JPS58101420A - Forming method of deposited film - Google Patents
Forming method of deposited filmInfo
- Publication number
- JPS58101420A JPS58101420A JP19960981A JP19960981A JPS58101420A JP S58101420 A JPS58101420 A JP S58101420A JP 19960981 A JP19960981 A JP 19960981A JP 19960981 A JP19960981 A JP 19960981A JP S58101420 A JPS58101420 A JP S58101420A
- Authority
- JP
- Japan
- Prior art keywords
- deposited film
- electrodes
- bias
- film
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は減圧下に於いて堆積膜を作成する堆積膜の製造
法に関し、殊にグロー放電岬の放電エネルギーを利用し
て、例えば光導電膜、半導体膜、無機絶縁膜或いは有機
樹脂を形成するに有効な堆積膜の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a deposited film under reduced pressure, and in particular to a method for producing a deposited film under reduced pressure. The present invention relates to a method for producing a deposited film that is effective for forming a film or an organic resin.
堆積膜形成用のガスを−圧し得る堆積室内に導入し放電
によるプラズマ現象を利用して所定の基板上に所望の特
性を有する膜を形成しようとする場合、膜の堆積効率の
低さが、コスト的な面で、この方式の工業化を阻害する
大きな問題点と々っている。When attempting to form a film with desired characteristics on a given substrate by introducing a gas for forming a deposited film into a pressurized deposition chamber and utilizing the plasma phenomenon caused by discharge, the low deposition efficiency of the film results in low film deposition efficiency. In terms of cost, there are many major problems that hinder the industrialization of this method.
例えば、S IH4ガスをグロー放電エネルギーを使っ
て分解し、基体上にアモルファス水素化シリコン(a−
81:H)膜を形成してこOI[の電気的もしくは光電
的物性を利用しようとする場合、現状てはガス圧、ガス
流11放電・々ワ一等の製作条件を最適化しても、例え
ばドラム状基板の場合、堆積効率は、高々10数優と低
く量産時のがスコストを考えると、満足のいくものとは
いえない。特に電子写真用の感光体として用いる場合に
は、比較的大面積に亘って厚い膜を付ける必要があるた
め、ガスの消費量は、多いものとなシ、堆積効率の低さ
が製品化にあたっての致命的な欠陥となる。For example, SIH4 gas is decomposed using glow discharge energy to deposit amorphous silicon hydride (a-
81:H) When trying to utilize the electrical or photoelectric properties of OI by forming a film, at present, even if the manufacturing conditions such as gas pressure, gas flow, discharge, etc. are optimized, e.g. In the case of a drum-shaped substrate, the deposition efficiency is as low as about 10 or so, which is not satisfactory when considering the cost of mass production. In particular, when used as a photoreceptor for electrophotography, it is necessary to apply a thick film over a relatively large area, which consumes a large amount of gas, and the low deposition efficiency makes it difficult to commercialize the product. This is a fatal flaw.
このような低堆積効率の原因は、使用するガスに独特な
放電分解過程に起因する部分と、分解したガスの一部分
しか、基板上に捕集できないという、装置構成に起因す
る部分とに分けられる。前省については原理的な限界が
あシ、改善の余地に疑問が残るが、後者については例え
ば、両電極上に基板を保持し、両側から堆積膜を得るよ
うな努力で比較的簡単に改善が可能であるようにみえる
。The causes of such low deposition efficiency can be divided into two parts: one is due to the discharge decomposition process unique to the gas used, and the other is due to the device configuration, in which only a portion of the decomposed gas can be captured on the substrate. . The former problem has a theoretical limit and there are doubts about the room for improvement, but the latter problem can be improved relatively easily by, for example, holding the substrate on both electrodes and depositing films from both sides. seems possible.
しかしながら例えば宕量結合型のRF電極を用いて、放
電分解を行おうとするような場合、高圧側電極には周知
のとおシ自己バイアスが発生し、そのため、両電極間の
膜の特性に変化を生じてしまうのが現状であった。However, for example, when attempting to perform discharge decomposition using a volume-coupled RF electrode, a well-known self-bias is generated on the high-voltage side electrode, which causes changes in the characteristics of the film between the two electrodes. The current situation was that it was happening.
