition wall 6 . An annular pipe 8 having a number of nozzle ports for introducing a carbon compound (for example, CH4) gas is arranged immediately downstream of the opening lower, so that the gas flows in when the shutter of the opening lower is opened. A carbon compound as a raw material gas is introduced into the ECR resonance plasma. This raw material gas is C
Hydrocarbons such as H4, C2H4, C2H2, C2H6, C
Alcohols such as H, OH, C2H50H, (CH3)
Any carbon compound such as ketones such as CO may be used.

さらに下流側には成膜基板9を支持した電極10が配置
されている。好ましくは電極10には高周波電源11か
らバイアス電圧が加えられる。
Further downstream, an electrode 10 supporting a film-forming substrate 9 is arranged. Preferably, a bias voltage is applied to the electrode 10 from a high frequency power source 11.

これにより、プラズマ形成室で形成された水素プラズマ
は、反応室にイオンビームとして引出され、反応室に導
入された炭素化合物ガスが水素プラズマによって分解さ
れて炭素イオンとなって原子状水素と共に基体上へ投射
されダイヤモンド膜が形成される。
As a result, the hydrogen plasma formed in the plasma formation chamber is extracted as an ion beam into the reaction chamber, and the carbon compound gas introduced into the reaction chamber is decomposed by the hydrogen plasma and becomes carbon ions, which are deposited on the substrate together with atomic hydrogen. A diamond film is formed.

水素ガスと炭素化合物(CH4、C2H4、C6H6・
CH、OHなど)の流量比は1〜0.001、好ましく
は1〜0.01である。
Hydrogen gas and carbon compounds (CH4, C2H4, C6H6,
CH, OH, etc.) flow rate ratio is 1 to 0.001, preferably 1 to 0.01.

反応室隔壁と基体までの距離は10〜50 C11s好
ましくは15〜20cIILとする。
The distance between the reaction chamber partition wall and the substrate is 10 to 50 C11s, preferably 15 to 20 C1L.

バイアス電圧としては周波数 vf = 1156 M
Hzのような高周波、0〜100W、好ましくは30〜
aOWである。3OW以下でも成膜が可能であるが良質
なダイヤモンド膜は50W以上で生成する。SOW以上
になると成膜速度が低下する。バイアス電圧は負バイア
スであり、上記隔壁一基板間距離15〜20cIrLの
ときが最適になることが分った。
As bias voltage, frequency vf = 1156 M
High frequency such as Hz, 0~100W, preferably 30~
It is aOW. Although it is possible to form a film at 3 OW or less, a high quality diamond film is formed at 50 W or more. When the temperature exceeds SOW, the film formation rate decreases. The bias voltage was a negative bias, and it was found that the optimum distance between the partition wall and the substrate was 15 to 20 cIrL.

本発明のX要な構成はECR水素プラズマが用いられる
点である。ECRプラズマは10−’ Torrのよう
な高真空状聾で形成される。このため不純物ガスや反応
ガスの混入のない。またプラズマの活性度が極めて高い
ため基体を加熱するための手段を必要としないかせいぜ
い400’C位までの加熱ですむ。このため、Si等の
半導体の機能素子等の基板を傷めないで必要な保護膜、
ヒートシンク、層間絶縁膜などを形成しうる。ここで水
素ガスによってプラズマを形成するという点がダイヤモ
ンド薄膜形成に重要な役割をもつ。すなわち、プラズマ
によって分解生成された原子状の水素が基体上にイオン
ビームとして照射されることによって基体上に存在する
炭素のグラファイト結合(これは膜質を悪化させる)を
選択的に除去する役割を果たす。その結果基体上にはダ
イヤモンド結合のみが残り、良質なダイヤモンド膜が得
られるのである。
The essential feature of the present invention is that ECR hydrogen plasma is used. ECR plasma is formed in a high vacuum, such as 10-' Torr. Therefore, there is no contamination of impurity gas or reaction gas. Furthermore, since the activity of the plasma is extremely high, no means for heating the substrate is required, or heating to about 400'C is sufficient. For this reason, it is possible to remove the necessary protective film without damaging the substrate of semiconductor functional elements such as Si.
A heat sink, an interlayer insulating film, etc. can be formed. Here, forming plasma using hydrogen gas plays an important role in forming a diamond thin film. In other words, atomic hydrogen decomposed and produced by plasma is irradiated onto the substrate as an ion beam, which serves to selectively remove the graphite bonds of carbon present on the substrate (which deteriorates the film quality). . As a result, only diamond bonds remain on the substrate, resulting in a high-quality diamond film.

