JP2934466B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JP2934466B2
JP2934466B2 JP29623889A JP29623889A JP2934466B2 JP 2934466 B2 JP2934466 B2 JP 2934466B2 JP 29623889 A JP29623889 A JP 29623889A JP 29623889 A JP29623889 A JP 29623889A JP 2934466 B2 JP2934466 B2 JP 2934466B2
Authority
JP
Japan
Prior art keywords
substrate
discharge electrode
magnetic field
plasma cvd
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29623889A
Other languages
Japanese (ja)
Other versions
JPH03158474A (en
Inventor
康明 林
禎之 浮島
村上  裕彦
正道 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP29623889A priority Critical patent/JP2934466B2/en
Publication of JPH03158474A publication Critical patent/JPH03158474A/en
Application granted granted Critical
Publication of JP2934466B2 publication Critical patent/JP2934466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はプラズマCVD装置に関するものである。そし
て本発明はアモルファスシリコン感光体ドラムの製造装
置に有利に利用され得る。
Description: TECHNICAL FIELD The present invention relates to a plasma CVD apparatus. The present invention can be advantageously used in an apparatus for manufacturing an amorphous silicon photosensitive drum.

[従来の技術] 従来、グロー放電を利用した成膜装置において高速処
理を実現するために磁場を利用してプラズマを拘束させ
る方法が知られている。その一例として例えば特公昭59
−15982号公報に示すようなプレーナマグネトロンを利
用するものを挙げることができる。
[Prior Art] Conventionally, a method of confining plasma using a magnetic field to realize high-speed processing in a film forming apparatus using glow discharge has been known. An example of this is, for example,
One using a planar magnetron as disclosed in JP-A-15982 can be mentioned.

この装置では、添付図面の第3図に示すように、放電
電極A内に磁石Bを配置し、この磁石Bによって放電電
極Aから出て再び放電電極Aに入る磁力線を形成し、そ
の磁力線の近傍に高密度のプラズマを拘束するようにし
ている。
In this apparatus, as shown in FIG. 3 of the accompanying drawings, a magnet B is arranged inside a discharge electrode A, and a magnetic field line exiting from the discharge electrode A and entering the discharge electrode A again is formed by the magnet B. High-density plasma is confined in the vicinity.

プラズマ中の電子は磁力線に垂直な面内を回転運動す
るが、磁石Bの組み込まれた放電電極Aが陰極である場
合には電子は放電電極Aと衝突する前に反発され、その
結果放電電極Aの近傍でサイクロイド運動を繰返すこと
になる。このようにして放電電極Aの近傍に高密度のプ
ラズマが拘束される。一方この装置が化学反応を利用し
た成膜装置である場合には、放電電極Aの近傍でガスが
分解され、活性種となって拡散により輸送され、基板C
に到達して薄膜が成長していく。従って放電電極Aの近
傍のプラズマ密度が高いほど、ガスの分解は効率的に行
なわれ、そして基板Cに到達する活性種の量も増え、拘
束成膜が実現され得る。
The electrons in the plasma rotate in a plane perpendicular to the lines of magnetic force, but when the discharge electrode A incorporating the magnet B is a cathode, the electrons are repelled before colliding with the discharge electrode A. As a result, the discharge electrode The cycloid motion is repeated near A. Thus, high-density plasma is confined in the vicinity of the discharge electrode A. On the other hand, when this apparatus is a film forming apparatus utilizing a chemical reaction, the gas is decomposed near the discharge electrode A, becomes an active species, is transported by diffusion, and
And the thin film grows. Therefore, the higher the plasma density in the vicinity of the discharge electrode A, the more efficiently the gas is decomposed, the more the amount of active species reaching the substrate C is increased, and constrained film formation can be realized.

