JPH08253865A - Formation of deposited film and deposited film forming device - Google Patents

Formation of deposited film and deposited film forming device

Info

Publication number
JPH08253865A
JPH08253865A JP7054182A JP5418295A JPH08253865A JP H08253865 A JPH08253865 A JP H08253865A JP 7054182 A JP7054182 A JP 7054182A JP 5418295 A JP5418295 A JP 5418295A JP H08253865 A JPH08253865 A JP H08253865A
Authority
JP
Japan
Prior art keywords
deposited film
substrate
film forming
substrates
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7054182A
Other languages
Japanese (ja)
Inventor
Tatsuji Okamura
竜次 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7054182A priority Critical patent/JPH08253865A/en
Publication of JPH08253865A publication Critical patent/JPH08253865A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE: To highly efficiently utilize a raw gas and to form a deposited film uniform in characteristic in a device for forming a functional deposited film on plural cylindrical substrates by plasma CVD by arranging the substrates and electrodes surrounding the substrates at specified positions and intervals. CONSTITUTION: Many cylindrical substrates 101 of a conductive metal such as Al and Cr are arranged in a reaction vessel 100 in the form of a lattice, and electrodes 102 of stainless steel, etc., are arranged orderly and equidistantly from all the substrates 101. The vessel 100 is evacuated from an exhaust port 105, the substrate 101 is heated to 20-50 deg.C, and a mixture of the raw gas such as SiH4 and inert gas such as Ar is supplied into the vessel to <=100mTorr. A high-frequency voltage of 50-450MHz is impressed on the electrode 102 from a power source 103 through a matching box 104 to produce plasma, hence the raw gas is decomposed, and a uniform amorphous silicon film is deposited on the substrate 101 surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は円筒状基体上に堆積膜、
とりわけ機能性堆積膜、特に半導体デバイス、電子写真
用光受容部材、画像入力用ラインセンサー、撮像デバイ
ス、光起電力デバイス等に用いるアモルファス半導体を
形成するプラズマCVDによる堆積膜形成方法および堆
積膜形成装置に関する。
FIELD OF THE INVENTION The present invention relates to a deposited film on a cylindrical substrate,
In particular, a functional deposited film, particularly a deposited film forming method and a deposited film forming apparatus by plasma CVD for forming an amorphous semiconductor used for a semiconductor device, an electrophotographic light receiving member, an image input line sensor, an imaging device, a photovoltaic device, and the like. Regarding

【0002】[0002]

【従来の技術】半導体デバイス、電子写真用光受容部
材、画像入力用ラインセンサー、撮像デバイス、光起電
力デバイス、またその他の各種エレクトロニクス素子等
に用いる素子部材として、アモルファスシリコン、例え
ば水素および/またはハロゲンで補償されたアモルファ
スシリコン等のアモルファス材料で構成された半導体等
用の堆積膜が提案され、その中のいくつかは実用に付さ
れている。
2. Description of the Related Art Amorphous silicon, such as hydrogen and / or hydrogen, is used as an element member for semiconductor devices, electrophotographic light receiving members, image input line sensors, image pickup devices, photovoltaic devices, and other various electronic elements. Deposited films for semiconductors and the like, which are composed of an amorphous material such as halogen-compensated amorphous silicon, have been proposed, and some of them have been put to practical use.

【0003】しかし、これらのデバイスのいくつかは、
その生産においてコストなどの面で問題を持っているも
のもある。例えば電子写真用光受容部材を製造する場合
では、比較的厚い膜厚が必要とされるため、膜の堆積時
間が必然的に長くなり、製造コストも高いものとなって
いた。こうした背景から生産性を向上させると同時に、
いろいろな点での効率向上が可能な堆積膜形成方法およ
び堆積膜形成装置が求められている。
However, some of these devices are
Some of them have problems in terms of cost in their production. For example, when manufacturing a photoreceptive member for electrophotography, a relatively thick film thickness is required, so that the deposition time of the film is necessarily long and the manufacturing cost is high. From this background, while improving productivity,
There is a demand for a deposited film forming method and a deposited film forming apparatus capable of improving efficiency in various respects.

【0004】このような問題点を改善するものとして、
特開昭60−186849号公報に、マイクロ波を用い
たプラズマCVD法による堆積膜の形成方法が開示され
ている。その公報には、デポジションチヤンバ内に複数
の円筒部材を配置することによって内部チヤンバを形成
し、その内部に原料ガスを導入することで、ガスの利用
効率を高めると同時に、生産性を向上させる堆積膜の形
成方法が開示されている。
[0004] In order to improve such problems,
Japanese Unexamined Patent Publication (Kokai) No. 60-186849 discloses a method for forming a deposited film by a plasma CVD method using microwaves. The publication discloses that an inner chamber is formed by arranging a plurality of cylindrical members in a deposition chamber, and a raw material gas is introduced into the chamber to improve gas utilization efficiency and productivity. A method of forming a deposited film is disclosed.

【0005】また、特開平3−219081号公報に
は、プラズマ空間に直流電界を掛け、プラズマ電位を制
御することにより、さらに高品質の堆積膜形成方法が開
示されている。
Further, Japanese Patent Laid-Open No. 3-219081 discloses a method of forming a deposited film of higher quality by applying a DC electric field to the plasma space and controlling the plasma potential.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような堆積膜形成方法においても、内部チヤンバの上下
(円筒状導電性基体の両端)からマイクロ波を導入する
ことから、円筒状導電性基体上の母線方向の特性ムラお
よび同時に形成される複数の円筒状導電性基体間の堆積
膜の特性を揃えるのは困難であった。このような特性の
ばらつきは、歩留まりに影響を与え、生産効率が向上し
ても、結果として製造されるデバイスのコストを押し上
げる要因となっていた。
However, even in the above-described method for forming a deposited film, microwaves are introduced from above and below the inner chamber (both ends of the cylindrical conductive substrate), so that the cylindrical conductive substrate is not exposed. It was difficult to make the characteristics unevenness in the direction of the generatrix and the characteristics of the deposited film formed between a plurality of cylindrical conductive substrates formed at the same time. Such variation in characteristics affects the yield, and even if the production efficiency is improved, it has been a factor of increasing the cost of the device manufactured as a result.

