JPS60190562A - Method and device for forming thin film - Google Patents

Method and device for forming thin film

Info

Publication number
JPS60190562A
JPS60190562A JP4446484A JP4446484A JPS60190562A JP S60190562 A JPS60190562 A JP S60190562A JP 4446484 A JP4446484 A JP 4446484A JP 4446484 A JP4446484 A JP 4446484A JP S60190562 A JPS60190562 A JP S60190562A
Authority
JP
Japan
Prior art keywords
thin film
discharge
electrode
glow discharge
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4446484A
Other languages
Japanese (ja)
Inventor
Hideo Takei
日出夫 竹井
Koichi Terunuma
幸一 照沼
Masayasu Yamaguchi
山口 雅靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4446484A priority Critical patent/JPS60190562A/en
Publication of JPS60190562A publication Critical patent/JPS60190562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Abstract

PURPOSE:To grow a thin film at a high rate and to prevent damage to the thin film by subjecting gaseous raw materials to glow discharge decomposition in the presence of a magnetic field between electrodes for maintaining the electric discharge and disposing an intermediate electrode between said electrodes. CONSTITUTION:A high frequency is thrown between an electrode 21 for maintaining electric discharge and a base body 3 as a counter electrode from a high- frequency power source 8 to induce glow discharge and further many permanent magnets 6 are disposed to close the generated plasma by the magnetic field so as to increase density and to accelerate the growing rate of a thin film with a vessel 1 which is provided with a gas supply system 11 and a gas discharge system 15 and grows the thin film on the cylindrical base body 3 by the glow discharge decomposition of the gaseous raw materials maintained under prescribed pressure. An intermediate electrode 5 such as a meshed electrode or the like is provided between the above-mentioned electrode 21 for maintaining the discharge and the base body 3 and a variable DC voltage 7 is impressed thereto to relieve ion bombardment and the prevent the damage by the ion bombardment. The body 3 is preferably rotated in an arrow (a) direction and is moved relatively with the magnets 6 to make the thin film uniform.

Description

【発明の詳細な説明】 ■ 発明の背景 技術分野 未発IIは、グロー放電分解法により、基体の表面に例
えばアモルファスシリコンからなる光導電体層等を形成
するための薄膜形成方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Background of the Invention Technical Field Unpublished II relates to a thin film forming method and apparatus for forming a photoconductor layer made of, for example, amorphous silicon on the surface of a substrate by a glow discharge decomposition method.

先行技術とその問題点 複写機やレーザープリンター用等の電子写真感光体とし
てシラン系ガスのグロー放電分解法(プラズマCVD法
)によって形成されるアモルファスシリコン(以下a−
siと略す)を光導電体層とするものが提案され(特開
昭54−78135号)、近年従来のセレンやcdsに
かわるものとして、注目を浴び、実用化が進んでいる。
Prior art and its problems Amorphous silicon (hereinafter referred to as a-
A photoconductor layer using Si (abbreviated as si) has been proposed (Japanese Patent Application Laid-open No. 78135/1983), and has recently attracted attention as an alternative to conventional selenium and CDS, and is being put into practical use.

これは、a−siが無公害性、耐熱性、表面硬“度、耐
摩耗性等にすぐ、れているからである。
This is because a-si is excellent in pollution-free properties, heat resistance, surface hardness, abrasion resistance, etc.

しかしこのプラズマCVD法は、a −s i IIQ
の成長速度が5人/秒程度と遅い欠点がある。
However, this plasma CVD method is
The disadvantage is that the growth rate is slow at about 5 people/second.

例えば電子写真感光体を作る場合、a−si膜の厚さは
15〜20gm5度必要であり、この11!J厚まで形
成するのに要する時間は約10時間となり、膜形成速度
の向上が望まれる。
For example, when making an electrophotographic photoreceptor, the thickness of the A-SI film must be 15 to 20 gm5 degrees, and this 11! The time required to form a film up to J thickness is about 10 hours, and it is desired to improve the film formation speed.