[発明が解決しようとする課題] 上記の従来提案されてきた装置においては原料ガスの
分解は基板Cと対向する放電電極Aの近傍で行なわれる
ため基板C上におけるよりも厚い膜が放電電極側に堆積
することになる。特に、プラズマの集中している磁束密
度の高い部位では他の部位に比較して非常に厚い膜が堆
積することになる。こうして堆積した膜は成膜を何回か
繰返すうちに剥離し、それにより生じたフレークは基板
側に堆積する膜の特性に悪影響を及ぼすことになる。こ
れを防ぐためには放電電極を毎回クリーニングすればよ
いが、そうすることは生産性を犠牲にしなければならな
い。
[Problems to be Solved by the Invention] In the above-described conventionally proposed apparatus, the decomposition of the source gas is performed in the vicinity of the discharge electrode A facing the substrate C, so that a film thicker than the substrate C is formed on the discharge electrode side. Will be deposited on the surface. In particular, in a portion where the plasma is concentrated and where the magnetic flux density is high, an extremely thick film is deposited as compared with other portions. The film deposited in this way peels off after repeating the film formation several times, and the resulting flakes adversely affect the properties of the film deposited on the substrate side. To prevent this, the discharge electrode may be cleaned every time, but doing so has to sacrifice productivity.

そこで、本発明は、従来のプレーナーマグネトロン方
式のプラズマCVDプロセスにおける上記のような問題点
を解決して、基体に対向する電極への膜の堆積を少なく
できるようにしたプラズマCVD装置を提供することを目
的としている。
Therefore, the present invention is to solve the above-mentioned problems in the conventional planar magnetron type plasma CVD process, and to provide a plasma CVD apparatus capable of reducing the deposition of a film on an electrode facing a substrate. It is an object.

[課題を解決するための手段] 上記の目的を達成するために、本発明によるプラズマ
CVD装置は、処理すべき基体を挟んで、二つの放電電極
を対向して設け、各放電電極の外側に、処理すべき基体
に対して異極を対向させて、対向する放電電極を結ぶ方
向に沿って磁場を形成する磁場発生手段を設けたことを
特徴としている。
Means for Solving the Problems In order to achieve the above object, a plasma according to the present invention is provided.
The CVD device is provided with two discharge electrodes facing each other with the substrate to be processed sandwiched between them. Outside the respective discharge electrodes, the opposite electrodes are opposed to the substrate to be processed, and the direction in which the facing discharge electrodes are connected. Characterized in that a magnetic field generating means for forming a magnetic field along is provided.

本発明の一つの実施例によれば、処理すべき基体は円
筒状基体であり、各放電電極の表面は円筒状基体の表面
形状に相応して凹面状に形成され得る。
According to one embodiment of the present invention, the substrate to be treated is a cylindrical substrate, and the surface of each discharge electrode may be formed in a concave shape corresponding to the surface shape of the cylindrical substrate.

また、磁場発生手段は永久磁石または電磁石、好まし
くは処理すべき基体に向かって凹状の形状をもつ永久磁
石または電磁石で構成され得る。
Also, the magnetic field generating means may be constituted by a permanent magnet or an electromagnet, preferably a permanent magnet or an electromagnet having a concave shape toward the substrate to be treated.

[作用] このように構成した本発明のプラズマCVD装置におい
ては、磁場発生手段から発生される磁力線は放電電極の
近傍だけでなく基体側にも及ぶことになり、また放電電
極の近傍においても磁力線の分布は偏りが少なく、全体
的に均一に高密度のプラズマを発生させることができ
る。その結果、放電電極上に堆積する膜の膜厚はほぼ均
一となり、短時間の成膜の間に放電電極上に局部的に膜
が厚く堆積することはない。
[Operation] In the plasma CVD apparatus of the present invention configured as described above, the lines of magnetic force generated by the magnetic field generating means reach not only the vicinity of the discharge electrode but also the base, and also the lines of magnetic force near the discharge electrode. Is less biased, and high-density plasma can be uniformly generated as a whole. As a result, the thickness of the film deposited on the discharge electrode becomes substantially uniform, and the film is not locally thickened locally on the discharge electrode during the short-time film formation.

[実施例] 以下添付図面の第1図及び第2図を参照して本発明の
実施例について説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings.

第1図には本発明の実施例による基本的な構成を示
し、1は放電電極で、図示していない真空容器内に間隔
を置いて対向して配置されており、これら放電電極1に
はRF電源(図示してない)から適当なRF電力が印加され
るようになっている。
FIG. 1 shows a basic configuration according to an embodiment of the present invention. Reference numeral 1 denotes a discharge electrode, which is disposed in a vacuum vessel (not shown) so as to face each other at an interval. Appropriate RF power is applied from an RF power supply (not shown).