【0007】さらに、マイクロ波プラズマCVD法によ
る従来の堆積膜形成方法および装置では、プラズマを取
り囲むように円筒状基体を配置し、その円筒状基体を回
転させ円筒状基体表面全周にわたって堆積膜を形成させ
るため、実質的な堆積速度が低下してしまう。
Further, in the conventional method and apparatus for forming a deposited film by the microwave plasma CVD method, the cylindrical substrate is arranged so as to surround the plasma, and the cylindrical substrate is rotated to form the deposited film over the entire surface of the cylindrical substrate. Since it is formed, the substantial deposition rate is reduced.

【0008】マイクロ波プラズマCVD法においては、
直流電界を印加しない場合、基板に到達した活性種の表
面移動度が小さく、膜成長最表面のダングリングボンド
を十分に補償し得ず、良好な膜特性を実現することが困
難であった。このため、直流電界を印加し、イオンによ
る膜表面へのエネルギー付与により膜表面での活性種の
表面移動度を増加し、より多くのダングリングボンドを
補償することで膜質の向上を実現するという手段が用い
られていた。しかしながら、この手段では膜特性と相反
して膜の異常成長の増加という新たな問題が生じ、画像
欠陥レベルの低下をもたらすこととなってしまう。
In the microwave plasma CVD method,
When a DC electric field was not applied, the surface mobility of the active species reaching the substrate was small, dangling bonds on the outermost surface of the film growth could not be sufficiently compensated, and it was difficult to realize good film characteristics. Therefore, a direct current electric field is applied to increase the surface mobility of active species on the film surface by applying energy to the film surface by ions, and to improve the film quality by compensating for more dangling bonds. Means were used. However, this method causes a new problem of an abnormal growth of the film, which is contrary to the film characteristics, and causes a reduction in the image defect level.

【0009】これに対し、高周波プラズマCVD法では
マイクロ波プラズマCVD法と比べ、基板に到達した活
性種の表面移動度が大きく、直流電界の印加なしで充分
なダングリングボンドの補償がなされ、良好な膜特性が
得られるものと考えられる。このために、イオンによる
膜へのダメージはなく、膜の異常成長も見られない。高
周波プラズマCVD法において基板に到達した活性種の
表面移動度が大きい原因として現在推察されるのは、原
料ガスの分解性に係わるものである。高周波プラズマC
VD法においては、生成されるプラズマ特性(主に電子
温度、電子密度)が、マイクロ波プラズマCVD法の場
合と比べて大きく異なる。その結果、例えばSiH3
ような膜成長表面での表面移動度の大きな活性種が主に
生成されているのではないかと推察される。このような
現象により、高周波プラズマCVD法においては、電界
印加の有無にかかわらず良質な膜形成がなされる。
On the other hand, in the high frequency plasma CVD method, the surface mobility of the active species reaching the substrate is higher than that in the microwave plasma CVD method, and the dangling bond is sufficiently compensated without applying a DC electric field, which is excellent. It is considered that excellent film characteristics can be obtained. Therefore, there is no damage to the film by the ions, and no abnormal growth of the film is observed. What is currently inferred as the cause of the large surface mobility of the active species that has reached the substrate in the high frequency plasma CVD method relates to the decomposability of the source gas. High frequency plasma C
In the VD method, generated plasma characteristics (mainly electron temperature and electron density) are significantly different from those in the microwave plasma CVD method. As a result, it is speculated that active species such as SiH 3 having a large surface mobility on the film growth surface are mainly generated. Due to such a phenomenon, a high-quality film is formed in the high-frequency plasma CVD method regardless of whether or not an electric field is applied.

【0010】しかしながら、従来の13.56MHzを
用いたRFプラズマCVD法では、堆積膜形成時にポリ
シランと呼ばれるシリコン系の副生成物が同時に生成さ
れてしまい、原料ガスの利用効率やこれを除去する工程
等によりコストを引き上げる原因となっていた。さら
に、図6の従来装置に示したように平行平板を電極と
し、複数の円筒状基体を設置する構成の装置において
は、上記問題点の他に放電むらによるロット間のばらつ
き等の問題もあった。
However, in the conventional RF plasma CVD method using 13.56 MHz, a silicon-based by-product called polysilane is simultaneously generated when the deposited film is formed, and the utilization efficiency of the source gas and the process of removing the same are achieved. As a result, the cost was raised. Further, as shown in the conventional apparatus of FIG. 6, in the apparatus having a structure in which a plurality of cylindrical substrates are installed by using parallel plates as electrodes, there is a problem such as variation among lots due to uneven discharge in addition to the above problems. It was

【0011】さらに、近年では、複写機本体の高性能化
が進み、デジタル機やカラー機の普及にともない、感光
体に対して、これまで以上の高画質および高品質化が求
められるようになってきた。
Furthermore, in recent years, the performance of copying machines has been improved, and with the spread of digital machines and color machines, it has become necessary for the photoreceptor to have higher image quality and higher quality than ever before. Came.

【0012】本発明は、上記のような問題点を解決し、
原料ガス利用効率、生産性および特性均一性に優れた堆
積膜形成方法および堆積膜形成装置を提供することを目
的とする。
The present invention solves the above problems,
An object of the present invention is to provide a deposited film forming method and a deposited film forming apparatus which are excellent in raw material gas utilization efficiency, productivity and property uniformity.

【0013】本発明の別の目的は、円筒状導電性基体上
に堆積膜、とりわけ機能性堆積膜、特に半導体デバイ
ス、電子写真用光受容部材、画像入力用ラインセンサ
ー、撮像デバイス、光起電力デバイス等に用いるアモル
ファス半導体を形成するプラズマCVD装置であって、
特に優れた画像性を有する良質の堆積膜を、安価に安定
して供給し得る堆積膜形成装置および堆積膜形成方法を
提供することにある。
Another object of the present invention is to deposit a deposited film on a cylindrical conductive substrate, especially a functional deposited film, especially a semiconductor device, a photoreceptive member for electrophotography, a line sensor for image input, an image pickup device, and a photovoltaic. A plasma CVD apparatus for forming an amorphous semiconductor used for devices and the like,
An object of the present invention is to provide a deposited film forming apparatus and a deposited film forming method that can stably supply a good quality deposited film having particularly excellent image properties at low cost.

