JPH0642449B2 - Deposited film formation method - Google Patents

Deposited film formation method

Info

Publication number
JPH0642449B2
JPH0642449B2 JP56199609A JP19960981A JPH0642449B2 JP H0642449 B2 JPH0642449 B2 JP H0642449B2 JP 56199609 A JP56199609 A JP 56199609A JP 19960981 A JP19960981 A JP 19960981A JP H0642449 B2 JPH0642449 B2 JP H0642449B2
Authority
JP
Japan
Prior art keywords
deposited film
forming
cylinder
pair
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56199609A
Other languages
Japanese (ja)
Other versions
JPS58101420A (en
Inventor
恭介 小川
攻 神谷
靖朋 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56199609A priority Critical patent/JPH0642449B2/en
Publication of JPS58101420A publication Critical patent/JPS58101420A/en
Publication of JPH0642449B2 publication Critical patent/JPH0642449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は減圧下に於いて堆積膜を作成する堆積膜の製造
法に関し、殊にグロー放電等の放電エネルギーを利用し
て、例えば光導電膜、半導体膜を形成するに有効な堆積
膜の製造法に関する。
The present invention relates to a method for producing a deposited film in which a deposited film is formed under reduced pressure, and in particular, for example, a photoconductive film or a semiconductor film is formed by utilizing discharge energy such as glow discharge. The present invention relates to a method for producing a deposited film effective for

堆積膜形成用のガスを減圧し得る堆積室内に導入し放電
によるプラズマ現象を利用して所定の基板上に所望の特
性を有する膜を形成しようとする場合、膜の堆積効率の
低さが、コスト的な面で、この方式の工業化を阻害する
大きな問題点となっている。
When a gas for forming a deposited film is introduced into a deposition chamber capable of reducing the pressure and a film having desired characteristics is formed on a predetermined substrate by using a plasma phenomenon due to discharge, the low deposition efficiency of the film is In terms of cost, it is a major problem that hinders the industrialization of this system.

例えば、SiH4ガスをグロー放電エネルギーを使って分解
し、基体上にアモルファス水素化シリコン(a−Si:H)
膜を形成してこの膜の電気的もしくは光電的物性を利用
しようとする場合、現状ではガス圧、ガス流量、放電パ
ワー等の製作条件を最適化しても、例えばドラム状基板
の場合、堆積効率は、高々10数%と低く量産時のガス
コストを考えると、満足のいくものとはいえない。特に
電子写真用の感光体として用いる場合には、比較的大面
積に亘って厚い膜を付ける必要があるため、ガスの消費
量は、多いものとなり、堆積効率の低さが製品化にあた
っての致命的な欠陥となる。
For example, SiH 4 gas is decomposed using glow discharge energy, and amorphous hydrogenated silicon (a-Si: H) is deposited on the substrate.
When a film is formed and the electrical or photoelectric properties of this film are to be utilized, even if the manufacturing conditions such as gas pressure, gas flow rate, discharge power are optimized under the present circumstances, for example, in the case of a drum-shaped substrate, the deposition efficiency is Is not satisfactory, considering the gas cost during mass production as low as 10% at most. Especially when it is used as a photoconductor for electrophotography, it is necessary to form a thick film over a relatively large area, so the gas consumption becomes large and the low deposition efficiency is a critical factor in commercialization. Will be a serious defect.

このような低堆積効率の原因は、使用するガスに独特な
放電分解過程に起因する部分と、分解したガスの一部分
しか、基板上に捕集できないという、装置構成に起因す
る部分とに分けられる。前者については原理的な限界が
あり、改善の余地に疑問が残るが、後者については例え
ば、両電極上に基板を保持し、両側から堆積膜を得るよ
うな努力で比較的簡単に改善が可能であるようにみえ
る。しかしながら例えば容量結合型のRF電極を用い
て、放電分解を行おうとするような場合、高圧側電極に
は周知のとおり自己バイアスが発生し、そのため、両電
極間の膜の特性に変化を生じてしまうのが現状であっ
た。
The cause of such low deposition efficiency is divided into a part due to the discharge decomposition process peculiar to the gas used and a part due to the device configuration in which only a part of the decomposed gas can be collected on the substrate. . There is a theoretical limit to the former and room for improvement remains doubtful, but the latter can be improved relatively easily by, for example, holding the substrate on both electrodes and obtaining the deposited film from both sides. It seems to be. However, for example, when attempting to perform discharge decomposition using a capacitively coupled RF electrode, self-bias is generated in the high-voltage side electrode as is well known, which causes a change in the characteristics of the film between both electrodes. It was the current situation.