放電電極1間には例えばアモルファスシリコン感光体
ドラムを構成するドラム基体2が挿置され、このドラム
基体2の電気的にはアースに接続される。また、各放電
電極1の外側に磁場発生手段を成す永久磁石3が処理す
べきドラム基体2を挾んで異極が対向するようにして配
置されており、その磁力線は符号4で示す。反応ガスは
放電電極1側から処理すべきドラム基体2に向かって導
入される。
A drum base 2 constituting, for example, an amorphous silicon photosensitive drum is inserted between the discharge electrodes 1, and the drum base 2 is electrically connected to ground. Further, a permanent magnet 3 serving as a magnetic field generating means is arranged outside each discharge electrode 1 so that different poles are opposed to each other with the drum base 2 to be processed interposed therebetween. The reaction gas is introduced from the discharge electrode 1 toward the drum substrate 2 to be treated.

永久磁石3によって発生される磁場は、放電電極1の
間の空間内に均一に分布され、それにより処理すべきド
ラム基体2を囲んで均一で高密度のプラズマが形成され
る。
The magnetic field generated by the permanent magnet 3 is uniformly distributed in the space between the discharge electrodes 1, whereby a uniform and high-density plasma is formed around the drum substrate 2 to be treated.

なお、図面には具体的には示してないが、処理すべき
ドラム基体2は成膜中は回転され、そして可動かつ搬送
可能に構成することができる。
Although not specifically shown in the drawings, the drum substrate 2 to be processed can be rotated during film formation, and can be configured to be movable and transportable.

第2図には本発明の別の実施例を示し、5は図示して
ない真空容器内に間隔をおいて対向して設けられた放電
電極で、これらの放電電極間に回転可能に挿置される第
1図に示すもの同様な処理すべきドラム基体6と同心円
上にのびる凹面円弧状の表面部5aを備えている。各放電
電極5の表面部5aには図示したようにSiH4のような反応
ガスの供給流出口5bがそれぞれ設けられている。
FIG. 2 shows another embodiment of the present invention. Reference numeral 5 denotes a discharge electrode which is provided in a vacuum vessel (not shown) so as to face each other at an interval, and is rotatably inserted between these discharge electrodes. 1 is provided with a concave arcuate surface portion 5a extending concentrically with a drum substrate 6 to be processed similar to that shown in FIG. As shown, a supply outlet 5b for a reactive gas such as SiH 4 is provided on the surface 5a of each discharge electrode 5.

放電電極5の凹面円弧状の表面部5aの外側には第1図
の場合と同様に磁場発生手段を成す永久磁石7が処理す
べきドラム基体6を挾んで異極が対向するようにして配
置されている。この場合、各永久磁石7は表面部5aに沿
ってのび、処理すべきドラム基体6に向かって凹状の形
状を成している。これらの永久磁石7により発生される
磁力線8の作用により、各放電電極5と処理すべきドラ
ム基体6との間に均一て高密度のプラズマが形成され
る。
Outside the concave arc-shaped surface portion 5a of the discharge electrode 5, a permanent magnet 7 constituting a magnetic field generating means is arranged so that different poles face each other with a drum base 6 to be processed sandwiched therebetween as in the case of FIG. Have been. In this case, each permanent magnet 7 extends along the surface 5a and has a concave shape toward the drum base 6 to be processed. By the action of the lines of magnetic force 8 generated by these permanent magnets 7, uniform and high-density plasma is formed between each discharge electrode 5 and the drum base 6 to be processed.

また図示したように、処理すべきドラム基体6の内側
にはドラム基体6を加熱するための加熱源9が配置され
ている。
As shown, a heating source 9 for heating the drum substrate 6 is disposed inside the drum substrate 6 to be processed.

この実施例でも第1図の場合と同様に各放電電極5は
RF電源(図示してない)に接続され、処理すべきドラム
基体6は接地される。また各放電電極5に設けられた反
応ガスの供給流出口5bを通して反応ガスはドラム基体6
に向かって流出される。さらに、図面には具体的には示
してないが、第1図の実施例の場合と同様に加熱源9は
処理すべきドラム基体6と共に可動かつ搬送可能に構成
され得る。
In this embodiment, as in the case of FIG.
The drum substrate 6 to be processed is connected to an RF power source (not shown) and grounded. The reaction gas is supplied to the drum substrate 6 through a reaction gas supply outlet 5b provided in each discharge electrode 5.
Spilled out towards. Further, although not specifically shown in the drawings, the heating source 9 can be configured to be movable and transportable together with the drum base 6 to be processed, as in the embodiment of FIG.

