JPH04329882A - Formation of deposited film by microwave plasma cvd method - Google Patents

Formation of deposited film by microwave plasma cvd method

Info

Publication number
JPH04329882A
JPH04329882A JP3128283A JP12828391A JPH04329882A JP H04329882 A JPH04329882 A JP H04329882A JP 3128283 A JP3128283 A JP 3128283A JP 12828391 A JP12828391 A JP 12828391A JP H04329882 A JPH04329882 A JP H04329882A
Authority
JP
Japan
Prior art keywords
deposited film
discharge
microwave
bias voltage
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3128283A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Akiyama
和敬 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3128283A priority Critical patent/JPH04329882A/en
Publication of JPH04329882A publication Critical patent/JPH04329882A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably form a deposited film having excellent appearance at a high speed by applying a specific external bias voltage to a conductive base body at the time of producing the functional deposited film by a microwave plasma CVD method using the external bias in combination. CONSTITUTION:The inside of a vacuum vessel 101 having a conductive cylindrical base body 105 to be formed with an amorphous Si film, a dielectric window 102 for introducing microwaves, a gaseous raw material introducing pipe 11 for gaseous silane, gaseous hydrogen, etc., and a heater 107 is evacuated from a discharge D 104 to a vacuum. The gaseous raw materials are supplied from the gas introducing pipe 111 into the vacuum vessel 101 and the base body 105 is heated by a heater 107. The microwaves are simultaneously introduced through the dielectric window 102 of quartz glass, etc., into the vessel 101 to form microwave discharge plasma in a discharge space 106. An amorphous Si film is formed on the surface of the base body 105 by the gaseous raw materials. An electrode 108 disposed in the discharge space 106 is regulated to 0V at the point of the time to induce the microwave discharge plasma therein and to a desired voltage as the external bias voltage after the discharge is induced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明の属する技術分野】本発明は、マイクロ波プラズ
マCVD法による堆積膜形成方法に関し、特に電子写真
用感光体の製造に適したマイクロ波プラズマCVDによ
る改良された堆積膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a deposited film by microwave plasma CVD, and more particularly to an improved method for forming a deposited film by microwave plasma CVD, which is suitable for manufacturing electrophotographic photoreceptors.

【0002】0002

【従来の技術の説明】従来、半導体デバイス、電子写真
用感光体デバイス、画像入力用ラインセンサー、撮像デ
バイス、光起電力デバイス、その他各種エレクトロニク
ス素子、光学素子等に用いる素子部材として、水素およ
び/またはハロゲン(例えばフッ素、塩素等)で補償さ
れたアモルファスシリコン(以下「a−Si(H,X)
と記す)、水素および/またはハロゲン(例えばフッ素
、塩素等)で補償されたアモルファス炭化シリコン(以
下「a−SiC(H,X)」と記す)、水素および/ま
たはハロゲン(例えばフッ素、塩素等)で補償されたア
モルファス窒化シリコン(以下「a−SiN(H,X)
」と記す)のような非単結晶質の堆積膜、あるいはダイ
ヤモンド薄膜のような結晶質の堆積膜が提案され、その
中のいくつかは実用に供されている。
[Description of the Prior Art] Conventionally, hydrogen and/or Or amorphous silicon (hereinafter referred to as "a-Si(H,X)" compensated with halogen (e.g. fluorine, chlorine, etc.)
amorphous silicon carbide (hereinafter referred to as "a-SiC(H,X)"), hydrogen and/or halogen (e.g. fluorine, chlorine, etc.) ) compensated amorphous silicon nitride (hereinafter referred to as a-SiN(H,X)
Non-single-crystalline deposited films such as those described in ``Diamond'' have been proposed, and crystalline deposited films such as diamond thin films have been proposed, and some of these have been put into practical use.

【0003】従来、この様なアモルファス半導体を堆積
する方法として、RFプラズマCVD法が実用化されて
いる。しかし、RFプラズマCVD法は原料ガスの利用
効率が低く、また膜の堆積速度が遅いこと、そして製品
コストを高いものにしてしまうこと、等の問題があった
Conventionally, an RF plasma CVD method has been put into practical use as a method for depositing such an amorphous semiconductor. However, the RF plasma CVD method has problems such as low raw material gas utilization efficiency, slow film deposition rate, and high product cost.

【0004】この様なRFプラズマCVD法の問題点を
解決するために、近年、マイクロ波グロー放電分解を用
いた、マイクロ波プラズマCVD法(以下「μW−PC
VD法」と記す)が提案されている。μW−PCVD法
は、他の方法に比べてデポジション速度および原料ガス
利用効率が高いという利点を有し、堆積膜の生産性の向
上や、コストの低減の観点から、工業的に注目を集めて
いる。前記のような利点を生かしたμW−PCVD装置
の1つの例が、特開昭60−186849号公報に記載
されている。この公報に記載の装置は、マイクロ波エネ
ルギーの導入手段をほぼ取り囲むように基体を配置して
内部チャンバー(すなわち放電空間)を形成してガス利
用効率を高めるようにしたものである。
In order to solve the problems of the RF plasma CVD method, in recent years, a microwave plasma CVD method (hereinafter referred to as "μW-PC") using microwave glow discharge decomposition has been developed.
VD method) has been proposed. The μW-PCVD method has the advantage of higher deposition speed and raw material gas utilization efficiency than other methods, and is attracting industrial attention from the viewpoint of improving the productivity of deposited films and reducing costs. ing. An example of a .mu.W-PCVD apparatus that takes advantage of the above-mentioned advantages is described in Japanese Patent Application Laid-open No. 186849/1984. In the device described in this publication, a base body is arranged so as to substantially surround a means for introducing microwave energy to form an internal chamber (ie, a discharge space) to improve gas utilization efficiency.

【0005】また、特開昭61−283116号公報に
は、半導体部材製造用の改良形マイクロ波技術が開示さ
れている。すなわちこの公報は、プラズマ空間中にプラ
ズマ電位制御として電極を設け、この電極に所望の電圧
を添加して堆積膜へのイオン衝撃を制御しながら膜堆積
を行なうようにして堆積膜の特性を向上させる技術を開
示している。
Furthermore, Japanese Patent Laid-Open No. 61-283116 discloses an improved microwave technique for manufacturing semiconductor components. In other words, this publication discloses that an electrode is provided in the plasma space to control the plasma potential, and a desired voltage is applied to this electrode to perform film deposition while controlling ion bombardment to the deposited film, thereby improving the properties of the deposited film. Discloses technology that allows

【0006】これらの従来の方法により、膜厚が比較的
厚く、良好な電気特性を有する光導電性材料を、ある程
度高い堆積速度と原料ガスの利用効率で製造することが
可能となった。
[0006] These conventional methods have made it possible to produce a photoconductive material having a relatively thick film thickness and good electrical properties at a reasonably high deposition rate and raw material gas utilization efficiency.