【0014】[0014]

【課題を解決するための手段】本発明は、減圧可能な反
応容器に原料ガス導入手段と複数の円筒状基体と高周波
電力を印加する複数の電極を設置し、減圧下に原料ガス
の入った反応容器内で前記複数の電極に高周波電力を印
加して前記原料ガスを分解し、前記円筒状基体に堆積膜
を形成する堆積膜形成方法において、1本の円筒状基体
を囲む電極は全て該円筒状基体から等距離に配置して堆
積を行うことを特徴とする堆積膜形成方法を提供する。
According to the present invention, a raw material gas introduction means, a plurality of cylindrical substrates and a plurality of electrodes for applying high-frequency power are installed in a depressurizable reaction vessel, and the raw material gas is introduced under reduced pressure. In a deposited film forming method of applying high frequency power to the plurality of electrodes in a reaction vessel to decompose the raw material gas to form a deposited film on the cylindrical substrate, all electrodes surrounding one cylindrical substrate are Provided is a deposited film forming method, which is characterized in that deposition is performed by arranging the substrate at an equal distance from a cylindrical substrate.

【0015】さらに本発明は、減圧可能な反応容器に、
原料ガス導入手段と、高周波電力の印加によって反応容
器内の原料ガスを分解する複数個の電極と、表面に原料
ガスの分解物による堆積膜が形成される複数の円筒状基
体とが設置されている堆積膜形成装置において、1本の
円筒状基体を囲む電極は全て該円筒状基体から等距離に
配置されていることを特徴とする堆積膜形成装置を提供
する。
Furthermore, the present invention provides a reaction vessel capable of reducing pressure,
A raw material gas introduction means, a plurality of electrodes for decomposing the raw material gas in the reaction vessel by application of high-frequency power, and a plurality of cylindrical substrates on the surface of which deposited films are formed by decomposition products of the raw material gas are installed. In the deposited film forming apparatus, there is provided a deposited film forming apparatus, wherein all electrodes surrounding one cylindrical substrate are arranged at an equal distance from the cylindrical substrate.

【0016】本発明者らは、反応容器内の圧力を100
mTorr以下に制御することで、本発明のような構成
の量産装置においても、所望の堆積膜が形成可能とな
り、好適であるという知見を得た。
The present inventors have set the pressure inside the reaction vessel to 100
It has been found that by controlling to mTorr or less, a desired deposited film can be formed even in a mass production apparatus having the configuration of the present invention, which is suitable.

【0017】本発明においては、複数の円筒状基体と複
数の高周波電極を配置した反応容器内の圧力を100m
Torr以下として堆積膜を形成することにより、従来
の周波数13.56MHzを用いる高周波プラズマCV
D法や周波数2.45GHzを用いるマイクロ波プラズ
マCVD法に比ベて、さらに良好な堆積膜を得ることが
可能である。
In the present invention, the pressure inside the reaction vessel in which a plurality of cylindrical substrates and a plurality of high frequency electrodes are arranged is 100 m.
A high frequency plasma CV using a conventional frequency of 13.56 MHz is formed by forming a deposited film below Torr.
As compared with the D method and the microwave plasma CVD method using the frequency of 2.45 GHz, a further excellent deposited film can be obtained.

【0018】さらに、前述のように、マイクロ波プラズ
マCVD法による従来の堆積膜形成装置では、プラズマ
を取り囲むように円筒状基体を配置し、その円筒状基体
を回転させ円筒状基体表面全周にわたって堆積膜を形成
させるため、実質的な堆積速度が低下してしまうが、本
発明の堆積膜形成装置は、複数の円筒状基体の全周が同
時にプラズマに接しながら堆積膜が形成されるため、従
来の装置構成に比べて実質的な堆積速度が向上し、工業
的に量産性を向上させることが可能となる。
Further, as described above, in the conventional deposited film forming apparatus using the microwave plasma CVD method, the cylindrical substrate is arranged so as to surround the plasma, and the cylindrical substrate is rotated to cover the entire surface of the cylindrical substrate. Since the deposited film is formed, the deposition rate is substantially reduced, but the deposited film forming apparatus of the present invention forms the deposited film while the entire circumferences of the plurality of cylindrical substrates are in contact with plasma at the same time. The deposition rate is substantially higher than that of the conventional device configuration, and it is possible to industrially improve mass productivity.

【0019】[0019]

【作用】本発明の1実施態様においては、高周波を反応
容器内に導入するための電極は格子状に設置され、その
1つの格子の中央部に円筒状基体が設置される。すなわ
ち、1つの円筒状基体から見た場合、それに近接する、
すなわちその基体を取り囲む複数の電極が全て同一距離
の位置関係にあることが好ましい。
In one embodiment of the present invention, the electrodes for introducing the high frequency wave into the reaction vessel are arranged in a grid, and the cylindrical substrate is installed in the center of one of the grids. That is, when viewed from one cylindrical substrate, it is close to it,
That is, it is preferable that all of the plurality of electrodes surrounding the substrate have the same positional relationship.

【0020】電極の材質としては、基本的には導電性の
材質のものならばいずれでも良く、例えば、ステンレ
ス、Al、Cr、Mo、Au、In、Nb、Ni、T
e、V、Ti、Pt、Pb、Fe等の金属、それらの合
金、または、それら金属もしくは合金の表面に対して堆
積膜の密着性向上のためにセラミック溶射またはカバー
等を設けたものが通常使用される。
The material of the electrode may be basically any conductive material, for example, stainless steel, Al, Cr, Mo, Au, In, Nb, Ni, T.
e, V, Ti, Pt, Pb, Fe and other metals, their alloys, or those provided with ceramic spraying or a cover on the surface of these metals or alloys to improve the adhesion of the deposited film used.