図示実施例装置を用いて実際の成膜実験を行った結
果、放電電極1または5側にはドラム基体2または6に
堆積される膜厚と同程度の膜厚の膜が平均的に堆積し
た。比較のため、プレーナマグネトロン放電用磁石を図
示装置における永久磁石と置き換えて成膜したところ、
磁束密度の高い部分での基体側の約7倍、その他の部分
では約3倍の厚さの膜が放電電極に堆積した。
As a result of performing an actual film forming experiment using the illustrated apparatus, a film having a thickness similar to the film thickness deposited on the drum substrate 2 or 6 was deposited on the discharge electrode 1 or 5 side on average. . For comparison, a film was formed by replacing the magnet for planar magnetron discharge with the permanent magnet in the illustrated device.
A film about 7 times as thick as the substrate side in the portion having a high magnetic flux density and about 3 times as thick as the other portions was deposited on the discharge electrode.

また反応に付随して発生するポリシランの粉状ダスト
は低圧ほど少なく、0.1Torr以下ではほとんど発生しな
かった。そしてこの圧力範囲においてドラム基体上にお
けるアモルファスシリコンの堆積速度として毎時約6μ
mが得られ、磁石を用いない場合に比べ約2〜3倍の向
上が認められた。
In addition, powdery polysilane dust generated during the reaction was smaller at lower pressures, and was hardly generated at 0.1 Torr or less. In this pressure range, the deposition rate of amorphous silicon on the drum substrate is about 6 μ / hour.
m was obtained, and an improvement about 2 to 3 times as compared with the case where no magnet was used was observed.

ところで、図示実施例では、磁場発生手段として永久
磁石を用いているが、当然電磁石を用いることもでき
る。
By the way, in the illustrated embodiment, a permanent magnet is used as the magnetic field generating means, but an electromagnet can of course be used.

また処理すべき基体を挾んで設けられたRF放電電極は
同一RF電源に接続するように構成されているが、各放電
電極は僅かに周波数の異なる別個の電源を用いて給電す
るようにすることもできる。さらに、放電電極の一方の
みをRF電位とし、他方の放電電極を接地電位とすること
もでき、その場合には処理すべき基体は浮遊電位にされ
得る。
In addition, the RF discharge electrodes sandwiching the substrate to be processed are configured to be connected to the same RF power supply, but each discharge electrode should be powered by a separate power supply with a slightly different frequency. Can also. Furthermore, only one of the discharge electrodes can be at RF potential and the other discharge electrode can be at ground potential, in which case the substrate to be treated can be at floating potential.

[発明の効果] 以上説明してきたように、本発明によれば、放電電極
の外側に磁場発生手段を設け、この磁場発生手段で発生
された磁場の作用により処理すべき基体を囲んで均一で
密度の高いプラズマを形成するように構成しているの
で、放電電極や真空容器の内壁への局部的な膜の堆積を
避けて基体への成膜を高速で行うことができ、その結
果、放電電極や真空容器の内壁に堆積して膜が剥離して
フレーク状となる確率を極めて低く抑えることができ
る。
[Effects of the Invention] As described above, according to the present invention, the magnetic field generating means is provided outside the discharge electrode, and the magnetic field generated by the magnetic field generating means is used to uniformly surround the substrate to be treated. Since it is configured to form a high-density plasma, it is possible to form a film on a substrate at a high speed while avoiding local deposition of a film on a discharge electrode or the inner wall of a vacuum vessel. The probability that the film is deposited on the electrode or the inner wall of the vacuum vessel and peeled off to form a flake can be extremely low.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基本的な実施例を示す概略断面図、第
2図は本発明の別の実施例を示す概略断面図、第3図は
従来のプレーナマグネトロン方式の装置の一例を示す概
略線図である。 図中 1:放電電極 2:ドラム基体 3:磁場発生手段 5:放電電極 6:ドラム基体 7:磁場発生手段 9:加熱源
FIG. 1 is a schematic sectional view showing a basic embodiment of the present invention, FIG. 2 is a schematic sectional view showing another embodiment of the present invention, and FIG. 3 shows an example of a conventional planar magnetron type apparatus. It is a schematic diagram. In the figure, 1: discharge electrode 2: drum base 3: magnetic field generating means 5: discharge electrode 6: drum base 7: magnetic field generating means 9: heating source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 正道 茨城県つくば市東光台5―9―7 日本 真空技術株式会社筑波超材料研究所内 (56)参考文献 特開 昭63−303065(JP,A) 特開 昭62−103370(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 16/00 - 16/50 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masamichi Matsuura 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Japan Vacuum Engineering Co., Ltd. Tsukuba Super Materials Research Laboratory (56) References JP-A-63-303065 (JP, A JP-A-62-103370 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 16/00-16/50