なお基板としては用途に応じてSi、Mo、W、SiC
、AIN 、 AI 、 Al2O3など任意のものが
使用できる。
The substrate may be Si, Mo, W, or SiC depending on the application.
, AIN, AI, Al2O3, etc. can be used.

実施例 第1図の装置を用いてダイヤモンドの成膜を行った。先
ず、プラズマ形成室1及び反応室2を10” Torr
  まで予備排気した。隔壁6の開ロアをシャッタで遮
断し、プラズマ形成室に水素ガスを流量50d/分の割
合で導入し、10−’ Torrの圧力に調整した。2
.45 GHzのマイクロ波をプラズマ形成室に導入し
、またコイル5に875Gaussの磁場を加えること
によりECR共鳴プラズマを形成した。
EXAMPLE A diamond film was formed using the apparatus shown in FIG. First, the plasma formation chamber 1 and reaction chamber 2 are heated to 10” Torr.
Pre-exhaust until. The lower opening of the partition wall 6 was shut off by a shutter, and hydrogen gas was introduced into the plasma formation chamber at a flow rate of 50 d/min, and the pressure was adjusted to 10-' Torr. 2
.. ECR resonance plasma was formed by introducing microwaves of 45 GHz into the plasma formation chamber and applying a magnetic field of 875 Gauss to the coil 5.

一方、反応室2には隔壁6から17cTLのところにS
i単結晶基板9を常温で配置し、ノズル8から0(4ガ
スを5d/分の流量で導入した。またバイアス電圧は1
156MH250Wで印加したものと無印加のもの2′
s用いた。
On the other hand, in the reaction chamber 2, there is an S
i A single crystal substrate 9 was placed at room temperature, and 0 (4 gas) was introduced from the nozzle 8 at a flow rate of 5 d/min.
156MH 250W applied and no applied 2'
I used s.

シャッタを用いて水素プラズマを反応室に流入させた。Hydrogen plasma was allowed to flow into the reaction chamber using a shutter.

約2時間の反応時間で約10μmの膜が成膜できた。A film of about 10 μm was formed in a reaction time of about 2 hours.

この膜をX線回折で調べたところ、バルクのダイヤモン
ドと同じ(111)、(220)位置にピークが見られ
た。抵抗率は1013Ωαであった。
When this film was examined by X-ray diffraction, peaks were found at the same (111) and (220) positions as in bulk diamond. The resistivity was 1013Ωα.

この値はバルクのダイヤモンドのものに近い。またビッ
カース硬度は約8000であった。なお、バイアス電圧
を加えないもののX線ピークは上記よりやや低く結晶性
が落ちそれに伴う特性低下があるが、その他の成膜速度
等の利点はバイアスを加えたものと変りがなかった。
This value is close to that of bulk diamond. Further, the Vickers hardness was approximately 8,000. Note that, although the X-ray peak of the film without applying a bias voltage was slightly lower than the above, the crystallinity deteriorated and the characteristics deteriorated accordingly, but other advantages such as film formation speed were the same as those with the application of a bias voltage.

(作用効果) 以上のように、本発明の方法によるとダイヤモンド性の
高い膜が高い成膜速度で得られることが分る。
(Operation and Effect) As described above, it can be seen that according to the method of the present invention, a film with high diamond properties can be obtained at a high film formation rate.

反応ガス圧が10−’ Torr  程度と高真空状態
であるため、高純度ECRプラズマが利用でき、良質の
膜が生成できる。また、プラズマの活性度が極めて高い
ため基体の温度を低くでき、基板となる半導体素子等の
特性を保つことができる。また、プラズマの活性度が高
いためにバルクのダイヤモンドに近い良質の薄膜が形成
できる。さらに、本発明では水素原子がプラズマ化して
直接基板へ照射されるために良質のダイヤモンドが成膜
する。
Since the reactant gas pressure is in a high vacuum state of about 10-' Torr, high-purity ECR plasma can be used and a high-quality film can be produced. In addition, since the activity of the plasma is extremely high, the temperature of the substrate can be lowered, and the characteristics of the semiconductor element and the like that serve as the substrate can be maintained. In addition, because the plasma has high activity, it is possible to form a high-quality thin film that is close to that of bulk diamond. Furthermore, in the present invention, since hydrogen atoms are turned into plasma and directly irradiated onto the substrate, a high quality diamond film is formed.