【0021】本発明において、反応容器内に導入する高
周波電力の周波数は、好ましくは50〜450MHzと
する。本発明者らの実験によれば、周波数が50MHz
未満の場合、放電の広がりを求めると、条件によっては
放電維持が困難な場合がある。また、放電を維持させる
ために反応容器内の圧力を上げると、放電の片寄りと同
時に、ポリシランと呼ばれるシリコン系の副生成物が反
応容器内に生成されて生産性が低下する。また450M
Hzより大きいと、高周波電力の伝送特性が悪化し、高
周波電力が原料ガスを完全に分解する電力(以下、原料
ガス分解飽和電力と称する)よりかなり小さい場合に、
プラズマが不安定になる場合がある。
In the present invention, the frequency of the high frequency power introduced into the reaction vessel is preferably 50 to 450 MHz. According to the experiments by the present inventors, the frequency is 50 MHz.
If it is less than the above, it may be difficult to maintain the discharge depending on conditions when the spread of the discharge is obtained. Further, if the pressure in the reaction vessel is increased in order to maintain the discharge, at the same time as the discharge is deviated, a silicon-based by-product called polysilane is generated in the reaction vessel and the productivity is reduced. Also 450M
If it is higher than Hz, the transmission characteristic of the high frequency power deteriorates, and if the high frequency power is considerably smaller than the power that completely decomposes the raw material gas (hereinafter referred to as the raw material gas decomposition saturated power),
The plasma may become unstable.

【0022】本発明に使用する堆積膜の原料ガスとして
は、例えばシラン(SiH4)、ジシラン(Si26
等のアモルファスシリコン形成原料ガス、ゲルマン(G
eH 4)等の機能性堆積膜形成原料ガス、あるいはそれ
らの混合ガスが挙げられる。
As a source gas for the deposited film used in the present invention
Is, for example, silane (SiHFour), Disilane (Si2H6)
Amorphous silicon forming raw material gas, such as germane (G
eH Four) Etc. functional material for forming a deposited film, or
These mixed gases are mentioned.

【0023】希釈ガスとしては、水素(H2)、ヘリウ
ム(He)、アルゴン(Ar)等が挙げられる。また、
堆積膜のバンドギャップ巾を変化させる等の特性改善ガ
スとして、窒素(N2)、アンモニア(NH3)等の窒素
を含むガス、酸素(O2)、酸化窒素(NO)、酸化二
窒素(N2O)等の酸素を含むガス、メタン(CH4)、
エタン(C26)、エチレン(C24)、アセチレン
(C22)、プロパン(C38)等の炭化水素、四フッ
化珪素(SiF4)、六フッ化二珪素(Si26)、四
フッ化ゲルマニウム(GeF4)等のフッ化物、あるい
はそれらの混合ガスが挙げられる。
Examples of the diluent gas include hydrogen (H 2 ), helium (He), argon (Ar) and the like. Also,
Gases containing nitrogen such as nitrogen (N 2 ) and ammonia (NH 3 ), oxygen (O 2 ), nitric oxide (NO), dinitrogen oxide ( Gas containing oxygen such as N 2 O), methane (CH 4 ),
Hydrocarbons such as ethane (C 2 H 6 ), ethylene (C 2 H 4 ), acetylene (C 2 H 2 ), propane (C 3 H 8 ), silicon tetrafluoride (SiF 4 ), disilicon hexafluoride Examples thereof include (Si 2 H 6 ), fluorides such as germanium tetrafluoride (GeF 4 ), and mixed gas thereof.

【0024】また、ドーピングを目的として、ジボラン
(B26)、フッ化ホウ素(BF3)、ホスフィン(P
3)等のドーパントガスを同時に導入することも、本
発明には同様に有効である。
For the purpose of doping, diborane (B 2 H 6 ), boron fluoride (BF 3 ), phosphine (P
The simultaneous introduction of a dopant gas such as H 3 ) is also effective in the present invention.

【0025】本発明に用いられる基体は、円筒形で導電
性のものであればいずれのものでもよく、その材質は例
えば、Al、Cr、Mo、Au、In、Nb、Te、
V、Ti、Pt、Pb、Fe等の金属およびそれらの合
金(例えば、ステンレス)等が挙げられる。またポリエ
ステル、ポリスチレン、ポリカーボネイト、セルロース
アセテート、ポリプロピレン、ポリ塩化ビニル、ポリエ
チレン、ポリアミド等の合成樹脂のシート、ガラス、セ
ラミック等の電気絶縁性基体の少なくとも堆積膜を形成
する側の表面を導電処理した基体も用いることができ
る。さらに堆積膜を形成する側と反対側も導電処理する
ことが望ましい。
The substrate used in the present invention may be any one as long as it is cylindrical and conductive, and its material is, for example, Al, Cr, Mo, Au, In, Nb, Te,
Examples include metals such as V, Ti, Pt, Pb, and Fe, and alloys thereof (for example, stainless steel). In addition, a sheet of synthetic resin such as polyester, polystyrene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyethylene, polyamide, etc., or an electrically insulating substrate such as glass, ceramic, etc., at least the surface on which the deposited film is formed is subjected to a conductive treatment. Can also be used. Further, it is desirable that the side opposite to the side on which the deposited film is formed be subjected to conductive treatment.

【0026】基体の表面形状は平滑平面または凹凸表面
とすることができる。例えば電子写真用光受容部材など
で、レーザー光などの可干渉性光を用いて像記録を行う
場合には、可視画像において現われる干渉縞模様による
画像不良を解消するために、特開昭60−168156
号公報、同60−178457号公報、同60−225
854号公報等に記載された公知の方法により作製され
た凹凸表面であることができる。
The surface shape of the substrate can be a smooth flat surface or an uneven surface. For example, when an image is recorded using a coherent light such as a laser beam on a light receiving member for electrophotography, in order to eliminate an image defect due to an interference fringe pattern appearing in a visible image, JP-A-60- 168156
No. 60-178457, No. 60-225.
It may be an uneven surface produced by a known method described in Japanese Patent No. 854, etc.

【0027】堆積膜形成時の基体温度には特に制限はな
いが、好ましくは20℃以上500℃以下、さらに好ま
しくは50℃以上450℃以下で形成した場合に、良好
な特性が得られる。
The substrate temperature at the time of forming the deposited film is not particularly limited, but good characteristics are obtained when it is formed preferably at 20 ° C. or more and 500 ° C. or less, more preferably 50 ° C. or more and 450 ° C. or less.

【0028】さらに本発明は、阻止型アモルファス感光
体、高抵抗アモルファス型感光体、機能分離型アモルフ
ァス感光体等の複写機またはプリンター用感光体のほ
か、各種デバイス用の感光体等の作成にも応用可能であ
る。
The present invention is also applicable to the production of photoconductors for copying machines and printers such as blocking type amorphous photoconductors, high resistance amorphous photoconductors, and function-separated type amorphous photoconductors, as well as photoconductors for various devices. It is applicable.