この膜形成速度を増加させるには、反応ガスを増す; 
あるいは高周波電力を増大させる;さらには基板の温度
を上げる等の方法が考えられる。 しかしこれらの方法
では生成速度は増加するが生成膜のHり質に影響を与え
るという欠点があった。
To increase the rate of film formation, increase the reactant gas;
Alternatively, methods such as increasing the high frequency power; and further increasing the temperature of the substrate can be considered. However, although these methods increase the production rate, they have the drawback of affecting the hydride quality of the produced film.

そこでグロー放電を磁界の存在下で行ない、発生プラズ
マを磁界で閉じ込めることによりプラズマの補足効果を
高め、プラズマの高密度化をはかり、薄膜の形成速度を
高める試みかなされている(特開昭56−73428号
、特開昭56−121629号、特開昭57−1610
57号、特開昭58−132920号等)。
Therefore, attempts have been made to perform glow discharge in the presence of a magnetic field and confine the generated plasma in the magnetic field to enhance the plasma capture effect, increase the density of the plasma, and increase the rate of thin film formation (Japanese Patent Laid-Open No. 1983-1992). -73428, JP 56-121629, JP 57-1610
No. 57, JP-A-58-132920, etc.).

しかしこの試みは、磁場によるプラズマの補足効果のみ
にD II しており、製造されるφ、V膜に対するイ
オンボンバードによるダメージは考慮されていない。
However, this attempt focuses only on the plasma supplementation effect caused by the magnetic field, and does not take into account the damage caused by ion bombardment to the φ and V films produced.

このため、例えばa−’si薄膜感光体では、所望の光
電流かえられないなどの欠点がある。
For this reason, for example, an a-'si thin film photoreceptor has a drawback that a desired photocurrent cannot be changed.

II 発明の目的 本発明は、このような実状に鑑みなされたものであって
、その主たる目的は、薄膜に対するダメージを防止しつ
つ、薄膜を高速成長させる力D、および装置を提供する
ことにある。
II. Purpose of the Invention The present invention was made in view of the above-mentioned circumstances, and its main purpose is to provide a force D and an apparatus for growing a thin film at high speed while preventing damage to the thin film. .

このような目的は、下記の本発明によって達成される。Such objects are achieved by the invention described below.

すなわち第1の発明は、 放電維持用電極間に高周波を投入して、原料ガスをグロ
ー放電分解して基体上に薄膜を形成する場合において、
放電維持用電極間に、中間電極を配置して、原料ガスイ
オンのイオンボンバードによりダメージを減じ、かつ前
記グロー放電を磁界の存在下で行うことを特徴とする≠
8し11XA形成法である。
That is, the first invention provides a method for forming a thin film on a substrate by injecting a high frequency between electrodes for sustaining discharge to decompose raw material gas by glow discharge.
An intermediate electrode is disposed between the discharge sustaining electrodes to reduce damage by ion bombardment of source gas ions, and the glow discharge is performed in the presence of a magnetic field≠
8 and 11XA formation method.

また第2の発明は、 放電維持用電極間に高周波を投入して、原料ガスをグロ
ー放電分解して基体」二に薄膜を形成する装置において
、放電維持用電極間に、中間電極を配置して、原料ガス
イオンのイオンボンバードによるダメージを減じ、かつ
前記グロー放電の一方の電極近傍に永久磁石を設置して
、磁界の存在下においてグロー放電を行う薄膜形成装置
である。
A second invention provides an apparatus for forming a thin film on a substrate by glow discharge decomposition of raw material gas by applying high frequency waves between the discharge sustaining electrodes, in which an intermediate electrode is disposed between the discharge sustaining electrodes. This is a thin film forming apparatus that reduces damage caused by ion bombardment of source gas ions, and that performs glow discharge in the presence of a magnetic field by installing a permanent magnet near one electrode of the glow discharge.

■ 発明の具体的構成 以下、本発明の具体的構成を詳細に説明する。■Specific structure of the invention Hereinafter, the specific configuration of the present invention will be explained in detail.