【0007】この様にして改良された従来のμW−PC
VD法による堆積膜形成装置は、例えば電子写真用感光
体の製造の場合には、代表的には、図1の模式的縦断面
図及び図2の模式的横断面図(図2は、図1に示す装置
の模式的横断面図である)に示されている装置構成のも
のである。
Conventional μW-PC improved in this way
For example, in the case of manufacturing an electrophotographic photoreceptor, a deposited film forming apparatus using the VD method is typically used in the schematic vertical cross-sectional view of FIG. 1 and the schematic cross-sectional view of FIG. Fig. 1 is a schematic cross-sectional view of the apparatus shown in Fig. 1).

【0008】図1及び図2において101は反応容器で
あり、真空気密化構造をなしている。また、102はマ
イクロ波電力を反応容器内に効率よく透過し、かつ真空
気密を保持し得るような材料(例えば石英ガラス、アル
ミナセラミックス等)で形成されたマイクロ波導入用誘
電体窓である。103はマイクロ波電力の伝送部で導波
管より成っており、スタブチューナー(図示せず)、ア
イソレーター(図示せず)を介してマイクロ波電源(図
示せず)に接続されている。誘電体窓102は導波管1
03の壁に気密封止されている。104は一端が反応容
器101内に開口し、他端が排気装置(図示せず)に連
通している排気管である。106は複数の導電性円筒形
基体105により包囲されて形成された放電空間を示す
。108はプラズマ電位を制御するための外部電気バイ
アス(以下「外部バイアス」と記す)を与えるための電
極であり、電源109により直流または交流電圧を印加
する。なお、いずれの導電性円筒形基体も、円筒形のホ
ルダー上に設置され、ヒーター107により加熱され、
各個のホルダーは、駆動手段(回転モーター)110に
より、適宜回転されるようになされている。
In FIGS. 1 and 2, 101 is a reaction vessel, which has a vacuum-tight structure. Further, 102 is a dielectric window for introducing microwaves made of a material (for example, quartz glass, alumina ceramics, etc.) that can efficiently transmit microwave power into the reaction vessel and maintain vacuum tightness. Reference numeral 103 denotes a microwave power transmission section, which is made of a waveguide and is connected to a microwave power source (not shown) via a stub tuner (not shown) and an isolator (not shown). The dielectric window 102 is the waveguide 1
It is hermetically sealed in the wall of 03. Reference numeral 104 is an exhaust pipe whose one end opens into the reaction vessel 101 and whose other end communicates with an exhaust system (not shown). Reference numeral 106 indicates a discharge space surrounded by a plurality of conductive cylindrical substrates 105. Reference numeral 108 denotes an electrode for applying an external electric bias (hereinafter referred to as "external bias") for controlling the plasma potential, and a DC or AC voltage is applied by a power source 109. Note that both conductive cylindrical substrates are placed on a cylindrical holder and heated by a heater 107.
Each holder is appropriately rotated by a driving means (rotary motor) 110.

【0009】こうした堆積形成装置による堆積膜形成は
、以下のようにして行なわれる。
[0009] Formation of a deposited film using such a deposition forming apparatus is carried out as follows.

【0010】まず真空ポンプ(図示せず)により、排気
管104を介して反応容器101内を排気し、この反応
容器内の圧力即ち内圧を1×10−7Torr以下程度
に調整する。ついでヒーター107により、導電性円筒
形基体105を膜堆積に好適な温度に加熱保持する。
First, the inside of the reaction vessel 101 is evacuated by a vacuum pump (not shown) through the exhaust pipe 104, and the pressure inside the reaction vessel, that is, the internal pressure is adjusted to about 1×10 −7 Torr or less. Next, the conductive cylindrical substrate 105 is heated and maintained at a temperature suitable for film deposition by the heater 107.

【0011】この状態で、原料ガス、例えばアモルファ
スシリコン堆積膜を形成する場合であれば、シランガス
、水素ガス等の原料ガスを、ガス導入管111を介して
反応容器101内に導入する。次にマイクロ波電源(図
示せず)により周波数500MHz以上、好ましくは2
.45GHzのマイクロ波を発生させ、このマイクロ波
導波管103および誘電体窓102を介して反応容器1
01内に導入する。これと併行して、放電空間106に
設けられた電極108に、外部バイアスとして電源10
9から、例えば直流電圧を印加する。かくして複数の導
電性円筒形基体105により囲まれて形成された放電空
間106において、原料ガスはマイクロ波のエネルギー
により励起されて解離し、全ての導電性円筒形基体10
5の表面に堆積膜の形成がなされる。この時、すべての
導電性円筒形基体105を基体母線方向の中心軸を中心
として回転させることにより、個々の導電性円筒形基体
についてその全表面に堆積膜が形成される。
In this state, a raw material gas such as silane gas or hydrogen gas is introduced into the reaction vessel 101 through the gas introduction pipe 111 if an amorphous silicon deposited film is to be formed. Next, a microwave power source (not shown) is used to generate a frequency of 500 MHz or more, preferably 2
.. A microwave of 45 GHz is generated and transmitted to the reaction vessel 1 via the microwave waveguide 103 and the dielectric window 102.
Introduced into 01. In parallel with this, a power source 10 is applied to the electrode 108 provided in the discharge space 106 as an external bias.
From step 9, for example, a DC voltage is applied. In the discharge space 106 formed by being surrounded by the plurality of conductive cylindrical substrates 105, the raw material gas is excited by the microwave energy and dissociated, and all the conductive cylindrical substrates 10 are dissociated.
A deposited film is formed on the surface of 5. At this time, by rotating all the conductive cylindrical substrates 105 about the central axis in the direction of the substrate generatrix, a deposited film is formed on the entire surface of each conductive cylindrical substrate.

【0012】0012

【発明が解決しようとする課題】このような従来のμW
−PCVD法による堆積膜形成装置及び方法によれば、
ある程度の面積では、比較的容易に実用的な特性と均一
性を持つ堆積膜を得ることが可能である。しかし、これ
らの従来のμW−PCVD法による堆積膜形成方法では
、例えば電子写真用感光体のような大面積の堆積膜を形
成する場合、特に良好な特性の堆積膜を得るために外部
バイアス電圧を印加した場合、得られた堆積膜の表面に
曇り状のしみ(以下「しみ」と記す)が生じる場合があ
った。この様な「しみ」は、堆積膜の外観上の品質を著
しく悪化させ、いわゆる外観不良になるばかりでなく、
その特性にまでも影響を与えるものであり、堆積膜を生
産する上での収率(歩留まり)を悪化させる原因になっ
ていた。
[Problem to be solved by the invention] Such conventional μW
- According to the deposited film forming apparatus and method using the PCVD method,
For a certain area, it is relatively easy to obtain a deposited film with practical characteristics and uniformity. However, in these conventional methods for forming a deposited film using the μW-PCVD method, when forming a deposited film with a large area such as a photoreceptor for electrophotography, an external bias voltage is required to obtain a deposited film with particularly good characteristics. When this was applied, cloudy stains (hereinafter referred to as "stains") were sometimes generated on the surface of the resulting deposited film. Such "stains" not only significantly deteriorate the quality of the appearance of the deposited film, resulting in so-called poor appearance, but also
This even affects the properties of the deposited film, and has been a cause of deterioration of the yield in producing the deposited film.