本発明は、斯かる点に鑑み成されたものであって、品質
的にも均一である良好な特性を有する堆積膜が高効率で
得られる堆積膜の製造法を提案することを目的とする。The present invention has been made in view of the above, and an object of the present invention is to propose a method for producing a deposited film that can efficiently obtain a deposited film that is uniform in quality and has good characteristics. .
殊に1電子写真特性に優れ、大面積に亘って均−一様な
特性を有する堆積膜の経済的表製造法を提案することに
本発明の目的がある。In particular, it is an object of the present invention to propose an economical method for producing a deposited film having excellent electrophotographic properties and uniform properties over a large area.
本発明の堆積膜の製造′法は、減圧にし得る室内に堆積
膜形成用の原料ガスを導入し、該原料ガスを放電エネル
ギーで分解し、基板上に堆積膜を形成する堆積膜形成法
においてシリンダ状基板を放電電極として用いかつ一対
の電極間にDCバイアスを印加することによシ両電極か
ら同時に複数の堆積膜を得ることを%徴とするものであ
る。The method for producing a deposited film of the present invention is a deposited film forming method in which a raw material gas for forming a deposited film is introduced into a chamber that can be reduced in pressure, and the raw material gas is decomposed by discharge energy to form a deposited film on a substrate. The method is characterized by using a cylindrical substrate as a discharge electrode and applying a DC bias between a pair of electrodes to simultaneously obtain a plurality of deposited films from both electrodes.
本発明の製造法に従えば、従来法に較べてその堆積効率
を確実に倍に上けることが出来、然も得られる堆積膜は
、その特性が全領域に渡って均一で#llシ、且つその
膜厚も全面積に亘って一様で、殊に、a−8t:H膜の
場合には、優れた光導電特性と、機械的特性を有するも
のが経済的に得られるものである。According to the manufacturing method of the present invention, the deposition efficiency can be reliably doubled compared to the conventional method, and the deposited film obtained has uniform properties over the entire area, and In addition, the film thickness is uniform over the entire area, and in the case of an a-8t:H film in particular, a film with excellent photoconductive properties and mechanical properties can be economically obtained. .
この様な点から、本発明の堆積膜の製造法は、マスグワ
ダクトに極めて適しておシ、堆積膜の製造の発展を約束
するものである。From this point of view, the method for producing deposited films of the present invention is extremely suitable for mass wafer ducts, and promises progress in the production of deposited films.
以下、本発明を図面に示す実施態様例に従って具体的に
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below according to embodiments shown in the drawings.
尚、以下の説明では、煩雑さを避ける丸めにa −81
:H膜の製造法に就て述べるが、本゛発明は、斯かるh
−81:H膜の製造法のみに限定されるものではなく
、a−G・:Hの製造にも好適であるし、シリコン、r
ルマニウム、酸Ig、炭lチッ素、ハロダン、水素、な
どを構成元素とするガスの、豪数の組合せで得られる絶
縁性もしくは光導電性物質の製造にも、同様に好適であ
り、又、これらへの厘族、V族等の不純物ドーピングも
全く支障なく行うことができる。In addition, in the following explanation, a −81 is used for rounding to avoid complexity.
A method for producing a :H film will be described, and the present invention
The method is not limited to the production of -81:H films, but is also suitable for the production of a-G.:H, silicon, r
It is also suitable for the production of insulating or photoconductive materials obtained by combining a large number of gases having constituent elements such as rumanium, Ig acid, carbon dioxide, halodane, hydrogen, etc. Doping of these with impurities such as Group V and Group V can be performed without any problem.
これら以外では、例えば、プラズマ重合で製造可能な物
質はすべて拳法の適用範囲内に入シ、?リスチレン、4
リエチレン、Iリプセチレンなどに代表される各種高分
子膜などにも、全く同様に適用されるものである。Other than these, for example, are all substances that can be produced by plasma polymerization included within the scope of Kempo? Listyrene, 4
The same applies to various polymer membranes typified by polyethylene, I-lipsetylene, and the like.
すなわち膜形成用の原料ガスが放電エネルギーで分解し
得るものであれば有利に堆積膜の製造法に適用されるも
のである。殊に、光導電特性の要求される堆積膜の製造
に適切である。That is, if the raw material gas for film formation can be decomposed by discharge energy, it can be advantageously applied to the method of producing a deposited film. It is particularly suitable for producing deposited films that require photoconductive properties.