第1図、第2図および第3図には、それぞれ本発明の異
なる実施例が示される。
1, 2 and 3 each show a different embodiment of the invention.

第1図および第3図においてグロー放電分解を行う槽1
は、円筒状をなしていて、所定のガ電圧に設定しうるよ
うにガス排気系15とガス供給系11が接続されている
。 この場合、槽1は必ずしも円筒でなくても、矩形で
もよく、その他任意の形状をとりうる。
Tank 1 for glow discharge decomposition in Figures 1 and 3
has a cylindrical shape, and is connected to a gas exhaust system 15 and a gas supply system 11 so that a predetermined gas voltage can be set. In this case, the tank 1 does not necessarily have to be cylindrical, it may be rectangular, or it may take any other shape.

1i0記槽内にはグロー放電を生起させて保持する為の
電界を形成する電極21が設置されている。 この場合
、この放電保持用電極21の対向電極としては、第2図
に示されるように、膜形成する基体とは独立した電極2
5として設けてもよく、又第1図および第3図に示され
るように一方の電極を基体3としてもよい。
An electrode 21 is installed in the tank to form an electric field for generating and maintaining a glow discharge. In this case, as a counter electrode to the discharge holding electrode 21, as shown in FIG.
5, or one electrode may be provided as a base 3 as shown in FIGS. 1 and 3.

一方の電極を基体とした場合には、原料ガスが不必要な
部分に被着することが防がれるのでガス効率が向上する
When one electrode is used as a base, gas efficiency is improved because source gas is prevented from adhering to unnecessary parts.

槽l内には薄膜を蒸着すべき基体3が設置される。A substrate 3 on which a thin film is to be deposited is placed in the tank l.

f51図においては、円筒状の基体3が配設されている
が、必要に応じて第2図に示すような平板状の基体3で
もよく、又、フィルムやシート等であってもよい。 さ
らに第3図に示すように前記基体は複数のドラム状基体
3であってもよい。
In FIG. Further, as shown in FIG. 3, the base body may be a plurality of drum-shaped base bodies 3.

基体3の近傍には、基体を膜形成に際し、所定の温度に
維持ないし加熱する為のヒーター4が配置される。 ヒ
ーターは第2図に、1<されるように、前記放電保持用
電極25に内蔵されるものであってもよいし、又第1図
、i3図に示されるように別個に設置してもよい。
A heater 4 is arranged near the substrate 3 to maintain or heat the substrate at a predetermined temperature during film formation. The heater may be built into the discharge holding electrode 25 as shown in FIG. 2, or may be installed separately as shown in FIGS. 1 and 3. good.

前記放電保持用電極21.25(場合によっては一方は
基体3)の両極間には、イオン街撃緩衝用の中間電極5
が設置される。 この中間電極5は放電保持用電極21
.25とは独立に配置する。
Between the electrodes 21 and 25 for discharge holding (one of which is the base 3 in some cases), there is an intermediate electrode 5 for buffering ion street shock.
will be installed. This intermediate electrode 5 is a discharge holding electrode 21
.. 25.

この中間電極5は任意の構造形状をとりうるが、メツシ
ュ状に形成されることが好ましい。
This intermediate electrode 5 may have any structural shape, but is preferably formed into a mesh shape.

そしてこの中間電極5に印加する直流電圧を図示のよう
に可変とすることにより、装置形状で決定されるグロー
放電の状態を所望する膜質、成長速度の最適条件に従っ
て選定をすることができる− さら↓こ、基体3の近傍には多数のないし多極着磁され
た永久磁石6が設置され、この永久磁石6の形成する磁
界によってプラズマは効率良く所定空間領域に均一に集
中させることができる。 しかも前記中間電極5の電圧
を選択することによって最適状態にセットすることがで
きる。
By making the DC voltage applied to the intermediate electrode 5 variable as shown in the figure, the glow discharge state determined by the device shape can be selected in accordance with the optimal conditions for desired film quality and growth rate. ↓In the vicinity of the base body 3, a large number or multi-pole magnetized permanent magnets 6 are installed, and the magnetic field formed by the permanent magnets 6 allows plasma to be efficiently and uniformly concentrated in a predetermined spatial area. Moreover, by selecting the voltage of the intermediate electrode 5, it is possible to set the voltage to the optimum state.

