JPS61217573A - Electric discharge device for vacuum treatment - Google Patents

Electric discharge device for vacuum treatment

Info

Publication number
JPS61217573A
JPS61217573A JP5994985A JP5994985A JPS61217573A JP S61217573 A JPS61217573 A JP S61217573A JP 5994985 A JP5994985 A JP 5994985A JP 5994985 A JP5994985 A JP 5994985A JP S61217573 A JPS61217573 A JP S61217573A
Authority
JP
Japan
Prior art keywords
magnetic field
electrode
plasma
vacuum
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5994985A
Other languages
Japanese (ja)
Inventor
Tatsuo Asamaki
麻蒔 立男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP5994985A priority Critical patent/JPS61217573A/en
Publication of JPS61217573A publication Critical patent/JPS61217573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To provide an electric discharge device for vacuum treatment which makes possible the high-speed and efficient treatment with high uniformity and high quality by providing respectively a magnetic field generating means along the surface of tan electrode provided in a vacuum vessel and a means for setting a Miller magnetic field to the edge part of said electrode. CONSTITUTION:The inside of the vacuum vessel 10 is evacuated to a prescribed pressure (for example, 10<-8> Torr) and thereafter a gas such as Ar is introduced therein to a prescribed pressure (for example, 10<-2> Torr) by which the pressure is regulated. A Helmholtz power source 34 is then operated to generate the magnetic field and thereafter an electric power source 25 is operated to intersect orthogonally the magnetic field generated on the surface of the electrode 23 with the magnetic field, thereby generating the high-density plasma. The plasma is confined near the electrode plate 23 by the Miller magnetic field at the edge of the plate 23. Sputtering on the surface of an object 29 to be treated is made possible if the object 29 is used in place of the object 24 to be treated and a sputtering material is placed in place of the electrode plate 23. As a result, the plasma is confined with high density in a uniform distribution on the surface of the object to be treated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は真空処理用放電装置に関し、特にスパッタ装
置、エツチング装置、プラズマCVD(以下pcVD)
装置など放電やプラズマを利用して真空中で各種の処理
を行う装置に適用して効果が著しい。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a discharge device for vacuum processing, and in particular to a sputtering device, an etching device, and a plasma CVD (hereinafter referred to as pcVD)
It is extremely effective when applied to equipment that performs various types of processing in vacuum using electrical discharge or plasma.

(従来技術とその問題点) これらの装置においては、所定の処理を行うために必ず
電極を置き(真空室の内外を問わず)。
(Prior art and its problems) In these devices, electrodes are always placed (regardless of whether inside or outside the vacuum chamber) in order to perform a predetermined process.

その電極の近くの所定の場所にプラズマを発生させ、そ
のプラズマの中あるいはその近くで所定の処理を行う。
Plasma is generated at a predetermined location near the electrode, and a predetermined process is performed in or near the plasma.

このプラズマは所定の場所になるべく所定の密度分布(
多くの場合均一な密度分布)で所定の密度(多くの場合
高い密度)で得ることが望まれる。そのために従来多数
の工夫がされ。
This plasma is distributed at a predetermined location with a predetermined density distribution (
It is desired to obtain a predetermined density (often a high density) with a uniform density distribution in many cases. To this end, many efforts have been made in the past.

今日迄多数の提案がなされている。スパッタ装置におい
ては、高価なターゲット材料をなるべく高い利用率で(
出来たらその全部を)均一にスパッタリングするように
、また、エツチング装置では、被処理体(エツチングさ
れるサンプル)の表面が所定の処理分布(多くの場合一
様)になるように、更に、プラズマCVDにおいても被
処理体の表面に所定の堆積分布(多くの場合一様)が得
られるようにと希望されるが、充分な満足を与えるほど
の完成された装置はない、消費電力を小さくする意味で
も所定の場所にのみ(多くの場合電極の表面近くのみ)
にプラズマを発生させたいのであるが、今日迄の技術に
おいてはどうしても希望の場所以外の所にまでプラズマ
が広がり(あるいは−様なプラズマ分布を得られないま
\、却って局所にプラズマが偏在してしまって、所望の
結果が得られていない状況にある。この不具合は消費電
力の増大のみならず、所定の処理における不純物の発生
(例えば、スパッタ装置においては真空容器の材料が膜
中に不純物となって析出するし、エツチングやプラズマ
CVDなどにおいても同様の不都合がある)につながり
、甚だしいときは機器を破損することもある。
Many proposals have been made to date. In sputtering equipment, expensive target materials are utilized at the highest possible rate (
In addition, in the etching equipment, the plasma is sputtered so that the surface of the object to be etched (sample to be etched) has a predetermined treatment distribution (uniform in most cases). Even in CVD, it is desired to obtain a predetermined deposition distribution (uniform in many cases) on the surface of the object to be processed, but there is no complete device that can provide sufficient satisfaction.It is desirable to reduce power consumption. Only in certain places (often only near the surface of the electrode)
However, with the technology available to date, it is impossible to obtain plasma that spreads to locations other than the desired location. The problem is not only an increase in power consumption, but also the occurrence of impurities in a given process (for example, in sputtering equipment, the material of the vacuum chamber may cause impurities to form in the film). (This also causes similar problems in etching, plasma CVD, etc.), and in severe cases may damage the equipment.