本発明は、斯かる点に鑑み成されたものであって、品質
的にも均一である良好な特性を有する堆積膜が高効率で
得られる堆積膜の製造法を提案することを目的とする。
殊に、電子写真特性に優れ、大面積に亘って均一一様な
特性を有する堆積膜の経済的な製造法を提案することに
本発明の目的がある。
The present invention has been made in view of the above problems, and an object of the present invention is to propose a method for producing a deposited film, which can obtain a deposited film having good characteristics that are uniform in quality with high efficiency. .
In particular, it is an object of the present invention to propose an economical method for producing a deposited film which has excellent electrophotographic characteristics and has uniform characteristics over a large area.

本発明の堆積膜の形成方法は、減圧にし得る堆積室内に
シリコン原子と水素原子を含有する堆積膜形成用の原料
ガスを導入し、該原料ガスに高周波放電エネルギーを供
給して該原料ガスを分解し、前記堆積室内に設けられた
基板上にアモルファス水素化シリコンからなる堆積膜を
形成する堆積膜形成方法において、少なくとも一対のシ
リンダ状基板を放電電極として用い、前記シリンダ状基
板の周囲に前記シリンダ状基板の対向部分以外での放電
を防ぐためのシールド板を用意し、前記一対の電極間に
自己電位を打消すような形にDCバイアスを印加するこ
とにより、前記一対の基板上に同時に、アモルファス水
素化シリコンからなる堆積膜を形成することを特徴とす
るものである。
The method for forming a deposited film of the present invention is to introduce a raw material gas for forming a deposited film containing silicon atoms and hydrogen atoms into a deposition chamber that can be decompressed, and supply high-frequency discharge energy to the raw material gas to supply the raw material gas. In a deposited film forming method of decomposing and forming a deposited film made of amorphous silicon hydride on a substrate provided in the deposition chamber, at least a pair of cylindrical substrates are used as discharge electrodes, and the cylindrical substrate is surrounded by By preparing a shield plate for preventing electric discharge in portions other than the opposing portions of the cylindrical substrate and applying a DC bias between the pair of electrodes in such a form as to cancel the self-potential, the shield plates are simultaneously formed on the pair of substrates. It is characterized in that a deposited film made of amorphous hydrogenated silicon is formed.

本発明の堆積膜の形成方法に従えば、従来法に較べてそ
の堆積効率を確実に倍に上げることが出来、然も得られ
る堆積膜は、その特性が全領域に渡って均一であり、且
つその膜厚も全面積に亘って一様で、殊に、a−Si:H膜
の場合には、優れた光導電特性と、機械的特性を有する
ものが経済的に得られるものである。
According to the method for forming a deposited film of the present invention, the deposition efficiency can be surely doubled as compared with the conventional method, and the obtained deposited film has uniform properties over the entire region, In addition, the film thickness is uniform over the entire area, and in particular, in the case of an a-Si: H film, a film having excellent photoconductive properties and mechanical properties can be economically obtained. .

この様な点から、本発明による堆積膜の製造法は、マス
プロダクトに極めて適しており、堆積膜の製造の発展を
約束するものである。
From these points, the method for producing a deposited film according to the present invention is extremely suitable for a mass product, and promises the development of the production of a deposited film.

以下、本発明を図面に示す実施態様例に従って具体的に
説明する。
Hereinafter, the present invention will be specifically described with reference to the embodiments shown in the drawings.

尚、以下の説明では、a−Si:H膜の形成法について
述べるが、本発明においては、該膜に、ゲルマニウム、
酸素、炭素、チッ素、ハロゲン等を含有させても良い
し、III族、V族等の不純物ドーピングを行なっても良
い。本発明は、殊に、光導電特性の要求される堆積膜の
製造に適切である。
In the following description, a method for forming an a-Si: H film will be described. In the present invention, however, germanium,
Oxygen, carbon, nitrogen, halogen, etc. may be contained, or impurity doping of group III, group V, etc. may be performed. The invention is particularly suitable for the production of deposited films which require photoconductive properties.

第1図、第2図は、本発明の堆積膜の形成方法を具現化
する装置の構成を説明するための模式的説明図である。
この装置例に従って以下に実施例を示す。
1 and 2 are schematic explanatory diagrams for explaining the configuration of an apparatus that embodies the deposited film forming method of the present invention.
Examples will be shown below according to this apparatus example.