なお、磁界方向は電解と直交するのが望ましいが必ずし
も直交は必要でない。 磁界の強さは数10〜数1OO
G程度とする。
Note that although it is desirable that the magnetic field direction be orthogonal to the electrolytic field, it is not necessarily necessary that the magnetic field direction be orthogonal. The strength of the magnetic field is several 10 to several 100
It should be about G.

この永久磁石6に対し、基体3は相対的に運動しうるよ
うに設置さ、れる。
The base body 3 is installed so as to be movable relative to the permanent magnet 6.

第1図においては、基体3ないし永久磁石6は、円周方
向(図矢印a方向)に回転(自転)する。
In FIG. 1, the base 3 to the permanent magnet 6 rotate (rotate) in the circumferential direction (in the direction of arrow a in the figure).

また、第2図においては、基体3と平行(図矢印す方向
)に一方を振動させる。 これらは永久磁石6を動かし
てもよく、又基体3を動かしてもよい。
In FIG. 2, one side is vibrated parallel to the base 3 (in the direction of the arrow in the figure). These may move the permanent magnet 6 or the base body 3.

第3図においては基体ドラム3は自転(図矢印°d方向
)しつつ、円周方向に公転(図矢印C方向)する。 こ
れらの永久磁石6と基体3の相対的運動によって膜形成
が均一化され、ざらに膜質の良い高速の膜形成が行える
In FIG. 3, the base drum 3 rotates on its own axis (in the direction of arrow °d in the figure) and revolves in the circumferential direction (in the direction of arrow C in the figure). The relative movement between the permanent magnets 6 and the substrate 3 makes the film formation uniform, allowing high-speed film formation with rough film quality.

このような前提で、プラズマ分解に際し、放電保持用電
極21.25等に印加する高周波電源8は400KHz
 〜30MHz程度、投入゛屯力100W−1000W
程度とする。
Under this premise, the high frequency power source 8 applied to the discharge holding electrodes 21, 25, etc. during plasma decomposition is 400 KHz.
~30MHz, input power 100W-1000W
degree.

また、中間電極6に印加する電圧は直流電位であり、−
300〜+300V程度、好ましくは100V以下の正
電位とする。
Further, the voltage applied to the intermediate electrode 6 is a DC potential, and -
The positive potential is about 300 to +300V, preferably 100V or less.

用いる原料ガスとしてはa−si層を形成するために用
いる公知のすべてのものが使用可能である。
All known raw material gases used for forming the a-si layer can be used.

また反応を行う槽1内は、通常0.5〜2Torr程度
の動作圧力とし、通常のグロー放電分解法に従い、共振
振動マイルに100W〜数KW程度で、1〜10MHz
程度の電力を投入し、グロー放電分解を行えばよい。
In addition, the operating pressure inside the reaction tank 1 is usually about 0.5 to 2 Torr, and according to the usual glow discharge decomposition method, the resonance vibration mile is about 100 W to several KW, and the frequency is 1 to 10 MHz.
It is sufficient to input a certain amount of power and perform glow discharge decomposition.

この場合、a−si層を被着する基体は50〜350°
C程度の温度に保持することが好ましい。
In this case, the substrate on which the A-SI layer is applied is 50 to 350°
It is preferable to maintain the temperature at about C.

このようにして、10〜2000人/m’in程度の成
膜速度にてa−si層等を形成する。
In this way, the A-Si layer and the like are formed at a deposition rate of about 10 to 2000 people/m'in.

a−si層の厚さは一般に5〜60ルm、特に10〜3
0ルm程度とする。
The thickness of the a-si layer is generally between 5 and 60 lm, especially between 10 and 3 m.
The distance should be approximately 0 lm.

