JPS6357502B2 - - Google Patents

Info

Publication number
JPS6357502B2
JPS6357502B2 JP58076569A JP7656983A JPS6357502B2 JP S6357502 B2 JPS6357502 B2 JP S6357502B2 JP 58076569 A JP58076569 A JP 58076569A JP 7656983 A JP7656983 A JP 7656983A JP S6357502 B2 JPS6357502 B2 JP S6357502B2
Authority
JP
Japan
Prior art keywords
target
sputtering
pole
magnet
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58076569A
Other languages
Japanese (ja)
Other versions
JPS59200763A (en
Inventor
Tooru Takeuchi
Yasuhisa Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP7656983A priority Critical patent/JPS59200763A/en
Publication of JPS59200763A publication Critical patent/JPS59200763A/en
Publication of JPS6357502B2 publication Critical patent/JPS6357502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔概要〕 プレーナマグネトロン方式をとるスパツタリン
グ装置に関し、 スパツタ効率の向上を目的とし、 一端面にN極を他端面にS極を有し、且つN極
もしくはS極が形成されたそれぞれの端部が磁石
のS―N軸に沿つたそれぞれの極の外側斜め上方
に向かつて屈曲せしめられた板状もしくは棒状の
磁石をターゲツトの下部に配設してスパツタリン
グ装置を構成する。
[Detailed Description of the Invention] [Summary] Regarding a sputtering device that uses a planar magnetron method, the purpose is to improve sputtering efficiency, and the sputtering device has an N pole on one end face and an S pole on the other end face, and either the N pole or the S pole is formed. A sputtering device is constructed by arranging a plate-shaped or rod-shaped magnet below the target, each bent end of which faces obliquely upward and outside of each pole along the SN axis of the magnet. .

〔産業上の利用分野〕[Industrial application field]

本発明はプレーナマグネトロン方式をとるスパ
ツタリング装置の改良に関する。
The present invention relates to an improvement in a sputtering apparatus using a planar magnetron method.

シリコン(Si)などの単体半導体やガリウム・
砒素(GaAs)などの化合物半導体を用い、半導
体集積回路やレーザなど各種のデバイス形成が行
われているが、集積度の向上と共に導体線路は微
少化しており、パターン形成は困難さが増加して
きている。
Single semiconductors such as silicon (Si) and gallium
Compound semiconductors such as arsenic (GaAs) are used to form various devices such as semiconductor integrated circuits and lasers, but as the degree of integration increases, conductor lines become smaller and pattern formation becomes increasingly difficult. There is.

すなわち、電極や導体線路の材料としてアルミ
ニウム(Al)合金や高融点金属例えばモリブデ
ン(Mo)などが使用されるようになり、従来の
真空蒸着では対応が困難となつた。
That is, aluminum (Al) alloys and high-melting point metals such as molybdenum (Mo) have come to be used as materials for electrodes and conductor lines, making it difficult for conventional vacuum evaporation to handle these materials.

そこで、スパツタリング法が着目されたが、量
産工程に導入するには成膜速度が遅く、問題であ
つた。
Therefore, attention was paid to the sputtering method, but the film formation speed was too slow to introduce into a mass production process, which was a problem.

ところが、直交電磁界を利用するマグネトロン
スパツタが開発されるにおよび、従来の問題が解
決し、半導体デバイスの製造工程への適用が可能
になつた。
However, with the development of a magnetron sputter that uses orthogonal electromagnetic fields, the conventional problems have been solved and it has become possible to apply it to the manufacturing process of semiconductor devices.

〔従来の技術〕[Conventional technology]

第2図はプレーナマグネトロン方式のスパツタ
リング装置の断面図である。
FIG. 2 is a sectional view of a planar magnetron type sputtering device.

このスパツタリング装置では本発明に係る構造
の磁石3を使用しているが、この磁石3の部分を
除き従来と変わるところはない。
This sputtering device uses a magnet 3 having a structure according to the present invention, but there is no difference from the conventional device except for the magnet 3.

すなわち、真空排気口8を有する基台9とガス
導入口10を有するベルジヤー11とによつて形
成された処理室12の下部にプレーナマグネトロ
ン方式のスパツタリング・ガン13が配設されて
いる。
That is, a planar magnetron type sputtering gun 13 is disposed at the bottom of a processing chamber 12 formed by a base 9 having a vacuum exhaust port 8 and a bell gear 11 having a gas inlet 10.