【0013】[0013]

【課題を解決するための手段】本発明の目的は、上述の
ごとき従来の堆積膜形成方法に於ける諸問題を克服して
、半導体デバイス、電子写真用感光体デバイス、画像入
力用ラインセンサー、光起電力デバイス、撮像デバイス
、薄膜トランジスター、その他各種エレクトロニクス素
子、光学素子等に用いる素子部材等に有用な優れた特性
を有する機能性堆積膜を、μW−PCVD法により、高
速堆積速度で、且つ安定に、そして歩留まり良く形成し
得る、改良された堆積膜形成方法を提供することにある
[Means for Solving the Problems] An object of the present invention is to overcome the problems in the conventional deposited film forming method as described above, and to improve semiconductor devices, electrophotographic photoreceptor devices, line sensors for image input, Functional deposited films with excellent properties useful for element members used in photovoltaic devices, imaging devices, thin film transistors, various other electronic devices, optical devices, etc. can be produced at a high deposition rate and by the μW-PCVD method. An object of the present invention is to provide an improved method for forming a deposited film that can be formed stably and with a high yield.

【0014】本発明の他の目的は、大面積にわたって均
質な特性の高品位な機能性堆積膜を形成する方法を提供
することにある。
Another object of the present invention is to provide a method for forming a high quality functional deposited film with uniform properties over a large area.

【0015】本発明のさらに他の目的は、アモルファス
シリコン堆積膜等の非単結晶質堆積膜であって、外観及
び特性に優れた膜を形成し得る、μW−PCVD法によ
る改良された堆積膜形成方法を提供することにある。
Still another object of the present invention is to provide a non-single-crystalline deposited film such as an amorphous silicon deposited film, which is improved by the μW-PCVD method and can form a film with excellent appearance and properties. The object of the present invention is to provide a forming method.

【0016】本発明者らは、従来の堆積膜形成方法にお
ける前述の問題を克服して、前述の本発明の目的を達成
すべく鋭意研究を重ねたところ、以下に述べるような知
見を得た。
[0016] The present inventors have conducted intensive research to overcome the above-mentioned problems in the conventional deposited film forming method and achieve the above-mentioned object of the present invention, and have obtained the following findings. .

【0017】本発明は、この知見に基づいて完成に至っ
たものであり、その骨子とするところは、実質的に密封
し得る反応容器内に放電空間を取り囲むように導電性基
体を配置し、マイクロ波導入手段を設け、原料ガスに由
来する成膜に寄与する反応物質を含む放電プラズマを形
成し、放電空間中に設けた電極に電圧を印加して、前記
基体表面に堆積膜を形成する方法において、前記マイク
ロ波プラズマを生起せしめる時点に於て、前記電極に印
加する電圧を導電性基体に対して0Vとし、放電が生起
した後にこのマイクロ波電力を堆積膜の形成に必要な所
望の値に調節した後に、前記電極に所望の電圧を印加す
る工程を有する事を特徴とした堆積膜形成方法である。
The present invention has been completed based on this knowledge, and its gist is that a conductive substrate is placed in a reaction vessel that can be substantially sealed so as to surround a discharge space, A microwave introducing means is provided to form a discharge plasma containing a reactant that contributes to film formation derived from the raw material gas, and a voltage is applied to an electrode provided in the discharge space to form a deposited film on the surface of the substrate. In the method, at the time of generating the microwave plasma, the voltage applied to the electrode is set to 0 V with respect to the conductive substrate, and after the discharge occurs, the microwave power is applied to the desired level necessary for forming the deposited film. This method of forming a deposited film is characterized by comprising a step of applying a desired voltage to the electrode after adjusting the voltage to a desired value.

【0018】以下、本発明者らが実験的に得た知見およ
び本発明の内容について説明する。従来のマイクロ波プ
ラズマCVD法では、マイクロ波の周波数が、例えば2
.45GHzというように非常に大きいため、原料ガス
の分解により生じた電子やイオンなどによって形成され
るイオンシースが非常に狭いものとなる。そのため、従
来のマイクロ波プラズマCVD法では、支持体上の堆積
膜及び、堆積膜表面の堆積膜の成長領域での堆積膜形成
用の活性種の表面移動度が、プラズマ温度や支持体温度
で一義的に決められてしまうため、堆積膜の構造や電気
的特性を向上させるに十分な程度まで大きくすることが
出来なかった。
[0018] The findings experimentally obtained by the present inventors and the content of the present invention will be explained below. In the conventional microwave plasma CVD method, the frequency of the microwave is, for example, 2
.. Since the frequency is as large as 45 GHz, the ion sheath formed by electrons, ions, etc. generated by decomposition of the source gas becomes extremely narrow. Therefore, in the conventional microwave plasma CVD method, the surface mobility of the active species for forming the deposited film in the deposited film on the support and in the growth region of the deposited film on the surface of the deposited film varies depending on the plasma temperature and the support temperature. Since it is uniquely determined, it has not been possible to increase the size to a sufficient extent to improve the structure and electrical characteristics of the deposited film.

【0019】すなわち、プラズマCVD法により堆積膜
を形成する場合、基体表面では、堆積膜表面からの水素
原子の脱離や、構成原子がより安定な結合をするための
再配置が起こる。これらの反応は特性の良い堆積膜を得
るためには欠くことのできないものであり、一般に熱エ
ネルギーによって促進される。ところがマイクロ波プラ
ズマCVD法で高速に堆積膜を基体上に形成すると、基
体の熱だけでは充分な表面反応を起こすためにはエネル
ギーが不足してしまう。
That is, when a deposited film is formed by plasma CVD, hydrogen atoms are removed from the surface of the deposited film and constituent atoms are rearranged to form more stable bonds on the surface of the substrate. These reactions are essential for obtaining a deposited film with good properties, and are generally promoted by thermal energy. However, when a deposited film is formed on a substrate at high speed by microwave plasma CVD, the heat of the substrate alone is insufficient in energy to cause a sufficient surface reaction.