実施例1 第1図において、101は減圧にし得る堆積室である。
堆積室101内には、対向するシリンダ状基板102,
103と、接地シールド板104、ガス導入手段10
5、及びシリンダの加勢手段106が設置されてある。
堆積室は排気管111を通じ真空ポンプに接続され、室
内は、放電にとって好適な、所望の圧に調整可能となっ
ている。対向するシリンダは図示のように一方が直流重
畳手段108、高圧ケーブル109を介してRF電源1
07のの高圧側に接続され、対する一方は、他の金属部
分とともに接地される。シールド板104は特に高圧側
の電界の漏えいと、対向部分以外の部分での放電を防ぐ
目的で設置されてあり形状並びにシリンダとの間隔を堆
積条件に合せて、調整できるような形になっている。さ
らに110は、シリンダ回転用モーターで堆積膜の周方
向の均一性を増すために設けられてある。
Example 1 In FIG. 1, 101 is a deposition chamber capable of reducing the pressure.
In the deposition chamber 101, there are opposed cylindrical substrates 102,
103, the ground shield plate 104, and the gas introduction means 10
5, and a cylinder biasing means 106 are installed.
The deposition chamber is connected to a vacuum pump through an exhaust pipe 111, and the inside of the deposition chamber can be adjusted to a desired pressure suitable for discharge. As shown in the figure, one of the opposing cylinders is the RF power source 1 via the DC superimposing means 108 and the high voltage cable 109.
It is connected to the high voltage side of 07 and the other side is grounded along with the other metal parts. The shield plate 104 is installed especially for the purpose of preventing electric field leakage on the high-voltage side and electric discharge in parts other than the facing part, and has a shape in which the shape and the distance from the cylinder can be adjusted according to the deposition conditions. There is. Further, 110 is a cylinder rotation motor provided to increase the uniformity of the deposited film in the circumferential direction.

上記のような構成で、シリンダ温度を250℃に設定し
シリンダ状基板102を高圧側に、他方のシリンダ状基
板103を接地側に接続した状態でガス供給管105か
ら150SCCMの流量でシランガスを導入し、堆積室内圧
を0.2torrに調整した。次に、あらかじめ+200Vの
直流バイアス(DCバイアス)を印加した状態でRF電
源をONにして、両電極間に300Wの電力を投入し、
放電を生ぜしめた。この状態を3時間保持し、冷却後両
シリンダをとりだしたところ、両シリンダ上に25μm
±1μmの厚さのアモルファス水素化シリコンからなる
堆積膜(a−Si:H膜)を得た。この時の導入ガス量
に対するシリンダ上に得られたアモルファス水素化シリ
コンからなる堆積膜(a−Si:H膜)の堆積効率を算
出したところ、重量パーセントで42%の値が得られ、
従来法に比べるとこの値は約2倍の値に相当した。この
ようにして得られたシリンダを用いて、電子写真特性を
測定したところ、これらの感光体がいずれも、受容電位
光感度、その他において、まったく同等の特性でかつ優
れた水準を有していることが判明した。さらに同シリン
ダを用いて、繰り返しの画像特性を調べたところ、(2
0万枚)後においても、初期の鮮明な画像が得られるこ
とが判明した。
With the above configuration, the silane gas is introduced from the gas supply pipe 105 at a flow rate of 150 SCCM while the cylinder temperature is set to 250 ° C., the cylinder-shaped substrate 102 is connected to the high pressure side, and the other cylinder-shaped substrate 103 is connected to the ground side. Then, the pressure in the deposition chamber was adjusted to 0.2 torr. Next, the RF power supply is turned on in the state where a DC bias of +200 V is applied in advance, and an electric power of 300 W is applied between both electrodes,
Caused a discharge. This state was maintained for 3 hours, and when both cylinders were taken out after cooling, 25 μm on both cylinders
A deposited film (a-Si: H film) made of amorphous silicon hydride having a thickness of ± 1 μm was obtained. When the deposition efficiency of the deposited film (a-Si: H film) made of amorphous silicon hydride obtained on the cylinder with respect to the amount of introduced gas at this time was calculated, a value of 42% in weight percent was obtained,
This value was about twice that of the conventional method. When the electrophotographic characteristics were measured using the cylinder thus obtained, all of these photoconductors had the same characteristics and excellent levels in terms of the receptive potential and photosensitivity. It has been found. Further, using the same cylinder, when repeating image characteristics were examined, (2
It was found that the initial clear image can be obtained even after (000 sheets).