なお基体の材質は一般にアルミニウム等が用いられる。Note that aluminum or the like is generally used as the material of the base.

 またa−si層は、異なる不純物濃度や、不純物の多
種類を持つ複数の層を積層して形成されたものであって
もよい。
Further, the a-si layer may be formed by laminating a plurality of layers having different impurity concentrations or many types of impurities.

以」二のようにして製造されるa−si薄膜は、直接的
には電子写真感光体の感光層や保護層として用いられ、
通常の複写機やレーザープリンター等に用いられる。
The A-SI thin film produced as described above is directly used as a photosensitive layer or protective layer of an electrophotographic photoreceptor,
Used in ordinary copiers, laser printers, etc.

また、間接的には太陽電池、イメージセンサ−1撮像素
子等にも使用される。
Indirectly, it is also used for solar cells, image sensor-1 imaging devices, and the like.

さらに本発明の薄nり形成法は、原料ガスを選択するこ
とによりSi3N4M、アモルファスDPIIQ、アモ
ルファスB501li等の製造をも行うことができる。
Further, the thin n-forming method of the present invention can also produce Si3N4M, amorphous DPIIQ, amorphous B501li, etc. by selecting the raw material gas.

■ 発明の具体的作用効果 本発明によれば、グロー放電中に成膜すべき基板側に永
久磁石を配置し、さらにイオン衝撃緩衝用メツシュ状電
極を放電保持用電極とは独立に配置し、磁場による電子
捕捉効果を利用するので、膜の物性の劣化がなく、また
反応性力スの分解効率が上昇し、通常では膜堆積を生じ
ない低入力モードのグロー放電中でもDA膜堆積実行可
能となる。
■Specific effects of the invention According to the present invention, a permanent magnet is arranged on the substrate side on which a film is to be formed during glow discharge, and a mesh-like electrode for ion impact buffering is arranged independently of the discharge holding electrode, Since it utilizes the electron trapping effect of a magnetic field, there is no deterioration in the physical properties of the film, and the decomposition efficiency of reactive forces increases, making it possible to deposit a DA film even during low-input mode glow discharge, which normally does not cause film deposition. Become.

そして、このイオン衝撃緩衝用メ・ンシュ電極に印加す
る電圧を可変とすることによって、a−si薄膜の高速
堆積を最適条件にて選択的に行うことができる。
By making the voltage applied to this ion impact buffering mesh electrode variable, high-speed deposition of the a-Si thin film can be selectively performed under optimal conditions.

また、基体の予備加熱時間を短縮することが可能となる
Furthermore, it is possible to shorten the preheating time of the base.

このように本発明によれば、低人力モードのグロー放電
が可能となり、a−si薄膜の高速成長中のイオンボン
バードによるダメージを低減し、フォトコンダクテイビ
テイの大きな電子写真感光体を得ることができる。
As described above, according to the present invention, it is possible to perform glow discharge in a low-power mode, reduce damage caused by ion bombardment during high-speed growth of an A-SI thin film, and obtain an electrophotographic photoreceptor with high photoconductivity. can.

本発明基は、本発明の効果を確認するために、種々実験
を行った。
The present invention group conducted various experiments in order to confirm the effects of the present invention.

以下にその一例を示す。An example is shown below.

実験例 5iH4t6−’)−スとしてB2をキャ1)アとして
、第1図の装置を用い常法に従(、s、グロー族−電分
解を行った。
Experimental Example 5 Glow group electrolysis was carried out in accordance with a conventional method using the apparatus shown in FIG. 1 using B2 as a source and a carrier.

すなわち反応を行う槽内はI Torrの動作圧力とし
、共振振動コイルに500Wで13.56MHzの電力
を投入した。
That is, the operating pressure in the reactor was set to I Torr, and a power of 500 W and 13.56 MHz was applied to the resonant vibration coil.

中間電極には30Vの直流電源を印加した。A 30V DC power source was applied to the intermediate electrode.