【0020】この様なμW−PCVD法の問題点を解決
し、良好な構造や電気特性を有する堆積膜を得る方法と
して、特開昭61−283116号公報に示されている
ように、外部バイアスをマイクロ波プラズマ放電と併用
する方法が提案されている。すなわち、放電空間に電極
を設け、この電極に外部バイアス電圧を印加し、プラズ
マと導電性基体との間に電界をかけ、導電性基体上ある
いは堆積した膜にイオン衝撃を与えることにより局所的
なアニールを行ない、表面反応を促進しすることができ
る。このような意味で、外部バイアスは、μW−PCV
D法で高速な堆積膜の形成を行う上で、非常に有効な技
術である。
[0020] As a method for solving the problems of the μW-PCVD method and obtaining a deposited film having good structure and electrical characteristics, an external bias method is proposed as shown in Japanese Patent Application Laid-Open No. 61-283116. A method has been proposed in which this method is used in conjunction with microwave plasma discharge. That is, an electrode is provided in the discharge space, an external bias voltage is applied to this electrode, an electric field is applied between the plasma and the conductive substrate, and ion bombardment is applied to the conductive substrate or the deposited film, thereby generating localized energy. Annealing can be performed to promote surface reactions. In this sense, the external bias is μW-PCV
This is a very effective technique for forming deposited films at high speed using the D method.

【0021】しかしながら、外部バイアスを用いて堆積
膜を形成した場合、堆積膜の表面の一部に白濁した曇り
状の「しみ」を生じることが多くあった。この「しみ」
は、電子顕微鏡による堆積膜の表面の観察においても、
堆積膜の堆積過程において生ずる膜の構造の粒径のわず
かな差異として、正常な部分と区別されるに過ぎないが
、表面の肉眼による観察では、明かに曇った艶の無い部
分として正常な部分と区別され、堆積膜の外観を著しく
悪化させていた。更には、堆積膜の特性にも影響を与え
、例えば電子写真用感光体の場合には、画像上の濃度の
ムラとなるなどの特性不良となっていた。
However, when a deposited film is formed using an external bias, cloudy cloudy "stains" often appear on a portion of the surface of the deposited film. This "stain"
Also, when observing the surface of a deposited film using an electron microscope,
Although it can only be distinguished from a normal part as a slight difference in the grain size of the film structure that occurs during the deposition process, when observing the surface with the naked eye, the normal part is clearly cloudy and lacks luster. This significantly worsened the appearance of the deposited film. Furthermore, the properties of the deposited film are affected, and in the case of electrophotographic photoreceptors, for example, the properties of the deposited film are poor, such as uneven density on the image.

【0022】本発明者らは、このような「しみ」が生ず
る原因を詳しく解析し、更にこれを解決し得る手段につ
いて実験を重ねた結果、堆積膜形成の初期の放電が生成
した瞬間の外部バイアス電圧が「しみ」発生と関係して
いることが明らかなり、更に放電の生成時に外部バイア
ス電圧を導電性基体に対して0Vにし、マイクロ波電力
を堆積膜形成に必要な所望の電力に調整した後に、所望
の外部バイアス電圧を印加することで、「しみ」の発生
を防止し、収率の向上に寄与するばかりでなく、堆積膜
の特性ムラを改善し、品質の向上が達成されるという知
見を得るに至った。
The present inventors analyzed in detail the causes of such "stains" and conducted repeated experiments on means to solve this problem. As a result, the inventors found that the external It became clear that the bias voltage was related to the generation of "spots", and furthermore, when generating the discharge, the external bias voltage was set to 0 V with respect to the conductive substrate, and the microwave power was adjusted to the desired power necessary for forming the deposited film. By applying a desired external bias voltage after the deposition, not only does it prevent the occurrence of "stains" and contribute to improving the yield, but it also improves the uneven properties of the deposited film and improves its quality. We have come to this conclusion.

【0023】以下、本発明者らが得た知見についてより
詳細に説明する。
[0023] The findings obtained by the present inventors will be explained in more detail below.

【0024】「しみ」の発生について、詳しい機構は依
然不明な点も残されているが、おおよそ次のような機構
であると考えられる。
Although the detailed mechanism for the generation of "stains" remains unclear, it is thought that the mechanism is roughly as follows.

【0025】堆積膜を形成するために放電空間内に原料
ガスを導入し、マイクロ波電力を投入して、放電を生起
させる時、放電を生起させた瞬間に発生した活性種は非
常に高い過剰なエネルギーを与えられ、これらの活性種
が外部バイアス電圧によって加速されたイオンによりて
衝撃を与えられることで、基体表面あるいは初期の堆積
膜になんらかの微少なダメージを与え、それが膜の堆積
を進行させるにしたがって増長され、「しみ」として観
測されるに至り、また堆積膜の特性にも影響を与えてい
るものと考えられる。
When a raw material gas is introduced into the discharge space and microwave power is applied to generate a discharge in order to form a deposited film, the active species generated at the moment of generation of the discharge have a very high excess. These active species are bombarded by ions accelerated by an external bias voltage, causing some slight damage to the substrate surface or the initial deposited film, which progresses the film deposition. As the stain increases, it increases and is observed as a "stain", and it is thought that it also affects the characteristics of the deposited film.

【0026】そこで本発明者らは、このような放電が生
起された直後のダメージを無くし、「しみ」の発生を防
止する手段を得るべく、実験を重ねた結果、放電を生起
させる瞬間の外部バイアス電圧を0Vとし、放電を生起
させた後にマイクロ波電力を膜堆積に必要な所望の電力
に調整し、その後に所望の外部バイアス電圧を電極に印
加することで、「しみ」の発生を防止でき、更に特性の
均質化に効果があることが明かとなり、本発明を完成す
るに至った。
[0026] The inventors of the present invention have conducted repeated experiments in order to eliminate the damage immediately after such discharge occurs and to obtain a means to prevent the occurrence of "stains". By setting the bias voltage to 0V and generating a discharge, the microwave power is adjusted to the desired power required for film deposition, and then the desired external bias voltage is applied to the electrodes to prevent the occurrence of "stains". It has become clear that this method is effective in homogenizing properties, and the present invention has been completed.

【0027】以下、図1、図2のような本発明を実施す
るのに好適な堆積膜形成装置を用いて、本発明を実施す
る手順について説明する。
Hereinafter, a procedure for implementing the present invention will be explained using a deposited film forming apparatus suitable for implementing the present invention as shown in FIGS. 1 and 2.

【0028】まず、真空ポンプ(図示せず)により排気
管104を介して、反応容器101内を排気し、この反
応容器内の圧力即ち内圧を1×10−7Torr以下程
度に調整する。ついでヒーター107により、導電性円
筒形基体105を膜堆積に好適な温度に加熱保持する。
First, the inside of the reaction vessel 101 is evacuated by a vacuum pump (not shown) through the exhaust pipe 104, and the pressure inside the reaction vessel, that is, the internal pressure is adjusted to about 1×10 −7 Torr or less. Next, the conductive cylindrical substrate 105 is heated and maintained at a temperature suitable for film deposition by the heater 107.