【0029】すなわち、本発明は、堆積膜、とりわけ機
能性堆積膜、特に半導体デバイス、電子写真用光受容部
材、画像入力用ラインセンサー、撮像デバイス、光起電
力デバイス等に用いるアモルファス半導体の形成に好適
に応用できるものである。
That is, the present invention is for forming a deposited film, particularly a functional deposited film, particularly an amorphous semiconductor used for a semiconductor device, a photoreceptive member for electrophotography, a line sensor for image input, an imaging device, a photovoltaic device and the like. It can be suitably applied.

【0030】以下、図面を用いて本発明の堆積膜形成装
置をより詳細に説明する。
The deposited film forming apparatus of the present invention will be described in more detail below with reference to the drawings.

【0031】図1は本発明の堆積膜形成装置の1例を模
式的に示した図であり、図1(A)はその縦断面図、図
1(B)は横断面図である。
FIG. 1 is a diagram schematically showing an example of the deposited film forming apparatus of the present invention. FIG. 1 (A) is a longitudinal sectional view and FIG. 1 (B) is a lateral sectional view.

【0032】まず、反応容器100内に、あらかじめ脱
脂洗浄した基体101を設置し、不図示の排気装置(例
えば真空ポンプ)により反応容器100内を排気する。
続いて、加熱ヒーター(不図示)により基体101の温
度を所定の温度に制御する。基体101が所定の温度に
なったところで、原料ガス供給系(不図示)より原料ガ
スを反応容器内に供給する。このときガスの突出等の極
端な圧力変動が起きないよう注意する。次に原料ガスの
流量が所定の流量になったところで、真空計(不図示)
を見ながら排気バルブ(不図示)を調整し、所定の内圧
とする。
First, the substrate 101 that has been degreased and washed in advance is placed in the reaction container 100, and the reaction container 100 is evacuated by an exhaust device (not shown) (for example, a vacuum pump).
Then, the temperature of the base 101 is controlled to a predetermined temperature by a heater (not shown). When the substrate 101 reaches a predetermined temperature, a source gas is supplied from a source gas supply system (not shown) into the reaction vessel. At this time, be careful not to cause extreme pressure fluctuations such as gas ejection. Next, when the flow rate of the raw material gas reaches the specified flow rate, a vacuum gauge (not shown)
While looking at it, adjust the exhaust valve (not shown) to obtain a predetermined internal pressure.

【0033】内圧が安定したところで、高周波電源10
3を所定の電力に設定する。高周波電力は、マッチング
ボックス104を通じて電極102に高周波電力を印加
させる。この放電エネルギーによって、反応容器100
内に導入された原料ガスが分解され、基体101上に堆
積膜が形成される。所望の膜厚の形成が行われた後、高
周波電力の供給を止め、反応容器100へのガスの流入
を止めて、堆積膜の形成を終える。
When the internal pressure is stable, the high frequency power source 10
3 is set to a predetermined power. The high frequency power is applied to the electrode 102 through the matching box 104. By this discharge energy, the reaction container 100
The source gas introduced therein is decomposed and a deposited film is formed on the substrate 101. After the desired film thickness is formed, the supply of the high frequency power is stopped, the gas flow into the reaction container 100 is stopped, and the formation of the deposited film is completed.

【0034】用途に応じた特性を有する堆積膜を得るた
めに基体上に複数の層からなる堆積膜を形成する場合に
は、上記の操作を操り返すことによって、所望の層構成
の堆積膜を得ることができる。
When a deposited film consisting of a plurality of layers is formed on a substrate in order to obtain a deposited film having characteristics according to the use, the above operation is repeated to obtain a deposited film having a desired layer structure. Obtainable.

【0035】[0035]

【実施例】以下、実施例に基づき本発明を具体的に説明
するが、本発明はこれらによってなんら限定されるもの
ではない。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited thereto.

【0036】(実施例1)外径108mm、長さ370
mm、肉厚5mmのアルミニウムシリンダーに鏡面加工
を施し脱脂洗浄したものを基体として使用し、図1の本
発明の装置を用いて、先に示した手順により、表1に示
した条件で、図5に示す電荷注入阻止層502、光導電
層503、表面層504からなる層構成の阻止型の電子
写真用光受容部材500(以後、ドラムと称する)を形
成した。作製した光受容部材を電子写真装置(キヤノン
製NP6150をテスト用に改造したもの)にセットし
て、電子写真特性および画像性の評価を以下の方法で行
った。
Example 1 Outer diameter 108 mm, length 370
mm, 5 mm thick aluminum cylinder that has been mirror-finished and degreased and washed is used as a substrate, and the apparatus of the present invention shown in FIG. A blocking type electrophotographic light receiving member 500 (hereinafter, referred to as a drum) having a layer structure including the charge injection blocking layer 502, the photoconductive layer 503, and the surface layer 504 shown in FIG. 5 was formed. The produced light-receiving member was set in an electrophotographic apparatus (NP6150 manufactured by Canon was modified for testing), and electrophotographic characteristics and image properties were evaluated by the following methods.

【0037】[0037]

【表1】 画像欠陥 キヤノン製中間調チャート(部品番号:FY9−904
2)を原稿台に置き、コピーしたときに得られたコピー
画像の同一面積内にある直径0.5mm以下の白点につ
いて、その数を数えた。その白点数に基づく画像欠陥の
評価基準は以下の通りである。 ◎:0〜2個で、全く問題ない ○:3〜5個で、問題ない △:6〜10で、多少劣る ×:11個以上で、実用上問題がある。
[Table 1] Image defect Canon halftone chart (Part number: FY9-904
2) was placed on the platen, and the number of white spots having a diameter of 0.5 mm or less within the same area of the copy image obtained when copying was counted. The image defect evaluation criteria based on the number of white points are as follows. ⊚: 0-2, no problem at all ◯: 3-5, no problem Δ: 6-10, somewhat inferior ×: 11 or more, practically problematic.