(発明の目的) この発明の目的は、上記した従来の装置の欠点の全てか
少くともその一部を除いて、高均一性、高品質、高速か
つ効率的の処理を可能にする真空処理用放電装置の提供
にある。
(Object of the Invention) The object of the present invention is to eliminate all or at least some of the drawbacks of the conventional apparatuses mentioned above, and to provide a vacuum processing apparatus which enables processing with high uniformity, high quality, high speed and efficiency. The purpose is to provide a discharge device.

(発明の構成) 本発明は、内部を所定の圧力になるまで排気する真空容
器とその排気系、その真空容器の内部に設けた電極、こ
の電極の表面に沿って磁場を設定する手段、この電極の
縁部にミラー磁場を設定する手段をそなえた真空処理用
放電装置によって前記目的を達成したものである。
(Structure of the Invention) The present invention provides a vacuum container for evacuating the inside to a predetermined pressure, an evacuation system for the vacuum container, an electrode provided inside the vacuum container, a means for setting a magnetic field along the surface of the electrode, and a device for setting a magnetic field along the surface of the electrode. The above object has been achieved by a discharge device for vacuum processing which is equipped with means for setting a mirror magnetic field at the edge of the electrode.

(実 施 例) 次にこの発明を図面により実施例を用いて詳しく説明す
る。 第1図(正面断面図)、第2図および第3図(第
1図中から発明の基本的な構成を抜粋して示す平面図と
正面図)の実施例において、10は真空容器で、11が
容器、12が気密を兼ねた絶縁体、13は図示されてな
い排気系や圧力調整系に接続される排気管、20は電極
で、21が導入管(水などの冷媒や電力などを導入する
)。
(Example) Next, this invention will be explained in detail using an example with reference to drawings. In the embodiments shown in FIG. 1 (front sectional view), FIG. 2, and FIG. 3 (plan view and front view showing the basic configuration of the invention extracted from FIG. 1), 10 is a vacuum container, 11 is a container, 12 is an insulator that also serves as airtight, 13 is an exhaust pipe connected to an exhaust system or pressure adjustment system (not shown), 20 is an electrode, and 21 is an inlet pipe (for introducing refrigerants such as water, electricity, etc.) Introduce).

22は絶縁板、23が電極板(この実施例では平板であ
るが1曲板でもよい)、24は被処理体、25は電源、
29は別の所におかれた(プラズマの内部乃至近くと云
う意味でニーに描いた)被処理体である。30は磁場を
設定する手段で、31(31aと31b)と32 (3
2aと32b)はそれぞれ対をなすヘルムホルツコイル
。33はミラー磁場設定手段でリング形状をしており、
331は磁性体、332は非磁性体であり、両者は多数
が交互におかれて、リングの中心方向に磁力線を通しや
すく円周方向には通しにくいように作られている。34
はへルムホルッコイル電源である。
22 is an insulating plate, 23 is an electrode plate (in this embodiment, it is a flat plate, but a single curved plate may be used), 24 is an object to be processed, 25 is a power source,
Reference numeral 29 denotes an object to be processed placed elsewhere (drawn at the knee to mean inside or near the plasma). 30 is a means for setting a magnetic field, 31 (31a and 31b) and 32 (3
2a and 32b) are pairs of Helmholtz coils. 33 is a mirror magnetic field setting means having a ring shape,
331 is a magnetic material, and 332 is a non-magnetic material, and a large number of both are placed alternately so that it is easy to pass the lines of magnetic force toward the center of the ring, but difficult to pass in the circumferential direction. 34
is the Helmholck coil power supply.