【0029】そこで原料ガスをガス導入管111を介し
て、例えばアモルファスシリコン堆積膜を形成する場合
であれば、シランガス、水素ガス等の原料ガスを反応容
器101内に導入し、内圧を例えば1×10−2以下の
真空度を維持するようにする。次に、マイクロ波電源(
図示せず)により発生させた2.45GHzのマイクロ
波をスタブチューナー(図示せず)、導波管103を通
じマイクロ波導入用誘電体窓102を介して放電空間1
06内に導入するマイクロ波の電力を徐々に上げていき
、放電を生起させた後に、堆積膜の形成に必要な所望の
マイクロ波電力に調整する。その後、放電空間内106
に設けられた電極108に、外部バイアスとして電源1
09から所定の電圧を印加する。かくして複数の導電性
円筒形基体105により囲まれて形成された放電空間1
06において、原料ガスはマイクロ波のエネルギーによ
り励起されて解離し、中性ラジカル粒子、イオン粒子、
電子等が生成され、それらが相互に反応して、導電性円
筒形基体105の放電空間106側表面に堆積膜が形成
されるところとなる。そして、すべての導電性円筒形基
体105を基体母線方向中心軸の回りに回転させること
により、個々の導電性円筒形基体についてその全表面に
堆積膜が形成される。
Therefore, in the case of forming, for example, an amorphous silicon deposited film, a raw material gas such as silane gas or hydrogen gas is introduced into the reaction vessel 101 through the gas introduction pipe 111, and the internal pressure is adjusted to 1×, for example. Try to maintain a vacuum level of 10-2 or less. Next, the microwave power source (
The 2.45 GHz microwave generated by
The power of the microwave introduced into the chamber is gradually increased to generate a discharge, and then adjusted to the desired microwave power necessary for forming a deposited film. After that, inside the discharge space 106
A power supply 1 is applied as an external bias to the electrode 108 provided in the
A predetermined voltage is applied from 09 onwards. A discharge space 1 is thus formed surrounded by a plurality of conductive cylindrical substrates 105.
In step 06, the raw material gas is excited by microwave energy and dissociated to form neutral radical particles, ionic particles,
Electrons and the like are generated and react with each other to form a deposited film on the surface of the conductive cylindrical substrate 105 on the discharge space 106 side. Then, by rotating all the conductive cylindrical substrates 105 around the central axis in the direction of the substrate generatrix, a deposited film is formed on the entire surface of each conductive cylindrical substrate.

【0030】ここで、堆積膜を形成するに必要なマイク
ロ波電力は、放電を安定して維持することのできる最小
の電力以上で、電子写真感光体の作製のように長時間放
電してもマイクロ波透過窓の破損や膜剥がれを起こさな
い最大の電力以下の範囲にある投入マイクロ波電力であ
る。具体的には、作成する堆積膜の種類や放電空間の内
圧によって適切に決定されるが、300乃至2000W
の範囲が好ましい。
[0030] Here, the microwave power required to form the deposited film is at least the minimum power capable of stably maintaining the discharge, and even when discharging for a long time as in the production of an electrophotographic photoreceptor. The input microwave power is within the maximum power range that does not cause damage to the microwave transmission window or peeling of the film. Specifically, it is determined appropriately depending on the type of deposited film to be created and the internal pressure of the discharge space, but it is 300 to 2000 W.
A range of is preferred.

【0031】本発明においては、放電が生起したときか
ら、マイクロ波電力を所望の電力に調整し放電空間内に
設置された電極に外部バイアス電圧を印加するまでの堆
積膜の膜厚は、いずれの膜厚でも「しみ」の発生防止に
効果が認められるが、放電が生起してよりマイクロ波電
力を膜堆積に必要電力の調整する時間的な要請から、膜
の堆積条件にもよるが、0.01μm以上が望ましい。 また堆積膜の特性に影響を与えないためには3μm以下
の膜厚であることが望ましく、更に1μm以下の膜厚が
好適である。
In the present invention, the thickness of the deposited film from the time when the discharge occurs until the time when the microwave power is adjusted to the desired power and the external bias voltage is applied to the electrode installed in the discharge space is determined depending on the thickness of the deposited film. Although the effect of preventing "stains" is recognized even with a film thickness of 100 ml, it depends on the film deposition conditions due to the need for time to adjust the microwave power necessary for film deposition due to the generation of electric discharge. A thickness of 0.01 μm or more is desirable. Further, in order not to affect the characteristics of the deposited film, the film thickness is preferably 3 μm or less, and more preferably 1 μm or less.

【0032】更に上述のような実験を通じ、以下のよう
な知見を得た。
Further, through the above-mentioned experiments, the following findings were obtained.

【0033】本発明において、反応容器の材質としては
、真空気密を保持し、マイクロ波を反射するものであれ
ば良いが、加工性、耐久性の面から、アルミニウム、ス
テンレスなどが最適である。
In the present invention, the reaction vessel may be made of any material as long as it maintains vacuum tightness and reflects microwaves, but aluminum, stainless steel, etc. are most suitable from the viewpoint of workability and durability.

【0034】本発明において、マイクロ波の反応容器ま
での導入方法としては導波管による方法が挙げられ、反
応容器内への導入は、1つまたは複数の誘電体窓から導
入する方法が挙げられる。この時、反応容器内へのマイ
クロ波の導入窓の材質としてはアルミナ(Al2O3)
、窒化アルミニウム(AlN)、窒化ほう素(BN)、
窒化珪素(SiN)、炭化珪素(SiC)、酸化珪素(
SiO2)、酸化ベリリウム(BeO)、テフロン、ポ
リスチレン等、マイクロ波の損失の少ない材料が通常使
用される。
[0034] In the present invention, a method for introducing the microwave to the reaction vessel includes a method using a waveguide, and a method for introducing the microwave into the reaction vessel includes a method for introducing it through one or more dielectric windows. . At this time, the material of the microwave introduction window into the reaction vessel is alumina (Al2O3).
, aluminum nitride (AlN), boron nitride (BN),
Silicon nitride (SiN), silicon carbide (SiC), silicon oxide (
Materials with low microwave loss are typically used, such as SiO2), beryllium oxide (BeO), Teflon, and polystyrene.

【0035】本発明では、堆積膜形成時の放電空間の圧
力が効果に影響を与えることはないが、特に100mT
orr以下、好ましくは50mTorr以下、最適には
30mTorr以下で特に良好な結果が再現性良く得ら
れた。
In the present invention, the pressure in the discharge space during the formation of the deposited film does not affect the effect;
Particularly good results were obtained with good reproducibility at a temperature of 30 mTorr or less, preferably 50 mTorr or less, and optimally 30 mTorr or less.