また、好ましい場合には高周波電源からバイアスを印加
することにより、生成した炭素イオンを高エネルギーで
加速し、さらに良質の膜を生成することができる。
Further, in a preferable case, by applying a bias from a high frequency power source, the generated carbon ions can be accelerated with high energy, and a film of even better quality can be generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を実施するための装置を示す
FIG. 1 shows an apparatus for carrying out the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】 1、水素ガスの電子サイクロトロン共鳴プラズマを形成
し、この共鳴プラズマに炭素化合物のガスを導入し、次
いで両者の流れを基板上に導いて成膜することを特徴と
する、ダイヤモンド膜の製造方法。 2、電子サイクロトロン共鳴プラズマはプラズマ室で形
成され、基体は反応室に配置され、炭素化合物のガスは
反応室に導かれた共鳴プラズマに導入されるものである
前記第1項記載の製造方法。 3、基板には高周波バイアスが印加されている前記第1
項または第2項記載の製造方法。
[Claims] 1. Forming an electron cyclotron resonance plasma of hydrogen gas, introducing a carbon compound gas into this resonance plasma, and then guiding the flow of both onto a substrate to form a film. Method for manufacturing diamond film. 2. The manufacturing method according to item 1, wherein the electron cyclotron resonance plasma is formed in a plasma chamber, the substrate is placed in the reaction chamber, and the carbon compound gas is introduced into the resonance plasma led to the reaction chamber. 3. The first substrate has a high frequency bias applied to the substrate.
The manufacturing method according to item 1 or 2.
JP22612386A 1986-09-26 1986-09-26 Production of diamond film Pending JPS6385092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22612386A JPS6385092A (en) 1986-09-26 1986-09-26 Production of diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22612386A JPS6385092A (en) 1986-09-26 1986-09-26 Production of diamond film

Publications (1)

Publication Number Publication Date
JPS6385092A true JPS6385092A (en) 1988-04-15

Family

ID=16840200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22612386A Pending JPS6385092A (en) 1986-09-26 1986-09-26 Production of diamond film

Country Status (1)

Country Link
JP (1) JPS6385092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298098A (en) * 1988-05-27 1989-12-01 Canon Inc Production of diamondlike carbon film
US5427827A (en) * 1991-03-29 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deposition of diamond-like films by ECR microwave plasma
US6423383B1 (en) * 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383271A (en) * 1986-09-25 1988-04-13 Canon Inc Production of diamond-like carbon film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383271A (en) * 1986-09-25 1988-04-13 Canon Inc Production of diamond-like carbon film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423383B1 (en) * 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
JPH01298098A (en) * 1988-05-27 1989-12-01 Canon Inc Production of diamondlike carbon film
US5427827A (en) * 1991-03-29 1995-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Deposition of diamond-like films by ECR microwave plasma

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
US7226643B2 (en) Thermal pyrolysising chemical vapor deposition method for synthesizing nano-carbon material
JPS6385092A (en) Production of diamond film
JPH02167891A (en) Gas-phase synthetic device of diamond film
JPH0420984B2 (en)
Ye et al. Microstructure and dielectric properties of silicon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition
US5112458A (en) Process for producing diamond-like films and apparatus therefor
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPS5935092A (en) Vapor-phase synthesis of diamond
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPH084039B2 (en) Plasma generation method and thin film deposition method
RU2788258C1 (en) Gas jet method for deposition of diamond films with activation in microwave discharge plasma
Yin et al. The application of the cathodic arc to plasma assisted chemical vapor deposition of carbon
RU2792526C1 (en) Diamond coating device
JP2636856B2 (en) Method for producing diamond thin film
Mehta et al. Room-temperature deposition of diamond-like carbon films by the microwave plasma jet method
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JPS63310795A (en) Vapor phase synthesis method for diamond by microwave plasma jet
JPS6383271A (en) Production of diamond-like carbon film
JPS63215596A (en) Production of diamond film or diamond like film
JPH01246357A (en) Production of cubic boron nitride film
JPH03253561A (en) Sputtering type particle supplying source and processing device using this source
JP2715277B2 (en) Thin film forming equipment