【0038】ハーフトーン画像むら キヤノン製中間調チャート(部品番号:FY9−904
2)を原稿台に置き、通常の露光量および2倍の露光量
で照射し、コピーをとる。こうして得られた画像で、直
径5mmの円形の領域を1単位として100点の画像濃
度を測定し、その濃度のばらつきを評価した。その評価
基準は以下の通りである。 ◎:ばらつきが3%未満: ○:ばらつきが3%以上10%未満 △:ばらつきが10%以上20%未満 ×:ばらつき20%以上30%未満。
Halftone Image Mura Canon Halftone Chart (Part No. FY9-904
2) is placed on a document table and irradiated with a normal exposure amount and a double exposure amount to make a copy. In the image thus obtained, image density at 100 points was measured with a circular area having a diameter of 5 mm as one unit, and the variation in the density was evaluated. The evaluation criteria are as follows. ⊚: Variation is less than 3%: ◯: Variation is 3% or more and less than 10% Δ: Variation is 10% or more and less than 20% x: Variation is 20% or more and less than 30%.

【0039】感度 電子写真感光体を、一定の暗部表面電位に帯電させる。
そして直ちに光像を照射する。光像はキセノンランプ光
源を用い、フィルターを用いて600mm以上の波長域
の光を除いた光を照射する。この時表面電位計により電
子写真感光体の明部表面電位を測定する。明部表面電位
が所定の電位になるよう露光量を調整し、その時の露光
量をもって感度として評価した。感度の評価基準は以下
の通りである。 ◎:特に良好 ○:良好 △:実用上問題なし ×:実用上問題あり同一ロット内のばらつき 同一ロットで作成したドラムについて、感度および帯電
能温度特性という2項目について電位特性のばらつきを
評価した。
Sensitivity The electrophotographic photoreceptor is charged to a constant dark surface potential.
Then, the light image is immediately irradiated. The light image is emitted by using a xenon lamp light source and excluding light in a wavelength range of 600 mm or more using a filter. At this time, the surface potential of the bright portion of the electrophotographic photosensitive member is measured with a surface potential meter. The exposure amount was adjusted so that the light surface potential became a predetermined potential, and the exposure amount at that time was evaluated as the sensitivity. The evaluation criteria of sensitivity are as follows. ⊚: Particularly good ○: Good Δ: No problem in practical use ×: There is a problem in practical use Variability in the same lot Regarding the drums made in the same lot, the variations in the potential characteristics were evaluated in two items, sensitivity and chargeability temperature characteristic.

【0040】a)帯電能温度特性 ドラムを一定の暗部表面電位に帯電させ、ドラムの温度
を室温から約45℃まで変動させて帯電能を測定し、そ
のときの温度1℃当りの帯電能の変化を測定した。
A) Charging ability temperature characteristic The charging ability was measured by charging the drum to a constant dark surface potential and varying the temperature of the drum from room temperature to about 45 ° C. to measure the charging ability per 1 ° C. temperature. The change was measured.

【0041】b)感度 感度の測定は、前記と同様とした。B) Sensitivity The sensitivity was measured as described above.

【0042】感度および帯電能温度特性のばらつきの評
価基準は以下の通りである。 ◎:ばらつき3%未満で特に良好 ○:ばらつき3%以上5%未満で良好 △:ばらつき5%以上10%未満で実用上問題なし ×:ばらつき10%以上で実用上問題あり。 を表している。
Evaluation criteria for variations in sensitivity and temperature characteristics of charging ability are as follows. ⊚: Particularly good with variation of less than 3% ◯: Good with variation of 3% or more and less than 5% Δ: Practical use with variation of 5% or more and less than 10% x: Practical problem with variation of 10% or more Is represented.

【0043】(比較例1)実施例1と同様に、外径10
8mm、長さ370mm、肉厚5mmのアルミニウムシ
リンダーを鏡面加工・脱脂洗浄したものを基体として使
用し、図6に示した従来の装置を用いて、表2の条件
で、図5に示す電荷注入阻止層、光導電層、表面層から
なる層構成の阻止型のドラムを形成した。
(Comparative Example 1) As in Example 1, an outer diameter of 10
An aluminum cylinder having a length of 8 mm, a length of 370 mm, and a wall thickness of 5 mm, which was mirror-finished and degreased and washed, was used as a substrate, and the conventional device shown in FIG. 6 was used to inject the charge shown in FIG. A blocking type drum having a layer structure including a blocking layer, a photoconductive layer, and a surface layer was formed.

【0044】図6の装置でのドラム作成について以下に
簡単に説明する。
The drum making by the apparatus of FIG. 6 will be briefly described below.

【0045】反応容器600内に設置された平行平板の
電極602ではさまれた放電領域に円筒状基体601を
設置し、排気装置により反応容器内を排気する。所定の
圧力に排気した後、円筒状基体601を所定の温度に加
熱する。その後、原料ガスを反応容器600内に導入
し、高周波電力をマッチングボックス604で調節しな
がら導入してプラズマを生成させる。この放電エネルギ
ーによって、反応容器600内に導入された原料ガスが
分解され、基体601上に堆積膜が形成される。所望の
膜厚の形成が行われた後、高周波電力の供給を止め、反
応容器側へのガスの流入を止め、堆積膜の形成を終え
る。
A cylindrical substrate 601 is installed in a discharge region sandwiched by parallel plate electrodes 602 installed in the reaction container 600, and the reaction container is evacuated by an exhaust device. After exhausting to a predetermined pressure, the cylindrical substrate 601 is heated to a predetermined temperature. After that, the source gas is introduced into the reaction vessel 600, and high frequency power is adjusted while being adjusted by the matching box 604 to generate plasma. This discharge energy decomposes the source gas introduced into the reaction vessel 600 to form a deposited film on the substrate 601. After the desired film thickness is formed, the high-frequency power supply is stopped, the gas flow to the reaction vessel side is stopped, and the formation of the deposited film is completed.

【0046】所望の堆積膜特性を得ることを目的とし
て、基体上に複数の層からなる堆積膜を形成する場合に
は、上記の操作を繰り返す。
When a deposited film consisting of a plurality of layers is formed on the substrate for the purpose of obtaining desired deposited film characteristics, the above operation is repeated.

【0047】[0047]

【表2】 このように作成した比較例1のドラムについて、実施例
1と同様の評価を行い、その結果を実施例1とともに表
3に示した。
[Table 2] The drum of Comparative Example 1 thus prepared was evaluated in the same manner as in Example 1, and the results are shown in Table 3 together with Example 1.