第1図、第2図は、本発明の製造法を具現化する装置の
構成を説明するための模式的説明図で、ある。この装置
例に従って以下に実施例を示す。FIGS. 1 and 2 are schematic explanatory diagrams for explaining the configuration of an apparatus that embodies the manufacturing method of the present invention. Examples will be shown below according to this device example.
実施例1 第1図において、101は減圧にし得る堆積室である。Example 1 In FIG. 1, 101 is a deposition chamber that can be made to have a reduced pressure.
堆積室101内には、対向するシリンダ状基板102.
103と、接地シールド板104、ガス導入手段105
、及びシリンダの加勢手段106が設置されである。堆
積室は排気管111を通じ真空Iングに接続され、室内
は、放電、にとって好適な、所望の圧に調整可能となっ
ている。Inside the deposition chamber 101, there are opposing cylindrical substrates 102.
103, grounding shield plate 104, gas introduction means 105
, and cylinder biasing means 106 are installed. The deposition chamber is connected to a vacuum ring through an exhaust pipe 111, and the chamber can be adjusted to a desired pressure suitable for discharge.
対向するシリンダは図示のように一方が直流重畳手段1
08、高圧ケーブル109を介してRFの高圧側に接続
され、対する一方は、他の金属部分とともに接地される
。シールド板104は特に高圧側の電界の漏えいと、対
向部分以外の部分での放電を防ぐ目的で設置されてあシ
ル状並びにシリンダとの間隔を堆積条件に合せて、調整
できるような形になっている。さらに110は、シリン
ダ回転用モーターで堆積膜の周方向の均一性を増すため
に設けられである。As shown in the figure, one side of the opposing cylinders is the DC superimposing means 1.
08, is connected to the high voltage side of the RF via a high voltage cable 109, and one end thereof is grounded together with other metal parts. The shield plate 104 is installed especially to prevent electric field leakage on the high voltage side and electric discharge in areas other than the facing area, and has a shape that allows adjustment of the sill shape and the distance from the cylinder according to the deposition conditions. ing. Furthermore, 110 is a cylinder rotation motor, which is provided to increase the uniformity of the deposited film in the circumferential direction.
上記のような構成で、シリンダ温度を250℃に設定し
シリンダ状基板102を高圧@K 、他方のシリンダ状
基板103を接地側に接続した状態でガス供給管105
から1508CCMの流量でシランガスを導入し、堆積
室内圧を0.2 torr K調整し友。次に、あらか
じめ+200vの直流バイアスを印加した状態でRF電
源をONにして、両電極間に300Wの電力を投入し、
放電を生ぜしめた。With the above configuration, the cylinder temperature is set to 250°C, the cylindrical substrate 102 is under high pressure @K, and the gas supply pipe 105 is connected to the ground side with the other cylindrical substrate 103 connected to the ground side.
Silane gas was introduced at a flow rate of 1508 CCM, and the pressure inside the deposition chamber was adjusted to 0.2 torr K. Next, with a DC bias of +200V applied in advance, the RF power source was turned on, and 300W of power was applied between both electrodes.
caused an electrical discharge.
この状態を3時間保持し、冷却後両シリンダをとりだし
たところ、両シリンダ上に25μm +:1μmの厚さ
のa −Sl膜を得た。このときの導入ガス量に対する
シリンダ上に得られたa−81膜の堆積効率を算出した
ところ、重量ノ譬−セントで4296の値が得られ、従
来法に比べるとこの値は約2倍の値に相当した。このよ
うにして得られたシリンダを用いて、電子写真特性を測
定し九ところ、これらの感光体がいずれも、受容電位光
感度、その他において、まったく同等の特性でかつ優れ
た水準を有していることが判明した。さらに同シリンダ
を用いて、繰り返しの画健特性を調べたところ、(20
万枚)後においても、初期の鮮明な画像が得られること
が判明した。This state was maintained for 3 hours, and after cooling, both cylinders were taken out, and an a-Sl film with a thickness of 25 μm +:1 μm was obtained on both cylinders. When we calculated the deposition efficiency of the A-81 film obtained on the cylinder with respect to the amount of gas introduced at this time, we obtained a value of 4296 in terms of weight, which is about twice as high as that of the conventional method. corresponded to the value. Using the cylinders obtained in this way, we measured the electrophotographic properties and found that all of these photoreceptors had exactly the same properties and excellent levels in terms of acceptance potential photosensitivity and other aspects. It turned out that there was. Furthermore, using the same cylinder, we investigated the repeated image quality characteristics and found that (20
It has been found that the initial clear image can be obtained even after 10,000 copies).