中間電極にはメツシュ状電極を用(、%、一方の電極で
ある基体から1.5cmの距離とした同rtB内状に設
置しだ。
A mesh-like electrode was used as the intermediate electrode, and was placed in the same rtB at a distance of 1.5 cm from the substrate, which is one electrode.

磁場の強さは300Gで、基体を一方の電極として放電
を行った。 基体温度t±300 ’C!で円周方向に
回転させた。
The strength of the magnetic field was 300G, and discharge was performed using the base as one electrode. Substrate temperature t±300'C! rotated in the circumferential direction.

SiH4の送入速度は、3505C:CMで60分間成
膜を行ったところ、成膜厚は17p、mであ°′った。
When the SiH4 feed rate was 3505C:CM and the film was formed for 60 minutes, the film thickness was 17p.m.

これに対し、中間電極を設けなし)磁界のみの方法では
形成膜の成膜厚は13pmであった。
On the other hand, in the method using only a magnetic field (without providing an intermediate electrode), the thickness of the formed film was 13 pm.

さらに磁界も中間電極も設けない従来法では、上記と同
一条件同一時間で成11A厚1−i 4 p−mであっ
た。
Further, in the conventional method in which neither a magnetic field nor an intermediate electrode is provided, the thickness of the 11A was 1-i 4 pm under the same conditions and for the same time as above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は、それぞれ本発明の詳細
な説明するための概略図である。 21.25・・・放電保持用電極 3・・・基体 5・・・中間電極 6・・・永久磁石 第2図 6
FIG. 1, FIG. 2, and FIG. 3 are schematic diagrams for explaining the present invention in detail, respectively. 21.25...Discharge holding electrode 3...Base 5...Intermediate electrode 6...Permanent magnet Fig. 2 6

Claims (10)

【特許請求の範囲】[Claims] (1)放電保持用電極間に高周波を投入して、原料ガス
をグロー放電分解して基体」−に薄膜を形成する場合に
おいて、放電維持用電極間に中間電極を配置して、原料
ガスイオンのイオンボンバードによるダメージを減じ、
かつ前記グロー放電を磁界の存在下で行うことを特徴と
する薄膜形成法。
(1) When a high frequency is applied between the discharge sustaining electrodes to decompose the raw material gas by glow discharge to form a thin film on the substrate, an intermediate electrode is placed between the discharge sustaining electrodes to ionize the raw gas. Reduces damage from ion bombardment,
and a method for forming a thin film, characterized in that the glow discharge is performed in the presence of a magnetic field.
(2) fijJ 記薄膜がアモルファスシリコンであ
る特許請求の範囲第1項に記載の薄膜形成法。
(2) The thin film forming method according to claim 1, wherein the fijJ thin film is amorphous silicon.
(3)一方の放電保持用電極が前記基体である特許請求
の範囲第1項または第2項に記載の薄膜形成法。
(3) The thin film forming method according to claim 1 or 2, wherein one of the discharge holding electrodes is the substrate.
(4)前記磁界に対し前記基体が相対的に運動する特許
請求の範囲第1項ないし第3項のいずれかに記載の薄膜
形成法。
(4) The thin film forming method according to any one of claims 1 to 3, wherein the base body moves relative to the magnetic field.
(5)前記中間電極がメツシュ電極である特許請求の範
囲第1項ないし第4項のいずれかに記載の薄膜形成法。
(5) The thin film forming method according to any one of claims 1 to 4, wherein the intermediate electrode is a mesh electrode.
(6)放電保持用電極間に、高周波を投入して、原料ガ
スをグロー放電分解して基体」二に薄膜を形成する装置
において、放電保持用電極間に中間電極を配置して、原
料ガスイオンのイオンボンバードによるダメージを減じ
、かつ前記グロー放電を磁界の存在下で行うことを特徴
とする薄膜形成装置
(6) In an apparatus in which a high frequency is applied between the discharge holding electrodes to decompose the raw material gas by glow discharge to form a thin film on the substrate, an intermediate electrode is placed between the discharge holding electrodes, and the raw material gas is decomposed by glow discharge. A thin film forming apparatus characterized by reducing damage caused by ion bombardment and performing the glow discharge in the presence of a magnetic field.
(7)前記薄膜がアモルファスシリコンである特許請求
の範囲第6項に記載の薄11り形成装置。
(7) The thin film forming apparatus according to claim 6, wherein the thin film is amorphous silicon.
(8)一方の放電保持用電極が前記基体である特許請求
の範囲第6項または第7項に記載の薄膜形成装置。
(8) The thin film forming apparatus according to claim 6 or 7, wherein one of the discharge holding electrodes is the substrate.
(9)前記磁界と前記基体が相対的に運動する特許請求
の範囲第6項ないし第8項のいずれかに記載の薄膜形成
装置。
(9) The thin film forming apparatus according to any one of claims 6 to 8, wherein the magnetic field and the base body move relative to each other.
(10)前記中間電極がメツシュ電極である特詐請求の
範囲第6項ないし第9項のいずれかに記載の薄膜形成装
置。
(10) The thin film forming apparatus according to any one of claims 6 to 9, wherein the intermediate electrode is a mesh electrode.
JP4446484A 1984-03-08 1984-03-08 Method and device for forming thin film Pending JPS60190562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4446484A JPS60190562A (en) 1984-03-08 1984-03-08 Method and device for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4446484A JPS60190562A (en) 1984-03-08 1984-03-08 Method and device for forming thin film