35と36は代表的な磁力線を示しである。35は電極
板23の表面にぼり平行な磁力線を、36は本来なら平
行な磁力線が、ミラー磁場発生手段33によって縁部で
曲げられてミラー磁場を生じたものを示している。
35 and 36 indicate typical lines of magnetic force. Reference numeral 35 indicates parallel lines of magnetic force extending onto the surface of the electrode plate 23, and reference numeral 36 indicates lines of magnetic force that are originally parallel but are bent at the edge by the mirror magnetic field generating means 33 to produce a mirror magnetic field.

この装置は次のように運動する。まず、内部を所定の圧
力(例えば10−’Torr)に迄排気した後、所定の
気体(例えばアルゴンやシランなと)を所定の圧力(例
えば10−2Torr)まで導入し圧力調整を行う。ヘ
ルムホルツコイル電源34を働作させ磁場を発生させた
後、電源25を働作させると電極板23の表面に発生す
る電界と磁界が直交し高密度なプラズマを発生する。発
生したプラズマは電極板23の縁部のミラー磁場により
電極板23の近くに閉じ込められる。被処理体24の代
りに被処理体29を用い、電極°板23の代りにスパッ
タ材(例えばアルミニウム)を置けば、被処理体29の
表面にスパッタを行うことが出来るし、気体を化学的に
活性な気体(例えばエツチングならCFいプラズマCv
DならSiH,を図示しない導入系から導入すればプラ
ズマエツチングやプラズマCVDを行うことが出来る。
This device operates as follows. First, the inside is evacuated to a predetermined pressure (for example, 10-' Torr), and then a predetermined gas (for example, argon or silane) is introduced to a predetermined pressure (for example, 10-2 Torr) to adjust the pressure. After activating the Helmholtz coil power source 34 to generate a magnetic field, the power source 25 is activated, and the electric field and magnetic field generated on the surface of the electrode plate 23 are perpendicular to each other, generating high-density plasma. The generated plasma is confined near the electrode plate 23 by the mirror magnetic field at the edge of the electrode plate 23. If the object to be processed 29 is used instead of the object to be processed 24 and a sputtering material (for example, aluminum) is placed in place of the electrode plate 23, sputtering can be performed on the surface of the object to be processed 29, and the gas can be chemically active gas (for example, CF or plasma CV for etching)
In the case of D, plasma etching and plasma CVD can be performed by introducing SiH from an introduction system not shown.

被処理体を24にして29を除き、化学的に活性な所定
の気体(例えばCF4)を導入すればリアクティブイオ
ンエツチング(以下RIE)を行うことができ、る。
Reactive ion etching (hereinafter referred to as RIE) can be performed by using the object to be processed as 24, excluding 29, and introducing a predetermined chemically active gas (for example, CF4).

このように電極の近くにのみ、且つその表面にそって一
様なプラズマを発生させとじ込める結果、スパッタの場
合は材料を局所的に消耗することがなくなり、材料のは
ゾ全面にわたって均一に消費することが出来、利用率は
著るしく向上する。真空容器などの不純物が混入するこ
ともなく、消費電力も少いものとなる。スパッタ速度も
速くなる。
In this way, uniform plasma is generated and contained only near the electrode and along its surface, so in the case of sputtering, material is not consumed locally, but is consumed uniformly over the entire surface. This will significantly improve the utilization rate. Impurities such as those from the vacuum container are not mixed in, and power consumption is also reduced. The sputtering speed also becomes faster.

エツチングの場合も被処理体の表面を一様にエツチング
出来、例えば超LSIの製造に秀れた効果を発揮する。
In the case of etching, it is possible to uniformly etch the surface of the object to be processed, and exhibits an excellent effect in the manufacture of VLSIs, for example.

不純物混入によるダメージは低下し、電力消費が少ない
ので被処理体、電極、真空容器の加熱も少い。エツチン
グ速度は大きい。プラズマCVDの場合でも同様に、高
速で、不純物の少い、且つ温度上昇の少いプラズマCV
D法を得ることになる。
Damage caused by contamination with impurities is reduced, and since power consumption is low, there is less heating of the object to be processed, the electrode, and the vacuum container. Etching speed is high. Similarly, in the case of plasma CVD, plasma CVD is fast, contains few impurities, and has a small temperature rise.
We will get method D.