実施例2
第2図に示す4筒式堆積装置(平面図)により実施した
例を示す。Example 2 An example carried out using a four-cylinder deposition apparatus (plan view) shown in FIG. 2 is shown.
図において112.113は、電極シリンダ、114は
シールド板、115はガス供給管、116は排気孔、1
17はRF電源、118は直流重畳手段をそれぞれ示す
。このような電極配置で、他の構成は第1図と同様にし
、シランガス流量2208CCM 1堆積室内圧0.2
5 torr、直流バイアスの250V、投入電力so
ow、基板温度250℃で膜作製を行ったところ、両シ
リンダ上[21μm±1μmの厚さのa −81膜を得
た。このときの堆積効率は48嘔に達し、又、特性的に
は、実施例1と同等のものが得られた。又、さらに6筒
式、8筒式のものKついても同様の実験を行ったところ
ほぼ、同特性の本のが得られ、堆積効率はそれぞれ51
−152.5−と算出された。In the figure, 112 and 113 are electrode cylinders, 114 is a shield plate, 115 is a gas supply pipe, 116 is an exhaust hole, 1
Reference numeral 17 indicates an RF power source, and 118 indicates a DC superimposition means. With such an electrode arrangement, the other configurations were the same as in Fig. 1, and the silane gas flow rate was 2208 CCM, and the deposition chamber pressure was 0.2.
5 torr, DC bias 250V, input power so
When the film was prepared at a substrate temperature of 250° C., an a-81 film with a thickness of 21 μm±1 μm was obtained on both cylinders. The deposition efficiency at this time reached 48 mm, and characteristics equivalent to those of Example 1 were obtained. Furthermore, when similar experiments were conducted for the 6-tube and 8-tube types, books with almost the same characteristics were obtained, and the deposition efficiency was 51 for each.
It was calculated as -152.5-.
第1図、第2図は本発明の実施態様例を示す説明図であ
る。
101・・・堆積室
102.103・・・シリンダ状基板
104・・・接地シールド板 105・・・ガス導入手
段106・・・シリンダ加勢手段 107・・・RF電
源108・・・直流重畳手段
109・・・RF高圧ケーブル
11’0・・・モーター 111・・・排気管1
12.113・・・電極シリンダ
114・・・シールド板 115・・・ガス供給管
116・・・排気孔 117・・・RF電源1
18・・・直流重畳手段
第1図
第2図FIGS. 1 and 2 are explanatory views showing embodiments of the present invention. 101... Deposition chamber 102, 103... Cylindrical substrate 104... Grounded shield plate 105... Gas introducing means 106... Cylinder energizing means 107... RF power source 108... DC superimposing means 109 ...RF high voltage cable 11'0...Motor 111...Exhaust pipe 1
12.113... Electrode cylinder 114... Shield plate 115... Gas supply pipe 116... Exhaust hole 117... RF power source 1
18...DC superimposition means Fig. 1 Fig. 2
Claims (1)
し、該原料ガスを放電エネルギーで分解し、基板上に堆
積膜を形成する堆積膜形成装置において、シリンダ状基
板を放電電極として用い、かつ、一対の電極間に自己電
位を打消すような形にDCバイアスを印加することによ
り、両電極から同時に、複数の堆積膜を得ることを1%
像とする堆積膜形成方法。 2、DCバイアスの値が−1kV〜+1 kVの範囲に
ある特許請求の範囲第1項記載の堆積膜形成方法。 3、一対のシリンダ状電極の円の中心点間を結ぶ直線の
中点が、他の対となる電極のそれと略一致するように構
成した電極を用いる特許請求の範囲第1項記載の堆積膜
形成方法。[Claims] 1. In a deposited film forming apparatus that introduces a raw material gas for deposited film formation into a chamber that can be reduced in pressure, decomposes the raw material gas with discharge energy, and forms a deposited film on a substrate, a cylinder-shaped By using the substrate as a discharge electrode and applying a DC bias between a pair of electrodes in a manner that cancels out the self-potential, it is possible to obtain multiple deposited films simultaneously from both electrodes within 1%.