また、この上面に対応して被処理基板14を固
定する基板支持機構15が配設されている。
Further, a substrate support mechanism 15 for fixing the substrate to be processed 14 is disposed corresponding to this upper surface.

そして、スパツタリング・ガン13はバツキン
グ・プレート2とその下部に平行に配設されてい
る例えば円板状の磁石とバツキング・プレート2
の上に載設されたターゲツト5とより主としてな
るターゲツト電極16と、この側面を取り囲むシ
ールド電極17によつて主として構成されてい
る。
The sputtering gun 13 includes a bucking plate 2, a disc-shaped magnet, for example, which is arranged parallel to the bottom of the bucking plate 2, and the bucking plate 2.
The target electrode 16 is mainly composed of a target 5 placed on the target electrode 16, and a shield electrode 17 surrounding the side surface of the target electrode 16.

図中18a,18b,18c,18dは気密絶
縁体、また19は冷却水口を示している。
In the figure, 18a, 18b, 18c, and 18d are airtight insulators, and 19 is a cooling water port.

そして、スパツタ処理に際しては、前記のガス
導入口10から所定流量の例えばアルゴン(Ar)
を流入すると共に真空排気口8から排気を行い、
処理室12のAr圧を10-3〜10-2Torr程度に維持
した状態でシールド電極17とターゲツト電極1
6との間に例えば−400V(ターゲツト側を負)程
度の直流電圧を印加するものである。
During the sputtering process, a predetermined flow rate of, for example, argon (Ar) is supplied from the gas inlet 10.
At the same time as inflowing, exhaust is performed from the vacuum exhaust port 8,
While maintaining the Ar pressure in the processing chamber 12 at approximately 10 -3 to 10 -2 Torr, the shield electrode 17 and target electrode 1 were connected to each other.
For example, a DC voltage of about -400V (negative on the target side) is applied between the target and the target.

このようにすると磁石によりターゲツト5の表
面近くの空間に環状の磁界ができており、またタ
ーゲツト5の面と垂直に電界が加わるので電磁界
が直交する空間で電子がスパイラル運動をして磁
力線とターゲツト5の間に閉じ込められるため、
ガス分子と衝突してイオン化させる頻度が増し、
環状空間に高密度のプラズマが発生することによ
りスパツタ速度が向上している。
In this way, a ring-shaped magnetic field is created in the space near the surface of the target 5 by the magnet, and since an electric field is applied perpendicular to the surface of the target 5, the electrons move spirally in the space where the electromagnetic field is perpendicular to each other, forming lines of magnetic force. Being trapped between Target 5,
The frequency of collisions with gas molecules and ionization increases,
The sputtering speed is improved by generating high-density plasma in the annular space.

さて、スパツタリング・ガン13における磁石
の配置はバツキングプレート2に対して直角か平
行の何れかがとられていた。
Now, the magnets in the sputtering gun 13 are arranged either at right angles or parallel to the bucking plate 2.

第3図イは磁石3′がバツキングプレート2に
対して直角に配設された構造、また同図ロは磁石
3″が平行に配設された構造を示している。
3A shows a structure in which the magnets 3' are disposed at right angles to the bucking plate 2, and FIG. 3B shows a structure in which the magnets 3'' are disposed in parallel.

この第3図において、1は底板、4はヨーク、
5は使用後のターゲツト、6は使用前の形状を示
す点線、7,7′はターゲツトの消費領域、また
Φは磁束を示している。
In this Figure 3, 1 is the bottom plate, 4 is the yoke,
5 is the target after use, 6 is a dotted line showing the shape before use, 7 and 7' are consumption areas of the target, and Φ is the magnetic flux.

そして、同図イの磁石3′がバツキングプレー
ト2の上面に対して直角に配設される構造におい
ては磁束ΦがN極面から垂直に出てS極面に垂直
に入るためにプラズマが閉じ込められる領域が狭
くなり、ターゲツト5におけるターゲツト消費領
域7が狭い面積に限られる。
In the structure in which the magnet 3' is disposed perpendicularly to the top surface of the bucking plate 2 as shown in A of the figure, the magnetic flux Φ exits perpendicularly from the N-pole surface and enters perpendicularly to the S-pole surface, resulting in plasma generation. The area to be confined becomes narrower, and the target consumption area 7 in the target 5 is limited to a narrow area.