実施例2 第2図に示す4筒式堆積装置(平面図)により実施した
例を示す。
Example 2 An example carried out by the four-cylinder deposition apparatus (plan view) shown in FIG. 2 is shown.

図において112,113は、電極シリンダ、114は
シールド板、115はガス供給管、116は排気孔、1
17はRF電源、118は直流重畳手段をそれぞれ示
す。このような電極配置で、他の構成は第1図と同様に
し、シランガス流量220SCCM、堆積室内圧0.25torr、
直流バイアス250V、投入電力500W、基板温度2
50℃で膜作製を行ったところ、両シリンダ上に21μ
m±1μmの厚さのアモルファス水素化シリコンからな
る堆積膜(a−Si:H膜)を得た。このときの堆積効
率は48%に達し、又、特性的には、実施例1と同等の
ものが得られた。又、さらに6筒式、8筒式のものにつ
いても同様の実験を行ったところほぼ、同特性のものが
得られ、堆積効率はそれぞれ51%、52.5%と算出さ
れた。
In the figure, 112 and 113 are electrode cylinders, 114 is a shield plate, 115 is a gas supply pipe, 116 is an exhaust hole, 1
Reference numeral 17 is an RF power source, and 118 is a direct current superimposing means. With such an electrode arrangement, the other configurations are the same as in FIG. 1, the flow rate of silane gas is 220 SCCM, the pressure in the deposition chamber is 0.25 torr,
DC bias 250V, input power 500W, substrate temperature 2
When the film was formed at 50 ° C, it was 21μ on both cylinders.
A deposited film (a-Si: H film) made of amorphous silicon hydride having a thickness of m ± 1 μm was obtained. At this time, the deposition efficiency reached 48%, and the characteristics equivalent to those of Example 1 were obtained. Further, when the same experiment was conducted for the 6-cylinder type and the 8-cylinder type, almost the same characteristics were obtained, and the deposition efficiencies were calculated to be 51% and 52.5%, respectively.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明の実施態様例を示す説明図であ
る。 101…堆積室 102,103…シリンダ状基板 104…接地シールド板、105…ガス導入手段 106…シリンダ加勢手段、107…RF電源 108…直流重畳手段 109…RF高圧ケーブル 110…モーター、111…排気管 112,113…電極シリンダ 114…シールド板、115…ガス供給管 116…排気孔、117…RF電源 118…直流重畳手段
FIG. 1 and FIG. 2 are explanatory views showing an embodiment example of the present invention. 101 ... Deposition chamber 102, 103 ... Cylindrical substrate 104 ... Ground shield plate, 105 ... Gas introduction means 106 ... Cylinder urging means, 107 ... RF power supply 108 ... DC superposition means 109 ... RF high voltage cable 110 ... Motor, 111 ... Exhaust pipe 112, 113 ... Electrode cylinder 114 ... Shield plate, 115 ... Gas supply pipe 116 ... Exhaust hole 117 ... RF power supply 118 ... DC superimposing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤山 靖朋 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭56−130466(JP,A) 特公 昭43−22481(JP,B1) 1.「アイオニクス」1980年2月号, P.1〜5 2.「固体物理」第15巻第7 号,(1980−7),P.435〜439 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasutomo Fujiyama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) Reference JP-A-56-130466 (JP, A) JP 43-22481 (JP, B1) 1. “Ionics” February 1980 issue, p. 1-5 2. Solid State Physics Vol. 15, No. 7, (1980-7), P. 435 ~ 439