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】処理すべき基体を挟んで、二つの放電電極
を対向して設け、各放電電極の外側に、処理すべき基体
に対して異極を対向させて、対向する放電電極を結ぶ方
向に沿って磁場を形成する磁場発生手段を設けたことを
特徴とするプラズマCVD装置。
1. Two discharge electrodes are provided opposite to each other with a substrate to be treated interposed therebetween. Outside the respective discharge electrodes, different electrodes are opposed to the substrate to be treated, and the opposite discharge electrodes are connected. A plasma CVD apparatus comprising a magnetic field generating means for forming a magnetic field along a direction.
【請求項2】処理すべき基体が、円筒状基体であり、各
放電電極の表面が円筒状基体の表面形状が相応して凹面
状である請求項1に記載のプラズマCVD装置。
2. The plasma CVD apparatus according to claim 1, wherein the substrate to be treated is a cylindrical substrate, and the surface of each discharge electrode has a correspondingly concave surface.
【請求項3】磁場発生手段が永久磁石から成る請求項1
に記載のプラズマCVD装置。
3. A magnetic field generating means comprising a permanent magnet.
The plasma CVD apparatus according to item 1.
【請求項4】磁場発生手段が、処理すべき基体に向かっ
て凹状の形状をもつ永久磁石から成る請求項1に記載の
プラズマCVD装置。
4. The plasma CVD apparatus according to claim 1, wherein the magnetic field generating means comprises a permanent magnet having a concave shape toward the substrate to be processed.
【請求項5】処理すべき基体が、アモルファスシリコン
感光体ドラムである請求項1に記載の放電ラズマCVD装
置。
5. The discharge plasma CVD apparatus according to claim 1, wherein the substrate to be processed is an amorphous silicon photosensitive drum.
JP29623889A 1989-11-16 1989-11-16 Plasma CVD equipment Expired - Fee Related JP2934466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29623889A JP2934466B2 (en) 1989-11-16 1989-11-16 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29623889A JP2934466B2 (en) 1989-11-16 1989-11-16 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH03158474A JPH03158474A (en) 1991-07-08
JP2934466B2 true JP2934466B2 (en) 1999-08-16

Family

ID=17830972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29623889A Expired - Fee Related JP2934466B2 (en) 1989-11-16 1989-11-16 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP2934466B2 (en)

Also Published As

Publication number Publication date
JPH03158474A (en) 1991-07-08

Similar Documents

Publication Publication Date Title
JPS60135573A (en) Method and device for sputtering
KR100509666B1 (en) Device for vaccum coating of bulk material
JPH0834208B2 (en) Plasma processing apparatus and method thereof
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
JPH05202470A (en) Device for coating part with cathode sputtering
JP2942899B2 (en) Electrode device for plasma CVD equipment
JP2934466B2 (en) Plasma CVD equipment
JP2934465B2 (en) Plasma CVD equipment
US5580384A (en) Method and apparatus for chemical coating on opposite surfaces of workpieces
US5227202A (en) Method for chemical coating on opposite surfaces of workpieces
JP2590112B2 (en) Microwave plasma processing equipment
JPH10172793A (en) Plasma generator
JP3229251B2 (en) CVD equipment
JP3221928B2 (en) Magnetron reactive ion processing equipment
JP2821932B2 (en) Plasma CVD equipment
JPS63186429A (en) Drying processor
JPS60194073A (en) Sputtering device
JPH10330935A (en) Sputtering device
JPS61217573A (en) Electric discharge device for vacuum treatment
JP3193178B2 (en) Thin film formation method
JPH0745540A (en) Chemical plasma evaporating device
JPH09316636A (en) Method for depositing thin coating film
JPS6197838A (en) Formation of thin film
JP2000199061A (en) Electronic cyclotron resonance plasma sputtering device, and manufacture of thin film
JPH07102378A (en) High frequency discharging reactor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080528

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090528

LAPS Cancellation because of no payment of annual fees