Publications (1)

Publication Number Publication Date
JPS60190562A true JPS60190562A (en) 1985-09-28

Family

ID=12692211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4446484A Pending JPS60190562A (en) 1984-03-08 1984-03-08 Method and device for forming thin film

Country Status (1)

Country Link
JP (1) JPS60190562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126597A (en) * 1984-07-16 1986-02-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming thin film
JPS6328873A (en) * 1986-07-22 1988-02-06 Ulvac Corp Plasma cvd device
JPS6328872A (en) * 1986-07-22 1988-02-06 Ulvac Corp Plasma cvd device
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126597A (en) * 1984-07-16 1986-02-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming thin film
JPS6328873A (en) * 1986-07-22 1988-02-06 Ulvac Corp Plasma cvd device
JPS6328872A (en) * 1986-07-22 1988-02-06 Ulvac Corp Plasma cvd device
US4990876A (en) * 1989-09-15 1991-02-05 Eastman Kodak Company Magnetic brush, inner core therefor, and method for making such core

Similar Documents

Publication Publication Date Title
US4532199A (en) Method of forming amorphous silicon film
US4971667A (en) Plasma processing method and apparatus
JPH0545673B2 (en)
JPS6041047A (en) Formation of deposited film
JP3327391B2 (en) Thin film manufacturing apparatus and manufacturing method
JPS60190562A (en) Method and device for forming thin film
JP3630831B2 (en) Method for forming deposited film
US6926934B2 (en) Method and apparatus for deposited film
JP2629223B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH1081968A (en) Production of amorphous silicon coating
JPH0769790A (en) Thin film-preparing device
JP3658249B2 (en) Semiconductor layer manufacturing method, photovoltaic device manufacturing method, and semiconductor layer manufacturing apparatus
KR910006737B1 (en) Manufacture of electrophotographic sensitive body
JP2595575B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH0124866B2 (en)
US20090031951A1 (en) Programmed high speed deposition of amorphous, nanocrystalline, microcrystalline, or polycrystalline materials having low intrinsic defect density
US5098812A (en) Photosensitive device and manufacturing method for the same
JPH06280030A (en) Thin film forming device
JPS6247486A (en) Device for producing electrophotographic sensitive body
JP3196632B2 (en) Method and apparatus for forming crystalline silicon film
JPH06179968A (en) High frequency sputtering device
JP2608460B2 (en) Thin film forming equipment
JPS62178974A (en) Electrophotographic sensitive body
JPH0642449B2 (en) Deposited film formation method
JPH03146673A (en) Method and device for depositing thin film