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】減圧にし得る堆積室内にシリコン原子と水
素原子を含有する堆積膜形成用の原料ガスを導入し、該
原料ガスに高周波放電エネルギーを供給して該原料ガス
を分解し、前記堆積室内に設けられた基板上にアモルフ
ァス水素化シリコンからなる堆積膜を形成する堆積膜形
成方法において、 少なくとも一対のシリンダ状基板を放電電極として用
い、前記シリンダ状基板の周囲に前記シリンダ状基板の
対向部分以外での放電を防ぐためのシールド板を用意
し、 前記一対の電極間に自己電位を打消すような形にDCバ
イアスを印加することにより、前記一対の基板上に同時
に、アモルファス水素化シリコンからなる堆積膜を形成
することを特徴とする堆積膜形成方法。
1. A raw material gas for forming a deposited film containing silicon atoms and hydrogen atoms is introduced into a deposition chamber which can be decompressed, and high frequency discharge energy is supplied to the raw material gas to decompose the raw material gas to perform the deposition. In a deposited film forming method for forming a deposited film made of amorphous silicon hydride on a substrate provided in a chamber, at least a pair of cylinder-shaped substrates are used as discharge electrodes, and the cylinder-shaped substrates are opposed to each other around the cylinder-shaped substrates. A shield plate is provided to prevent discharge in a portion other than the portion, and a DC bias is applied between the pair of electrodes so as to cancel the self-potential so that the amorphous hydrogenated silicon is simultaneously formed on the pair of substrates. A method for forming a deposited film, which comprises forming a deposited film comprising
【請求項2】DCバイアスの値が−1kV〜+1kVの範囲
にある特許請求の範囲第1項記載の堆積膜形成方法。
2. The deposited film forming method according to claim 1, wherein the value of the DC bias is in the range of -1 kV to +1 kV.
【請求項3】一対のシリンダ状電極の円の中心点間を結
ぶ直線の中点が、他の対となる電極のそれと略一致する
ように構成した電極を用いる特許請求の範囲第1項記載
の堆積膜形成方法。
3. The electrode according to claim 1, wherein an electrode configured such that a midpoint of a straight line connecting the center points of the circles of the pair of cylindrical electrodes substantially coincides with that of another pair of electrodes is used. Method for forming deposited film of.
JP56199609A 1981-12-11 1981-12-11 Deposited film formation method Expired - Lifetime JPH0642449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199609A JPH0642449B2 (en) 1981-12-11 1981-12-11 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199609A JPH0642449B2 (en) 1981-12-11 1981-12-11 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS58101420A JPS58101420A (en) 1983-06-16
JPH0642449B2 true JPH0642449B2 (en) 1994-06-01

Family

ID=16410701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199609A Expired - Lifetime JPH0642449B2 (en) 1981-12-11 1981-12-11 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0642449B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010618A (en) * 1983-06-30 1985-01-19 Canon Inc Plasma cvd apparatus
JPS6196723A (en) * 1984-10-17 1986-05-15 Agency Of Ind Science & Technol Plasma chemical vapor deposition device
DE102014110856B4 (en) 2014-07-31 2016-04-14 Schott Ag Method and device for determining the edge strength of disc-shaped elements made of brittle material
DE102014110855B4 (en) 2014-07-31 2017-08-03 Schott Ag Method and device for determining the breaking strength of the edges of thin webs of brittle material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130466A (en) * 1980-03-17 1981-10-13 Canon Inc Film forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1.「アイオニクス」1980年2月号,P.1〜52.「固体物理」第15巻第7号,(1980−7),P.435〜439

Also Published As

Publication number Publication date
JPS58101420A (en) 1983-06-16

Similar Documents

Publication Publication Date Title
US6472296B2 (en) Fabrication of photovoltaic cell by plasma process
EP0717127A2 (en) Plasma processing method and apparatus
US4958591A (en) Apparatus for forming a functional deposited film by means of plasma chemical vapor deposition
US4998968A (en) Plasma CVD apparatus
JPH0642449B2 (en) Deposited film formation method
EP0137516A2 (en) Amorphous silicon photoreceptor
US5945353A (en) Plasma processing method
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
JPH0124866B2 (en)
EP0336700B1 (en) An electrophotographic photosensitive member
JP2595591B2 (en) Electrophotographic photoreceptor
US5242775A (en) Photosensitive device and manufacturing method for the same
JPS6119799Y2 (en)
JP3658249B2 (en) Semiconductor layer manufacturing method, photovoltaic device manufacturing method, and semiconductor layer manufacturing apparatus
JP2867150B2 (en) Microwave plasma CVD equipment
JPH0691010B2 (en) Amorphous thin film manufacturing method
JPS60190562A (en) Method and device for forming thin film
JPS63149381A (en) Formation of functional depositing film by microwave plasma cvd method
JPS616654A (en) Electrophotographic sensitive body and its manufacture
JPH03100178A (en) Thin film forming device
JPH0573250B2 (en)
JPS62136567A (en) Production of electrophotographic sensitive body
JPH01234314A (en) Formation of amorphous silicon film having high carbon content
JPH07288233A (en) Film forming apparatus
JP3984761B2 (en) Photovoltaic element, manufacturing method thereof, and manufacturing apparatus thereof