この第1,2.3図の実施例は本発明の基本的な構成を
示すもので、この基本を理解すれば多数の変形を創り出
すことが出来る。例えば第1図で。
The embodiments shown in FIGS. 1, 2 and 3 show the basic structure of the present invention, and once this basic understanding is understood, many variations can be created. For example, in Figure 1.

向って左側に別の真空室を設け、矢印14のように被処
理体24又は29を出し入れするとか、多数の真空室を
設は連続的に基板を送り込み(一方で取り出し)連続装
置化することとか、そのために水、電気、導入気体など
の入力用諸装置1位置の計測装置などを思う様に設計し
とり入れ、多種類の有用な装置を作り出すことが出来る
Another method is to provide another vacuum chamber on the left side and take the object 24 or 29 in and out as shown by arrow 14, or to create a continuous device in which substrates are continuously fed (and taken out at the same time) by setting up multiple vacuum chambers. For that purpose, we can design and incorporate various input devices such as water, electricity, introduced gas, etc. and measuring devices at one position as we wish, and create many kinds of useful devices.

また実施例の第2図では、ヘルムホルツコイルを2対用
い、電源34からはそこに略示する34A、34Bのよ
うに各コイルに供給する電流の位相をずらし、磁場が電
極板23の表面内で回転するようにしているが、これは
一方のコイルだけでも効果があるしまた、三相交流を印
加する三対のコイルを用いてもよい、もしくは、磁界を
固定して電極2を軸26の周りに回転させてもよい。こ
れらは一部あるいは全部組み合せてもよい。さらに電極
23の周囲もいろいろな設計上の工夫を行うことが出来
る。例えば絶縁板22にはアルミナ、テフロンなどを用
いてもよいが、絶縁物の代りに真空を用いてその周りに
シールドをめぐらせるなどの従来のこの種の装置に用い
られている方法を用いてもよい。電極の形状も円板状で
ある必要はなく様々の形状が必要により定められる。
In addition, in FIG. 2 of the embodiment, two pairs of Helmholtz coils are used, and the phase of the current supplied from the power supply 34 to each coil is shifted as shown in 34A and 34B schematically there, so that the magnetic field is inside the surface of the electrode plate 23. However, this is effective with just one coil, or three pairs of coils that apply three-phase alternating current may be used, or the magnetic field is fixed and the electrode 2 is rotated around the axis 26. It may be rotated around. Some or all of these may be combined. Furthermore, various design improvements can be made around the electrode 23. For example, alumina, Teflon, etc. may be used for the insulating plate 22, but methods used in conventional devices of this type, such as using vacuum instead of an insulator and surrounding it with a shield, may also be used. good. The shape of the electrode does not necessarily have to be disc-shaped, and various shapes can be determined as necessary.

第4図(第2図に対応している)には別の実施例を示し
である。この実施例においては、ミラー磁場設定手段3
3が第2図のようにリング状でなく棒状になっている。
FIG. 4 (corresponding to FIG. 2) shows another embodiment. In this embodiment, the mirror magnetic field setting means 3
3 is in the shape of a rod instead of a ring as shown in Figure 2.

第5図(第3図に対応している)にはさらに別の実施例
を示しである。環状の333,334.33など多数の
ミラー磁場設定手段(断面で示している)を組み合せた
複合的なミラー磁場設定手段を用いている。これらのよ
うにミラー磁場の設定にはいろいろな方式が可能である
FIG. 5 (corresponding to FIG. 3) shows yet another embodiment. A composite mirror magnetic field setting means is used in which a large number of mirror magnetic field setting means (shown in cross section) such as annular mirror magnetic field setting means 333, 334, 33 are combined. As shown above, various methods are possible for setting the mirror magnetic field.

第6図(要部の斜視図)及び第7図(その一部の正面断
面図)には他の実施例を示しである。この実施例におい
ては永久磁石37c、37dとヨーク370からなる磁
場設定手段37を用いている。さらにこの上方に、この
37を逆さにした形の別の磁石とヨーク38を設けて電
極23の中央部の磁束密度を向上させると同時に磁力線
と電極表面をより一層平行にしてもよい。これらは例え
ば本願と同一出願人の出願になる特願58−18563
8 r放電反応装置」に示しであるような数々の方式を
用いて効果をあげることができる。また電極23は軸2
6の周りに回転させてもよいし。
Other embodiments are shown in FIG. 6 (perspective view of the main part) and FIG. 7 (front sectional view of a part thereof). In this embodiment, a magnetic field setting means 37 consisting of permanent magnets 37c, 37d and a yoke 370 is used. Furthermore, another magnet and a yoke 38 in the form of an inverted version of 37 may be provided above this to improve the magnetic flux density at the center of the electrode 23 and at the same time to make the lines of magnetic force and the electrode surface more parallel. These include, for example, patent application No. 58-18563 filed by the same applicant as the present application.
A number of systems can be used to good effect, such as those shown in 8 R Discharge Reactor. Further, the electrode 23 is connected to the shaft 2
You can also rotate it around 6.