【0036】本発明における基体の加熱手段は、真空仕
様の発熱体であればよく、より具体的にはシース状ヒー
ターの巻き付けヒーター、板状ヒーター、セラミックス
ヒーター等の電気抵抗発熱体、ハロゲンランプ、赤外線
ランプ等の熱放射ランプ発熱体、液体、気体等を温媒と
し熱交換手段による発熱体等が挙げられる。加熱手段の
表面材質は、ステンレス、ニッケル、アルミニウム、銅
等の金属類、セラミックス、耐熱性高分子樹脂等を使用
することができる。
The heating means for the substrate in the present invention may be any vacuum type heating element, and more specifically, it may be a sheathed heater, a plate heater, an electric resistance heating element such as a ceramic heater, a halogen lamp, Examples include a heat radiation lamp heating element such as an infrared lamp, a heating element using a heat exchange means using liquid, gas, etc. as a heating medium, and the like. As the surface material of the heating means, metals such as stainless steel, nickel, aluminum, and copper, ceramics, heat-resistant polymer resins, and the like can be used.

【0037】また上記以外にも、反応容器以外に加熱専
用の容器を設け、加熱した後、反応容器内に真空中で基
体を搬送する等の方法も使用することができる。
In addition to the above, it is also possible to use a method in which a heating-only container is provided in addition to the reaction container, and after heating, the substrate is transported into the reaction container in a vacuum.

【0038】本発明では、堆積膜の原料ガスとしては、
例えばシラン(SiH4)、ジシラン(Si2H6)等
のアモルファスシリコン形成原料ガス、ゲルマン(Ge
H4)、メタン(CH4)等の他の機能性堆積膜形成原
料ガスまたはそれらの混合ガスが挙げられる。
In the present invention, the raw material gas for the deposited film is as follows:
For example, amorphous silicon forming raw material gas such as silane (SiH4) and disilane (Si2H6), germane (Ge
Other functional deposited film forming raw material gases such as H4), methane (CH4), or mixed gases thereof may be used.

【0039】希釈ガスとしては水素(H2)、アルゴン
(Ar)、ヘリウム(He)等が挙げられる。
Examples of the diluent gas include hydrogen (H2), argon (Ar), and helium (He).

【0040】又、堆積膜のバンドギャップ幅を変化させ
る等の特性改善ガスとしては、窒素(N2)、アンモニ
ア(NH3)等の窒素原子を含む元素、酸素(O2)、
酸化窒素(NO)、酸化二窒素(N2O)等酸素原子を
含む元素、メタン(CH4)、エタン(C2H6)、エ
チレン(C2H4)、アセチレン(C2H2)、プロパ
ン(C3H8)等の炭化水素、四フッ化珪素(SiF4
)、六フッ化二珪素(Si2F6)、四フッ化ゲルマニ
ウム(GeF4)等の弗素化合物またはこれらの混合ガ
スが挙げられる。
[0040] Gases for improving properties such as changing the band gap width of the deposited film include elements containing nitrogen atoms such as nitrogen (N2) and ammonia (NH3), oxygen (O2),
Elements containing oxygen atoms such as nitrogen oxide (NO) and dinitrogen oxide (N2O), hydrocarbons such as methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), and propane (C3H8), and tetrafluorocarbons. Silicon oxide (SiF4
), fluorine compounds such as disilicon hexafluoride (Si2F6), germanium tetrafluoride (GeF4), or a mixed gas thereof.

【0041】また、ドーピングを目的としてジボラン(
B2H6)、フッ化ほう素(BF3)、ホスフィン(P
H3)等のドーパントガスを同時に放電空間に導入して
も本発明は同様に有効である。
[0041] Diborane (
B2H6), boron fluoride (BF3), phosphine (P
The present invention is equally effective even if a dopant gas such as H3) is simultaneously introduced into the discharge space.

【0042】本発明では、電極と基体間に発生させる電
界は直流電界が好ましく、又、電界の向きは電極から導
電性基体に向けるのがより好ましい。電界を発生させる
ために電極に印加する直流電圧の平均値は、15V以上
300V以下、好ましくは、30V以上200V以下が
適する。直流電圧波形としては、特に制限はなく、本発
明では有効である。つまり、時間によって電圧の向きが
変化しなければよく、例えば、時間に対して変化しない
定電圧はもちろん、パルス状の電圧、及び整流器により
整流された、時間とともに値が変化する脈動電圧でも本
発明は有効である。
In the present invention, the electric field generated between the electrode and the substrate is preferably a DC electric field, and it is more preferable that the electric field is directed from the electrode toward the conductive substrate. The average value of the DC voltage applied to the electrodes to generate an electric field is preferably 15 V or more and 300 V or less, preferably 30 V or more and 200 V or less. There are no particular restrictions on the DC voltage waveform, which is effective in the present invention. In other words, the direction of the voltage does not need to change with time. For example, the present invention can apply not only a constant voltage that does not change with time, but also a pulsed voltage and a pulsating voltage that is rectified by a rectifier and whose value changes with time. is valid.

【0043】また、交流電圧を印加する事も本発明では
有効である。交流の周波数は、いかなる周波数でも問題
はなく、実用的には低周波では50Hzまたは60Hz
、高周波では13.56MHzが適する。交流の波形と
してはサイン波でも矩形波でも、他のいずれの波形でも
よいが、実用的には、サイン波が適する。但し、電圧は
いずれの場合も実効値を言う。
It is also effective in the present invention to apply an alternating current voltage. There is no problem with the frequency of alternating current, and for practical purposes, 50Hz or 60Hz is the lowest frequency.
, 13.56 MHz is suitable for high frequency. The alternating current waveform may be a sine wave, a rectangular wave, or any other waveform, but a sine wave is suitable for practical use. However, in both cases, the voltage refers to the effective value.

【0044】本発明において、光受容層を形成するとき
に放電空間に設けた電極に印加する外部バイアス電圧は
、堆積膜の形成が終了するまで一定に保っても良いし、
層によって外部バイアス電圧の値を変化させてもよい。 さらに、放電が生起してから所定の外部バイアス電圧を
印加した後は、堆積膜の形成に従って外部バイアス電圧
の値を徐々に増加させる事も本発明では効果的である。
In the present invention, the external bias voltage applied to the electrode provided in the discharge space when forming the photoreceptive layer may be kept constant until the formation of the deposited film is completed;
The value of the external bias voltage may vary from layer to layer. Furthermore, it is also effective in the present invention to gradually increase the value of the external bias voltage as the deposited film is formed after a predetermined external bias voltage is applied after discharge occurs.

【0045】電極の大きさ及び形状は、放電を乱さない
ようなものであれば良いが、実用上は直径1mm以上5
cm以下の円筒状の形状が好ましい。電極の長さも、基
体に電界が均一にかかる長さであれば任意に設定できる
[0045] The size and shape of the electrode may be such as long as it does not disturb the discharge, but in practice it is recommended to use a diameter of 1 mm or more
A cylindrical shape of cm or less is preferable. The length of the electrode can also be set arbitrarily as long as the electric field is uniformly applied to the base.