【0048】表3に示されるように、実施例1で作成し
たドラムの方が、比較例1のドラムに比べて、全ての評
価項目において非常に良好な結果が与えた。
As shown in Table 3, the drum produced in Example 1 gave very good results in all evaluation items as compared with the drum of Comparative Example 1.

【0049】[0049]

【表3】 (実施例2)図2で示すような円筒状基体が電極を兼ね
ている本発明の装置を用い、堆積膜形成を行う基体と電
極となる基体との関係が実施例1の基体と電極との関係
と同様(すなわち、格子状に配置された円筒状基体の中
央に電極が位置する配置形態)になるよう電源の接続を
行い、実施例1と同様に、ドラムの作成・評価を行っ
た。その結果、全ての項目において、実施例1と同様の
良好な結果が得られた。
[Table 3] (Embodiment 2) Using the apparatus of the present invention in which a cylindrical substrate as shown in FIG. 2 also serves as an electrode, the relation between the substrate for forming a deposited film and the substrate to be an electrode is The power supply was connected so as to have the same relationship (i.e., the arrangement in which the electrode is located at the center of the cylindrical substrates arranged in a grid), and the drum was prepared and evaluated in the same manner as in Example 1. . As a result, good results similar to those of Example 1 were obtained in all items.

【0050】(実施例3)光導電層の作成条件におい
て、圧力を変化させる以外は実施例1と同様にドラムを
作成し、同様の評価を行ったところ、表4に示すような
結果が得られた。表4からわかる通り、内圧100mm
Torr以下の範囲において、全ての項目で良好な結果
が得られた。
Example 3 A drum was prepared in the same manner as in Example 1 except that the pressure was changed under the conditions for forming the photoconductive layer, and the same evaluation was performed. The results shown in Table 4 were obtained. Was given. As can be seen from Table 4, the internal pressure is 100 mm
Good results were obtained for all items in the range of Torr or less.

【0051】[0051]

【表4】 (実施例4)図3に示した本発明の装置を用い、表5に
示した条件でドラムを作製して、実施例1と同様の評価
を実施した。結果は表7に示す。
[Table 4] (Example 4) Using the apparatus of the present invention shown in FIG. 3, a drum was produced under the conditions shown in Table 5, and the same evaluation as in Example 1 was carried out. The results are shown in Table 7.

【0052】[0052]

【表5】 (実施例5)さらに、図4に示した本発明の装置を用い
て、表6に示した条件で、ドラムを作製して、実施例1
と同様の評価を行った。結果は表7に示す。
[Table 5] (Example 5) Further, using the apparatus of the present invention shown in FIG. 4, a drum was produced under the conditions shown in Table 6, and Example 1 was prepared.
The same evaluation as was done. The results are shown in Table 7.

【0053】[0053]

【表6】 [Table 6]

【0054】[0054]

【表7】 (実施例6)作製条件中の高周波の周波数を表8に示し
たように変動させた以外は、実施例1と同様にして、ド
ラムの作製・評価を行った。結果は表8に示した。その
表から、周波数50MHz〜450MHzの範囲で良好
な結果が得られることがわかる。
[Table 7] (Example 6) A drum was manufactured and evaluated in the same manner as in Example 1 except that the high frequency in the manufacturing conditions was changed as shown in Table 8. The results are shown in Table 8. From the table, it can be seen that good results are obtained in the frequency range of 50 MHz to 450 MHz.

【0055】[0055]

【表8】 *周波数105MHzの場合は、実施例1のデータ[Table 8] * In case of frequency 105MHz, data of Example 1

【0056】[0056]

【発明の効果】本発明の堆積膜形成方法および堆積膜形
成装置によれば、電子写真感光体などに用いる特性の優
れた堆積膜を、均一特性で大量に生産することが可能と
なる。更に、プラズマ状態が均一になることから、同一
ロット内の特性のばらつきを低減でき、歩留り、コスト
の面で有利となる。
According to the deposited film forming method and the deposited film forming apparatus of the present invention, it is possible to mass-produce a deposited film having excellent characteristics, which is used for an electrophotographic photosensitive member and the like. Furthermore, since the plasma state is uniform, variations in characteristics within the same lot can be reduced, which is advantageous in terms of yield and cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の堆積膜形成装置の1例の模式図であ
り、(A)は縦断面図、(B)は横断面図である。
FIG. 1 is a schematic view of an example of a deposited film forming apparatus of the present invention, in which (A) is a vertical sectional view and (B) is a horizontal sectional view.

【図2】本発明の堆積膜形成装置の別の例の模式図であ
り、(A)は縦断面図、(B)は横断面図である。
2A and 2B are schematic views of another example of the deposited film forming apparatus of the present invention, where FIG. 2A is a vertical sectional view and FIG. 2B is a horizontal sectional view.

【図3】本発明の堆積膜形成装置のさらに別の例の模式
的横断面図である。
FIG. 3 is a schematic cross-sectional view of still another example of the deposited film forming apparatus of the present invention.

【図4】本発明の堆積膜形成装置のさらに別の例の模式
的横断面図である。
FIG. 4 is a schematic cross-sectional view of still another example of the deposited film forming apparatus of the present invention.

【図5】電子写真用光受容部材(ドラム)の層構成の1
例を示す断面図である。
FIG. 5: 1 of layer constitution of light receiving member (drum) for electrophotography
It is sectional drawing which shows an example.

【図6】従来の堆積膜形成装置の1例の模式図であり、
(A)は縦断面図、(B)は横断面図である。
FIG. 6 is a schematic view of an example of a conventional deposited film forming apparatus,
(A) is a longitudinal sectional view and (B) is a lateral sectional view.