そのためにこの構造においてはターゲツトの使
用効率が低いことが問題であつた。
Therefore, in this structure, the problem was that the target usage efficiency was low.

また、同図ロに示すように磁石3″がバツキン
グプレート2の上面に対して平行に配設されてい
る構造においては、磁束Φが外側に向かつて広が
るためにプラズマが閉じ込められる領域が拡が
り、ターゲツト5の消費領域7′が広くなるので
ターゲツト5の使用効率は向上するが、磁束Φが
磁石3″の上方と下方とに二分されるためにスパ
ツタ効率が低いことが問題であつた。
In addition, in a structure in which the magnet 3'' is arranged parallel to the top surface of the bucking plate 2, as shown in FIG. Since the consumption area 7' of the target 5 becomes wider, the usage efficiency of the target 5 is improved, but the problem is that the sputtering efficiency is low because the magnetic flux Φ is divided into two parts above and below the magnet 3''.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記したようにプレーナマグネトロン方式を
とるスパツタリング装置において、環状の磁界を
作る磁石の構造として第3図イかロの何れかの構
造がとられていたが、イの場合はターゲツトの使
用効率が低く、またロの場合はスパツタ効率が低
いことが問題である。
As mentioned above, in the sputtering apparatus that uses the planar magnetron method, the structure of the magnet that creates the annular magnetic field is either A or B in Figure 3, but in the case of A, the target usage efficiency is low. In the case of B, the problem is that the sputtering efficiency is low.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は一端面にN極を他端面にS極を有
し、且つN極もしくはS極が形成されたそれぞれ
の端部が磁石のS―N軸に沿つたそれぞれの極の
外側斜め上方に向かつて屈曲せしめられた板状も
しくは棒状の磁石がターゲツトの下部に配設され
てなるスパツタリング装置の使用により解決する
ことができる。
The above problem is to have an N pole on one end face and an S pole on the other end face, and each end where the N pole or S pole is formed is diagonally above the outside of each pole along the S-N axis of the magnet. This problem can be solved by using a sputtering device in which a plate-shaped or rod-shaped magnet bent toward the target is disposed below the target.

〔作用〕[Effect]

本発明はターゲツトの使用効率が低いか或いは
スパツタ効率が低いと云う問題を磁石の形状を変
えることにより解決するものである。
The present invention solves the problem of low target usage efficiency or low sputtering efficiency by changing the shape of the magnet.

すなわち、第1図は本発明に係るスパツタリン
グ・ガンの構造を示す断面図であつて、銅(Cu)
などよりバツキングプレート2と底板1とで形成
される空洞の中に棒状あるいは板状の磁石が従来
と同様に放射状に配設されているが、この磁石の
N極とS極とを構成する端部が中心軸よりも斜め
上方に屈曲する構造をとるものである。
That is, FIG. 1 is a cross-sectional view showing the structure of the sputtering gun according to the present invention, and is made of copper (Cu).
In the cavity formed by the bucking plate 2 and the bottom plate 1, rod-shaped or plate-shaped magnets are arranged radially as in the conventional case. It has a structure in which the end portion is bent diagonally upward from the central axis.

このような構造にすると、N極とS極が上方に
持ち上がり、且つその磁極面が斜め上方に向かつ
ているために磁束Φは主としてターゲツト5の上
部に形成されるので磁石のもつている殆どの磁力
線をターゲツト5の上に集中することができ、そ
れによりプラズマの発生効率が高められ、従つて
スパツタ膜の成長速度も向上する。
With this structure, the N and S poles are lifted upward, and the magnetic pole faces are oriented obliquely upward, so that the magnetic flux Φ is mainly formed above the target 5, so that most of the magnetic flux Φ is generated at the top of the target 5. The magnetic lines of force can be concentrated on the target 5, thereby increasing the efficiency of plasma generation and thus the growth rate of the sputtered film.

また、磁石の磁極をもつ端面がターゲツト5の
縁部より外に向かつているために、磁束Φは第1
図に示すようにターゲツト5の全面上を覆つて形
成され、これによりプラズマの閉じ込められる領
域が拡がり、ターゲツト5は広い面積で消費さ
れ、そのためターゲツト5の使用効率が向上す
る。
Also, since the end face of the magnet with the magnetic pole faces outward from the edge of the target 5, the magnetic flux Φ
As shown in the figure, it is formed to cover the entire surface of the target 5, thereby expanding the region in which the plasma is confined, and the target 5 is consumed over a wide area, thereby improving the usage efficiency of the target 5.