【0046】電極の材質としては、表面が導電性となる
ものであれば良く、例えば、ステンレス,Al,Cr,
Mo,Au,In,Nb,Te,V,Ti,Pt,Pd
,Fe等の金属、これらの合金、または表面を導電処理
したガラス、セラミックス、プラスチック等が本発明で
は通常使用される。
The material of the electrode may be any material whose surface is electrically conductive, such as stainless steel, Al, Cr,
Mo, Au, In, Nb, Te, V, Ti, Pt, Pd
, Fe and other metals, alloys thereof, glass, ceramics, plastics, etc. whose surfaces have been subjected to conductive treatment are generally used in the present invention.

【0047】導電性基体材料としては、例えば、ステン
レス,Al,Cr,Mo,Au,In,Nb,Te,V
,Ti,Pt,Pd,Fe等の金属、これらの合金また
は表面を導電処理したポリカーボネート等の合成樹脂、
ガラス、セラミックス、紙等が本発明では通常使用され
る。
[0047] Examples of the conductive base material include stainless steel, Al, Cr, Mo, Au, In, Nb, Te, and V.
, metals such as Ti, Pt, Pd, and Fe, alloys thereof, or synthetic resins such as polycarbonate whose surfaces are conductively treated,
Glass, ceramics, paper, etc. are commonly used in the present invention.

【0048】本発明での堆積膜形成時の基体温度にとく
に制限はなく、アモルファスシリコンを堆積する場合は
20℃以上500℃以下、好ましくは50℃以上450
℃以下が良好な効果を示すため好ましい。
[0048] There is no particular restriction on the substrate temperature during the formation of the deposited film in the present invention, and when depositing amorphous silicon, the temperature is 20°C or higher and 500°C or lower, preferably 50°C or higher and 450°C or higher.
It is preferable that the temperature is below .degree. C. because it shows good effects.

【0049】さらに本発明は、阻止型アモルファスシリ
コン感光体、高抵抗型アモルファスシリコン感光体等、
複写機またはプリンター用感光体のほか、良好な電気的
特性の機能性堆積膜を要求される他のいずれのデバイス
の作製にも応用が可能である。
Furthermore, the present invention provides a blocking type amorphous silicon photoreceptor, a high resistance type amorphous silicon photoreceptor, etc.
In addition to photoreceptors for copiers or printers, it can also be applied to the fabrication of any other device that requires a functional deposited film with good electrical properties.

【0050】本発明は、マイクロ波を使用するすべての
装置に適応が可能であるが、特に放電空間を囲むように
導電性基体を設け、導電性基体の少なくとも一端側から
導波管によりマイクロ波を導入し、放電空間に設けた電
極句に電圧を印加する構成の装置において大きな効果が
ある。
The present invention is applicable to all devices using microwaves, but in particular, a conductive base is provided to surround a discharge space, and microwaves are transmitted from at least one end of the conductive base by a waveguide. This method has a great effect on devices configured to apply a voltage to electrodes provided in a discharge space.

【0051】以下、実験例に従い、本発明のμW−PC
VD法による堆積膜形成方法の効果を説明する。実験例
1 図1及び図2に示したμW−PCVD法による堆積膜形
成装置を使用し、導電性基体として長さ358mm、外
径108mmのアルミニウム製シリンダーを用い、さき
に詳述した手順にしたがって、図3に示したように、導
電性円筒形基体201、光導電層202、表面層203
を、順次、表1に示す作製条件により形成して電子写真
用感光体を作成した。放電が生起してから、マイクロ波
電力を所定の電力に調整し、外部バイアス電圧を印加す
るまでの堆積膜の膜厚を0μm(放電が生起する前に外
部バイアス電圧を電極に印加しておく)から5μmまで
変化させて、それぞれ同一の条件で10ロットづつの電
子写真用感光体の作成を行った。
[0051] Hereinafter, according to an experimental example, μW-PC of the present invention
The effects of the VD method for forming a deposited film will be explained. Experimental Example 1 Using the μW-PCVD deposited film forming apparatus shown in FIGS. 1 and 2, an aluminum cylinder with a length of 358 mm and an outer diameter of 108 mm was used as the conductive substrate, and according to the procedure detailed above. , as shown in FIG. 3, a conductive cylindrical substrate 201, a photoconductive layer 202, a surface layer 203
were sequentially formed under the manufacturing conditions shown in Table 1 to produce an electrophotographic photoreceptor. After the discharge occurs, the microwave power is adjusted to a predetermined power and the thickness of the deposited film is 0 μm until the external bias voltage is applied (external bias voltage is applied to the electrode before the discharge occurs). ) to 5 μm, and 10 lots of electrophotographic photoreceptors were produced under the same conditions.

【0052】こうして作成した電子写真用感光体を、外
観上の「しみ」の発生を目視にて検査し、同一条件で作
成された電子写真用感光体のうち、「しみ」の発生した
ロット数が3ロット以上をのもの「△」、1ロット乃至
2ロットのものを「○」、「しみ」がまったく発生しな
かったものを「◎」として評価した。
The thus produced electrophotographic photoreceptor was visually inspected for the occurrence of "stains" on its appearance, and the number of lots in which "stains" occurred among the electrophotographic photoreceptors produced under the same conditions was determined. Those with 3 or more lots were evaluated as "△", those with 1 or 2 lots were evaluated as "○", and those with no "stains" at all were evaluated as "◎".

【0053】さらにこれらの電子写真用感光体を、キャ
ノン製複写機NP−7550を実験用に改造した装置に
セットし、帯電能、感度、残留電位の電位特性と、ハー
フトーン画像にて画像にて濃度ムラを評価した。これら
の結果を表2に示す。
Furthermore, these electrophotographic photoreceptors were set in a modified Canon NP-7550 copying machine for experimental purposes, and the potential characteristics of charging ability, sensitivity, and residual potential, as well as halftone images were measured. The density unevenness was evaluated. These results are shown in Table 2.

【0054】表2において帯電能、感度、残留電位、ハ
ーフトーン画像の濃度ムラの評価はそれぞれ、◎:良好
○:実用上問題なし △:実用上問題あり を示している。
In Table 2, the evaluations of charging ability, sensitivity, residual potential, and density unevenness of halftone images are as follows: ◎: Good ○: No problem in practical use △: Problem in practical use.

【0055】表2より放電を生起させてから外部バイア
ス電圧を印加することによって「しみ」の発生を防止す
ることができ、さらにハーフトーン画像における濃度ム
ラも改善されたことがわかる。また放電が生起してから
外部バイアス電圧を印加するまでの堆積膜に膜厚は3μ
mを越えると感度や残留電位に影響が出始めることもわ
かった。
Table 2 shows that by applying an external bias voltage after generating a discharge, the occurrence of "stains" can be prevented, and density unevenness in halftone images is also improved. Also, the thickness of the deposited film from the time the discharge occurs until the external bias voltage is applied is 3 μm.
It was also found that sensitivity and residual potential begin to be affected when m is exceeded.