【符号の説明】 100、200、300、400、600 反応
容器 101、201、301、401、501、601
基体 102、202、302、402、602 電極 103、203、603 電源 104、204、604 マッチングボックス 105、205、605 排気ロ 500 電子写真感光体 502 電荷注入阻止層 503 光導電層 504 表面層
[Explanation of reference numerals] 100, 200, 300, 400, 600 Reaction vessels 101, 201, 301, 401, 501, 601
Substrate 102, 202, 302, 402, 602 Electrode 103, 203, 603 Power supply 104, 204, 604 Matching box 105, 205, 605 Exhaust filter 500 Electrophotographic photoreceptor 502 Charge injection blocking layer 503 Photoconductive layer 504 Surface layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 減圧可能な反応容器に原料ガス導入手段
と複数の円筒状基体と高周波電力を印加する複数の電極
を設置し、減圧下に原料ガスの入った反応容器内で前記
複数の電極に高周波電力を印加して前記原料ガスを分解
し、前記円筒状基体に堆積膜を形成する堆積膜形成方法
において、1本の円筒状基体を囲む電極は全て該円筒状
基体から等距離に配置して堆積を行うことを特徴とする
堆積膜形成方法。
1. A raw material gas introducing means, a plurality of cylindrical substrates, and a plurality of electrodes for applying high-frequency power are installed in a reaction vessel capable of depressurization, and the plurality of electrodes are placed under a reduced pressure in the reaction vessel containing the raw material gas. In a deposited film forming method of applying a high frequency power to a substrate to decompose the source gas and form a deposited film on the cylindrical substrate, all electrodes surrounding one cylindrical substrate are arranged at an equal distance from the cylindrical substrate. A method for forming a deposited film, characterized in that the deposition is performed.
【請求項2】 前記複数の円筒状基体を格子状に配置
し、1つの格子の中央に電極を配置する請求項1記載の
堆積膜形成方法。
2. The deposited film forming method according to claim 1, wherein the plurality of cylindrical substrates are arranged in a grid pattern, and an electrode is arranged in the center of one grid.
【請求項3】 上記電極が電源に接続された円筒状基体
である請求項1または2記載の堆積膜形成方法。
3. The deposited film forming method according to claim 1, wherein the electrode is a cylindrical substrate connected to a power source.
【請求項4】 反応容器内の圧力を100mTorr以
下として堆積を行う請求項1ないし3のいずれかに記載
の堆積膜形成方法。
4. The method for forming a deposited film according to claim 1, wherein the deposition is carried out at a pressure in the reaction vessel of 100 mTorr or less.
【請求項5】 上記高周波電力の周波数を50MHz〜
450MHzとする請求項1ないし4のいずれかに記載
の堆積膜形成方法。
5. The frequency of the high frequency power is 50 MHz to
The deposited film forming method according to any one of claims 1 to 4, wherein the frequency is 450 MHz.
【請求項6】 減圧可能な反応容器に、原料ガス導入手
段と、高周波電力の印加によって反応容器内の原料ガス
を分解する複数個の電極と、表面に原料ガスの分解物に
よる堆積膜が形成される複数の円筒状基体とが設置され
ている堆積膜形成装置において、1本の円筒状基体を囲
む電極は全て該円筒状基体から等距離に配置されている
ことを特徴とする堆積膜形成装置。
6. A reaction vessel capable of depressurizing, a raw material gas introducing means, a plurality of electrodes for decomposing the raw material gas in the reaction vessel by applying high frequency power, and a deposited film formed on the surface by a decomposition product of the raw material gas. Deposited film forming apparatus in which a plurality of cylindrical substrates to be formed are installed, all electrodes surrounding one cylindrical substrate are arranged at an equal distance from the cylindrical substrate. apparatus.
【請求項7】 前記複数の円筒状基体が格子状に配置さ
れ、1つの格子の中央に電極が配置されている請求項6
記載の堆積膜形成装置。
7. The plurality of cylindrical substrates are arranged in a grid, and an electrode is arranged in the center of one grid.
The deposited film forming apparatus described.
【請求項8】 上記電極が電源に接続された円筒状基体
である請求項6または7記載の堆積膜形成装置。
8. The deposited film forming apparatus according to claim 6 or 7, wherein the electrode is a cylindrical substrate connected to a power source.
JP7054182A 1995-03-14 1995-03-14 Formation of deposited film and deposited film forming device Pending JPH08253865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7054182A JPH08253865A (en) 1995-03-14 1995-03-14 Formation of deposited film and deposited film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7054182A JPH08253865A (en) 1995-03-14 1995-03-14 Formation of deposited film and deposited film forming device

Publications (1)

Publication Number Publication Date
JPH08253865A true JPH08253865A (en) 1996-10-01

Family

ID=12963412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7054182A Pending JPH08253865A (en) 1995-03-14 1995-03-14 Formation of deposited film and deposited film forming device

Country Status (1)

Country Link
JP (1) JPH08253865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155201A (en) * 1997-09-24 2000-12-05 Canon Kabushiki Kaisha Plasma processing apparatus and plasma processing method
US6443191B1 (en) 2000-05-15 2002-09-03 Canon Kabushiki Kaisha Vacuum processing methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155201A (en) * 1997-09-24 2000-12-05 Canon Kabushiki Kaisha Plasma processing apparatus and plasma processing method
US6350497B1 (en) 1997-09-24 2002-02-26 Canon Kabushiki Kaisha Plasma processing method
US6443191B1 (en) 2000-05-15 2002-09-03 Canon Kabushiki Kaisha Vacuum processing methods

Similar Documents

Publication Publication Date Title
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
JP3624113B2 (en) Plasma processing method
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
EP0720205A1 (en) Deposited film forming apparatus and electrode for use in it
JPH08253865A (en) Formation of deposited film and deposited film forming device
JPH07288192A (en) Plasma treatment apparatus
JP3428865B2 (en) Apparatus and method for forming deposited film
KR100256192B1 (en) Plasma process apparatus and plasma process method
JPH09268370A (en) Plasma cvd system and formation of deposited film by plasma cvd
KR100269930B1 (en) Plasma processing apparatus and plasma processing method
JPH10168574A (en) Cleaning method for film deposition system and method for film deposition
JP2768539B2 (en) Deposition film forming equipment
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JPH08222519A (en) Method of forming deposition film by high-frequency plasma cvd method
JP2925310B2 (en) Deposition film formation method
JP2867150B2 (en) Microwave plasma CVD equipment
JPH08236460A (en) Method and device for forming deposited film
JPH07288233A (en) Film forming apparatus
JPH08236457A (en) Formation of deposited film and electrophotographic photoreceptor
JPH11131246A (en) Plasma cvd device and formation of deposited coating film by plasma cvd
JPH0978248A (en) Production of photoreceptive member and apparatus for production
JPH04329882A (en) Formation of deposited film by microwave plasma cvd method
JPH09279348A (en) Plasma cvd apparatus and formation of deposited film by plasma cvd
JP2001316827A (en) High frequency plasma cvd method and device
JPH062153A (en) Deposited film forming method