磁場設定手段37の方を回転してもよい、両者を反対方
向に、あるいは同方向に異った角速度で回転してもよい
、ミラー磁場設定手段は第7図に付記したミラー磁場設
定手段335のように設定してもよい。これは電極23
の絶縁部に、ミラー磁場設定手段33と同様のものを付
加したものである。
The magnetic field setting means 37 may be rotated, or both may be rotated in opposite directions or in the same direction at different angular velocities.The mirror magnetic field setting means is the mirror magnetic field setting means 335 shown in FIG. You can also set it like this. This is electrode 23
The same as the mirror magnetic field setting means 33 is added to the insulating section of the mirror magnetic field setting means 33.

第8図(要部の正面図)及び第9図(その一部の側面図
)には別の実施例を示しである。この実施例では大形の
被処理体の処理を行うために、第9図のような大きな磁
場設定手段37の多数をキャタピラ状に作って矢印39
の方向に移動させる例である。この場合は磁石37c、
37dを上向にすることによりミラー磁場を作っている
。 第10図には他の実施例を示しである。この実施例
では磁場設定手段30.ミラー磁場発生手段33、およ
び電極23は同軸形に配置されている。電極23を円筒
状に示しであるが平面状の被処理体24を置くためにこ
れを角筒状にしてもよい。
Another embodiment is shown in FIG. 8 (a front view of the main part) and FIG. 9 (a side view of a part thereof). In this embodiment, in order to process a large object to be processed, a large number of large magnetic field setting means 37 are formed in a caterpillar shape as shown in FIG.
This is an example of moving in the direction of. In this case, magnet 37c,
A mirror magnetic field is created by pointing 37d upward. FIG. 10 shows another embodiment. In this embodiment, magnetic field setting means 30. The mirror magnetic field generating means 33 and the electrode 23 are arranged coaxially. Although the electrode 23 is shown to have a cylindrical shape, it may have a rectangular tube shape in order to place a planar object 24 thereon.

第11図には別の実施例を示しである。この実施例にお
いては、被処理体24および電極23は同軸マグネトロ
ンの外側に同軸状に配置されている。36はミラー状の
磁力線である。この場合も角筒状にできる。
FIG. 11 shows another embodiment. In this embodiment, the object to be processed 24 and the electrode 23 are coaxially arranged outside the coaxial magnetron. 36 is a mirror-like line of magnetic force. In this case as well, it can be made into a rectangular tube shape.

以上様々の実施例をあげたが、これらは何ら限定的な意
味を持つものではなく多数の変形が可能であることは云
う迄もない。
Although various embodiments have been given above, it goes without saying that these do not have a limiting meaning and that many modifications are possible.

(発明の効果) 本発明は、プラズマを被処理体表面に均一な分布で高密
度に閉じこめ、高均一性、高品質、高速かつ高効率の放
電反応処理を可能にする効果がある。
(Effects of the Invention) The present invention has the effect of confining plasma at a high density with uniform distribution on the surface of an object to be treated, thereby enabling highly uniform, high quality, high speed, and highly efficient discharge reaction treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の正面断面図。第2図および第
3図は第1図の装置から発明の基本的な構成部分を抜粋
して示した平面図および正面図。 第4図は別の実施例の第2図と同様の図。第5図は他の
実施例の一部の第3図と同様の図。第6図および第7図
は別の実施例の斜視図と一部の断面を示す図。第8図お
よび第9図は他の実施例の要部の正面図とその一部の側
面図。第10図と第11図はそれぞれ他の実施例の正面
図である0図中10は真空容器、20は電極、30が磁
場設定手段、33がミラー磁場設定手段である。
FIG. 1 is a front sectional view of an embodiment of the present invention. 2 and 3 are a plan view and a front view showing the basic components of the invention extracted from the apparatus shown in FIG. 1. FIG. 4 is a diagram similar to FIG. 2 of another embodiment. FIG. 5 is a diagram similar to FIG. 3 of a part of another embodiment. FIG. 6 and FIG. 7 are perspective views and partial cross-sectional views of another embodiment. FIG. 8 and FIG. 9 are a front view of the main part of another embodiment and a side view of a part thereof. 10 and 11 are front views of other embodiments, respectively. In FIG. 1, 10 is a vacuum vessel, 20 is an electrode, 30 is a magnetic field setting means, and 33 is a mirror magnetic field setting means.