〔実施例〕〔Example〕

第2図は本発明に係るスパツタリング・ガンを
備えたスパツタリング装置の断面構造を示すもの
であるが、この装置を用いてAl導体パターン形
成のためのAlスパツタ膜の形成条件を記すと次
のようになる。
Figure 2 shows the cross-sectional structure of a sputtering device equipped with a sputtering gun according to the present invention.The conditions for forming an Al sputter film for forming an Al conductor pattern using this device are as follows. become.

こゝで、スパツタリング装置のベルジヤー11
はステンレス製であり、処理室12の大きさは
400mm角であり、Cuよりなるバツキングプレート
2の上に直径が200mmで厚さが10mmのAl板を固定
してターゲツト5とした。
Here, the bell jar 11 of the sputtering device
is made of stainless steel, and the size of the processing chamber 12 is
An Al plate 200 mm in diameter and 10 mm thick was fixed on the backing plate 2, which was 400 mm square and made of Cu, to form a target 5.

また、基板支持機構15には被処理基板14と
して直径が100mmで厚さが0.5mmのSiウエハを固定
し、被処理基板14とターゲツト5との間隔は60
mmに保つた。
Further, a Si wafer having a diameter of 100 mm and a thickness of 0.5 mm is fixed as the substrate to be processed 14 to the substrate support mechanism 15, and the distance between the substrate to be processed 14 and the target 5 is 60 mm.
It was kept at mm.

次に、バツキングプレート2と底板1の間の空
洞部に配設される磁石3としてはサマリウム・コ
バルト(Sm−Co)系で、長さが50mm、厚さと幅
がそれぞれ15mmで、両端から10mmの位置で上方に
45゜の角度に屈曲しているもの14本を準備し、こ
れをターゲツトの中心と合致する直径70mmの空隙
部を中心として放射状に配設した。
Next, the magnet 3 disposed in the cavity between the bucking plate 2 and the bottom plate 1 is made of samarium-cobalt (Sm-Co), and has a length of 50 mm, a thickness and a width of 15 mm, and is upwards at 10mm
Fourteen pieces bent at an angle of 45° were prepared, and they were arranged radially around a gap with a diameter of 70 mm that coincided with the center of the target.

また、同じ材料と寸法ではあるが両端が屈曲し
ていない従来構造の磁石も比較のために同様に配
列して調べた。
In addition, magnets of the same material and size but with a conventional structure without bends at both ends were also arranged and examined in the same way for comparison.

そして、磁力計を用いてターゲツト5の上の水
平成分を測定すると、本発明に係るスパツタ・ガ
ンの構造では磁力の強さは約500ガウスであるの
に対し、従来の棒状磁石を用いる場合は約400ガ
ウスであつた。
When the horizontal component above the target 5 is measured using a magnetometer, the strength of the magnetic force is approximately 500 Gauss in the structure of the sputter gun according to the present invention, whereas when using a conventional bar magnet, the strength of the magnetic force is approximately 500 Gauss. It was about 400 Gauss.