A method for forming a deposited film as an image. 2. The deposited film forming method according to claim 1, wherein the value of the DC bias is in the range of -1 kV to +1 kV. 3. The deposited film according to claim 1, using an electrode configured such that the midpoint of a straight line connecting the center points of circles of a pair of cylindrical electrodes substantially coincides with that of another pair of electrodes. Formation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56199609A JPH0642449B2 (en) | 1981-12-11 | 1981-12-11 | Deposited film formation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56199609A JPH0642449B2 (en) | 1981-12-11 | 1981-12-11 | Deposited film formation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58101420A true JPS58101420A (en) | 1983-06-16 |
JPH0642449B2 JPH0642449B2 (en) | 1994-06-01 |
Family
ID=16410701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56199609A Expired - Lifetime JPH0642449B2 (en) | 1981-12-11 | 1981-12-11 | Deposited film formation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0642449B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6010618A (en) * | 1983-06-30 | 1985-01-19 | Canon Inc | Plasma cvd apparatus |
JPS6196723A (en) * | 1984-10-17 | 1986-05-15 | Agency Of Ind Science & Technol | Plasma chemical vapor deposition device |
US9664603B2 (en) | 2014-07-31 | 2017-05-30 | Schott Ag | Method and apparatus for determining the edge strength of plate-shaped elements made of brittle-fracture material |
US9784655B2 (en) | 2014-07-31 | 2017-10-10 | Schott Ag | Method and apparatus for determining the fracture strength of the margins of thin sheets of brittle-fracture material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130466A (en) * | 1980-03-17 | 1981-10-13 | Canon Inc | Film forming method |
-
1981
- 1981-12-11 JP JP56199609A patent/JPH0642449B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130466A (en) * | 1980-03-17 | 1981-10-13 | Canon Inc | Film forming method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6010618A (en) * | 1983-06-30 | 1985-01-19 | Canon Inc | Plasma cvd apparatus |
JPH0568096B2 (en) * | 1983-06-30 | 1993-09-28 | Canon Kk | |
JPS6196723A (en) * | 1984-10-17 | 1986-05-15 | Agency Of Ind Science & Technol | Plasma chemical vapor deposition device |
US9664603B2 (en) | 2014-07-31 | 2017-05-30 | Schott Ag | Method and apparatus for determining the edge strength of plate-shaped elements made of brittle-fracture material |
US9784655B2 (en) | 2014-07-31 | 2017-10-10 | Schott Ag | Method and apparatus for determining the fracture strength of the margins of thin sheets of brittle-fracture material |
US10416055B2 (en) | 2014-07-31 | 2019-09-17 | Schott Ag | Method and apparatus for determining the edge strength of plate-shaped elements made of brittle-fracture material |
Also Published As
Publication number | Publication date |
---|---|
JPH0642449B2 (en) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4406765A (en) | Apparatus and process for production of amorphous semiconductor | |
US5849455A (en) | Plasma processing method and plasma processing apparatus | |
US5129359A (en) | Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate | |
JPS6041047A (en) | Formation of deposited film | |
US4998968A (en) | Plasma CVD apparatus | |
EP0070715A1 (en) | Glow discharge method and apparatus and photoreceptor devices made therewith | |
US4569719A (en) | Glow discharge method and apparatus and photoreceptor devices made therewith | |
JPS58101420A (en) | Forming method of deposited film | |
US5718769A (en) | Plasma processing apparatus | |
JPH0364466A (en) | Production of amorphous silicon-based semiconductor film | |
JPS6119799Y2 (en) | ||
JP2867150B2 (en) | Microwave plasma CVD equipment | |
JPH0372710B2 (en) | ||
JPS59136474A (en) | Capacity-coupling apparatus for glow discharge decomposition | |
JPS624872A (en) | Film formation device | |
JP2920637B2 (en) | Glow discharge decomposition equipment | |
JPS62142767A (en) | Production of electrophotographic sensitivity body | |
JPS6247486A (en) | Device for producing electrophotographic sensitive body | |
JPH08253865A (en) | Formation of deposited film and deposited film forming device | |
JPH1060653A (en) | Formation of deposited film by high frequency plasma cvd process | |
JPH01234314A (en) | Formation of amorphous silicon film having high carbon content | |
JPS624873A (en) | Film formation device | |
JPS59104468A (en) | Formation of deposited film by plasma cvd | |
JPS60125373A (en) | Production of deposited film | |
JP2000104174A (en) | Production of semiconductor layer, production of photovoltaic element and production device for semiconductor layer |