Claims (1)

【特許請求の範囲】[Claims] 内部を所定の圧力になる迄排気する真空容器とその排気
系、前記真空容器の内部に設けた電極、前記電極の表面
に沿って磁場を設定する手段、前記電極の縁部にミラー
磁場を設定する手段をそなえたことを特徴とする真空処
理用放電装置。
A vacuum container and its evacuation system that evacuates the inside to a predetermined pressure, an electrode provided inside the vacuum container, means for setting a magnetic field along the surface of the electrode, and a mirror magnetic field set at the edge of the electrode. A discharge device for vacuum processing, characterized in that it is equipped with a means for.
JP5994985A 1985-03-25 1985-03-25 Electric discharge device for vacuum treatment Pending JPS61217573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5994985A JPS61217573A (en) 1985-03-25 1985-03-25 Electric discharge device for vacuum treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5994985A JPS61217573A (en) 1985-03-25 1985-03-25 Electric discharge device for vacuum treatment

Publications (1)

Publication Number Publication Date
JPS61217573A true JPS61217573A (en) 1986-09-27

Family

ID=13127900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5994985A Pending JPS61217573A (en) 1985-03-25 1985-03-25 Electric discharge device for vacuum treatment

Country Status (1)

Country Link
JP (1) JPS61217573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324054A (en) * 1986-05-15 1988-02-01 バリアン・アソシエイツ・インコ−ポレイテッド Method and apparatus for forming flattened aluminum film
JPH02310383A (en) * 1989-05-08 1990-12-26 Applied Materials Inc Magnetically reinforced plasma reaction sys- tem for treatment of semiconductor
US5376211A (en) * 1990-09-29 1994-12-27 Tokyo Electron Limited Magnetron plasma processing apparatus and processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324054A (en) * 1986-05-15 1988-02-01 バリアン・アソシエイツ・インコ−ポレイテッド Method and apparatus for forming flattened aluminum film
JP2662582B2 (en) * 1986-05-15 1997-10-15 バリアン・アソシエイツ・インコ−ポレイテッド Method and apparatus for forming a planarized aluminum film
JPH02310383A (en) * 1989-05-08 1990-12-26 Applied Materials Inc Magnetically reinforced plasma reaction sys- tem for treatment of semiconductor
US5376211A (en) * 1990-09-29 1994-12-27 Tokyo Electron Limited Magnetron plasma processing apparatus and processing method

Similar Documents

Publication Publication Date Title
US4572759A (en) Troide plasma reactor with magnetic enhancement
US7578908B2 (en) Sputter coating system
AU746645C (en) Method and apparatus for deposition of biaxially textured coatings
JP3174981B2 (en) Helicon wave plasma processing equipment
US6514390B1 (en) Method to eliminate coil sputtering in an ICP source
JPS6348952B2 (en)
JP2008147659A (en) Method and system for controlling uniformity in ballistic electron beam accelerating plasma processing system
JP2009105431A (en) Plasma processing apparatus
JPS61150219A (en) Microwave plasma treating apparatus
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
JPS61217573A (en) Electric discharge device for vacuum treatment
JPH11283926A (en) Plasma processor
JPS61189642A (en) Plasma reactor
JPS60154620A (en) Treatment of microwave plasma
JPS6139521A (en) Plasma surface treatment device
JP3281545B2 (en) Plasma processing equipment
JPH0687440B2 (en) Microwave plasma generation method
JPH08225967A (en) Magnetic neutral line discharge plasma treatment device
JP4223143B2 (en) Plasma processing equipment
JPS6094724A (en) Dry etching device
JP2002043289A (en) Method and device for plasma processing
JP3455616B2 (en) Etching equipment
JPS5848421A (en) Dry etching device
JPS6357502B2 (en)
JPH0312924A (en) Plasma treatment device