次に、スパツタ法としては当初1×10-7Torr
に排気した後にArを導入しながら排気して3×
10-3Torrに保ち、ターゲツト5を負極側に結線
し7KWの電力でスパツタしてSiウエハ上にAlの
スパツタ膜を形成したが、膜厚1μmを形成するの
に従来法では60秒を要するのに本発明に係る構造
によると50秒で済み、有効性が照明された。
Next, as the sputtering method, initially 1×10 -7 Torr
After exhausting to
A sputtered film of Al was formed on the Si wafer by maintaining the temperature at 10 -3 Torr, connecting the target 5 to the negative electrode side, and sputtering with a power of 7KW, but it takes 60 seconds to form a film thickness of 1 μm using the conventional method. However, according to the structure according to the present invention, it only took 50 seconds, demonstrating its effectiveness.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により、ターゲツトの使用効率が
向上すると共にスパツタ効率も向上することがで
き、半導体素子の量産工程における工数の低減が
可能となる。
By implementing the present invention, it is possible to improve the usage efficiency of the target and the sputtering efficiency, and it is possible to reduce the number of man-hours in the mass production process of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るスパツタリング・ガンの
構造を示す断面図、第2図は本発明を適用したス
パツタリング装置の断面図、第3図イ,ロは従来
のスパツタリング・ガンの構造を示す断面図、で
ある。 図において、2はバツキングプレート、3,
3′,3″は磁石、5はターゲツト、7,7′はタ
ーゲツトの消費領域、13はスパツタリング・ガ
ン、14は被処理基板、15は基板支持機構、で
ある。
Fig. 1 is a sectional view showing the structure of a sputtering gun according to the present invention, Fig. 2 is a sectional view of a sputtering device to which the invention is applied, and Fig. 3 A and B are sectional views showing the structure of a conventional sputtering gun. Figure. In the figure, 2 is a bucking plate, 3,
3' and 3'' are magnets, 5 is a target, 7 and 7' are consumption areas of the target, 13 is a sputtering gun, 14 is a substrate to be processed, and 15 is a substrate support mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 一端面にN極を他端面にS極を有し、且つN
極もしくはS極が形成されたそれぞれの端部が磁
石のS―N軸に沿つたそれぞれの極の外側斜め上
方に向かつて屈曲せしめられた板状もしくは棒状
の磁石がターゲツトの下部に配設されてなること
を特徴とするスパツタリング装置。
1 Has an N pole on one end surface and an S pole on the other end surface, and N
A plate-shaped or rod-shaped magnet is arranged below the target, and each end on which a pole or S pole is formed is bent toward the outside of each pole along the S-N axis of the magnet and diagonally upward. A sputtering device that is characterized by:
JP7656983A 1983-04-30 1983-04-30 Sputtering device Granted JPS59200763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7656983A JPS59200763A (en) 1983-04-30 1983-04-30 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7656983A JPS59200763A (en) 1983-04-30 1983-04-30 Sputtering device

Publications (2)

Publication Number Publication Date
JPS59200763A JPS59200763A (en) 1984-11-14
JPS6357502B2 true JPS6357502B2 (en) 1988-11-11

Family

ID=13608859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7656983A Granted JPS59200763A (en) 1983-04-30 1983-04-30 Sputtering device

Country Status (1)

Country Link
JP (1) JPS59200763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882480A2 (en) 1997-12-30 2008-01-30 Ethicon, Inc High glycerin containing anti-microbial cleansers
CN103668096A (en) * 2013-12-26 2014-03-26 京东方科技集团股份有限公司 Bar magnet, magnetic target and magnetron sputtering equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836125C2 (en) * 1998-08-10 2001-12-06 Leybold Systems Gmbh Atomizing device with a cathode with permanent magnet arrangement
WO2013115030A1 (en) * 2012-01-30 2013-08-08 日立金属株式会社 Magnetic field generator for magnetron sputtering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337588A (en) * 1976-09-21 1978-04-06 Toshiba Corp Sputtering electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337588A (en) * 1976-09-21 1978-04-06 Toshiba Corp Sputtering electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1882480A2 (en) 1997-12-30 2008-01-30 Ethicon, Inc High glycerin containing anti-microbial cleansers
CN103668096A (en) * 2013-12-26 2014-03-26 京东方科技集团股份有限公司 Bar magnet, magnetic target and magnetron sputtering equipment

Also Published As

Publication number Publication date
JPS59200763A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
AU746645B2 (en) Method and apparatus for deposition of biaxially textured coatings
KR930021814A (en) Continuous thin film formation method
US20110220494A1 (en) Methods and apparatus for magnetron metallization for semiconductor fabrication
JPH0669026B2 (en) Semiconductor processing equipment
JPH10251849A (en) Sputtering device
JPS61221363A (en) Sputtering apparatus
JPS6357502B2 (en)
JP2010248576A (en) Magnetron sputtering apparatus
JPS6058794B2 (en) plasma processing equipment
JPH08209343A (en) Method and apparatus for plane magnetron sputtering
JPS6176673A (en) Sputtering method
JPS59173265A (en) Sputtering device
JPH0360916B2 (en)
JPH0578831A (en) Formation of thin film and device therefor
JP2018076561A (en) Film deposition method and film deposition apparatus
JPS59179784A (en) Sputtering device
JPH024966A (en) Sputtering device
JPH03240953A (en) Magnetron sputtering device
JPH01230770A (en) Plasma treating device
JPH05287519A (en) Sputtering device
JPS61217573A (en) Electric discharge device for vacuum treatment
JPS6389663A (en) Sputtering device
JPH0361367A (en) Magnetron sputtering device
JP2002256431A (en) Magnetron sputtering device
JPH01188671A (en) Sputtering device