【0056】[0056]

【実施例】以下に本発明の効果を実証するための具体的
実施例を説明するが、本発明はこれらによって何ら限定
されるものではない。
[Examples] Specific examples will be described below to demonstrate the effects of the present invention, but the present invention is not limited by these in any way.

【0057】(実施例1)図1及び図2に示したμW−
PCVD法による堆積膜形成装置を使用し、導電性基体
として長さ358mm、外径108mmのアルミニウム
製シリンダーを用い、さきに詳述した手順にしたがって
、図4に示したように、導電性円筒形基体301上に、
第1の光導電層302、第2の光導電層303、表面層
304を、順次、表3の条件にしたがって形成して電子
写真用感光体を10ロット作成した。また、第1の光導
電層において、放電を生起させてから、マイクロ波電力
を表3に示した電力に調整し、外部バイアス電圧を電極
に印加するまでの膜厚は、0.05μmとした。
(Example 1) μW- shown in FIGS. 1 and 2
Using a deposited film forming apparatus using the PCVD method and using an aluminum cylinder with a length of 358 mm and an outer diameter of 108 mm as a conductive substrate, a conductive cylindrical shape was formed as shown in FIG. 4 according to the procedure detailed above. On the base 301,
A first photoconductive layer 302, a second photoconductive layer 303, and a surface layer 304 were sequentially formed according to the conditions shown in Table 3 to produce 10 lots of electrophotographic photoreceptors. In addition, in the first photoconductive layer, the film thickness was 0.05 μm after the discharge was caused and the microwave power was adjusted to the power shown in Table 3 and the external bias voltage was applied to the electrode. .

【0058】(比較例)外部バイアス電圧を放電が生起
する前に電極に印加しておく以外は実施例1と同一の条
件で電子写真用感光体を10ロット作成した。
(Comparative Example) Ten lots of electrophotographic photoreceptors were prepared under the same conditions as in Example 1, except that an external bias voltage was applied to the electrodes before discharge occurred.

【0059】実施例1及び比較例にて作成した電子写真
用感光体を、外観上の「しみ」の発生を目視にて検査し
、同一条件で作成された電子写真用感光体のうち「しみ
」の発生したロット数が3ロット以上のものを「△」、
1ロット乃至2ロットのものを「○」、「しみ」がまっ
たく発生しなかったものを「◎」として評価した。
The electrophotographic photoreceptors prepared in Example 1 and Comparative Example were visually inspected for the occurrence of "stains" on the appearance. If the number of lots in which "" has occurred is 3 or more, "△"
1 to 2 lots were evaluated as "○", and those in which no "stain" occurred were evaluated as "◎".

【0060】さらにこれらの電子写真用感光体をキャノ
ン製複写機NP−7550を実験用に改造した装置にセ
ットし、帯電能、感度、残留電位の電位特性と、ハーフ
トーン画像にて濃度ムラを評価した。これらの結果を表
4に示す。
Furthermore, these electrophotographic photoreceptors were set in a modified Canon NP-7550 copying machine for experimental purposes, and the potential characteristics of charging ability, sensitivity, and residual potential, as well as density unevenness in halftone images, were investigated. evaluated. These results are shown in Table 4.

【0061】表4において帯電能、感度、残留電位、ハ
ーフトーン画像の濃度ムラの評価はそれぞれ、◎:良好
○:実用上問題なし △:実用上問題あり を示している。
In Table 4, the evaluations of chargeability, sensitivity, residual potential, and density unevenness of halftone images are as follows: ◎: Good ○: No practical problems △: Practical problems.

【0062】表4から本発明により「しみ」のない、電
位特性に優れ、更に、画像特性の均一性に優れた良好な
電子写真用感光体が得られることがわかった。
From Table 4, it was found that according to the present invention, a good electrophotographic photoreceptor having no "stains", excellent potential characteristics, and excellent uniformity of image characteristics could be obtained.

【0063】(実施例2)実施例1と同様の手順で図4
に示したように、導電性円筒形基体301上に、第1の
光導電層302、第2の光導電層303、表面層304
を、順次、表5に示した条件で形成して電子写真用感光
体を10ロット作成した。また、第1の光導電層におい
て、放電を生起させてから、マイクロ波電力を表5に示
した電力に調整し、外部バイアス電圧を電極に印加する
までの膜厚は、0.03μmとした。  こうして得ら
れた電子写真用感光体を実施例1と同様に電子写真特性
の評価を行ったところ、実施例1と同様に良好な結果が
得られた。
(Example 2) Using the same procedure as in Example 1, FIG.
As shown in FIG.
were sequentially formed under the conditions shown in Table 5 to produce 10 lots of electrophotographic photoreceptors. In addition, in the first photoconductive layer, the film thickness was 0.03 μm after the discharge was caused and the microwave power was adjusted to the power shown in Table 5 and the external bias voltage was applied to the electrode. . When the electrophotographic photoreceptor thus obtained was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0064】(実施例3)実施例1と同様の手順で図5
に示したように、導電性円筒形基体401上に、電荷注
入阻止層402、光導電層403、表面層404を、順
次、表6に示す条件で形成して電子写真用感光体を10
ロット作成した。また、電荷注入阻止層において、放電
を生起せしめてから、マイクロ波電力を表6に示した電
力に調整し、外部バイアス電圧を電極に印加するまでの
膜厚は、0.1μmとした。
(Example 3) Using the same procedure as in Example 1, FIG.
As shown in Table 6, a charge injection blocking layer 402, a photoconductive layer 403, and a surface layer 404 were sequentially formed on a conductive cylindrical substrate 401 under the conditions shown in Table 6 to prepare an electrophotographic photoreceptor.
A lot was created. Further, in the charge injection blocking layer, the film thickness from the time when a discharge was caused to the time when the microwave power was adjusted to the power shown in Table 6 and the external bias voltage was applied to the electrode was 0.1 μm.

【0065】こうして得られた電子写真用感光体を実施
例1と同様に電子写真特性の評価を行ったところ、実施
例1と同様に良好な結果が得られた。
When the thus obtained electrophotographic photoreceptor was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0066】(実施例4)実施例1と同様の手順で図4
に示したように、導電性円筒形基体301上に、第1の
光導電層302、第2の光導電層303、表面層304
を、順次、表7に示す条件で形成して電子写真用感光体
を10ロット作成した。また、第1の光導電層において
、放電を生起させてから、マイクロ波電力を表7に示し
た電力に調整し、外部バイアス電圧を電極に印加するま
での膜厚は、1μmとした。
(Example 4) Using the same procedure as in Example 1, FIG.
As shown in FIG.
were sequentially formed under the conditions shown in Table 7 to produce 10 lots of electrophotographic photoreceptors. Further, in the first photoconductive layer, the film thickness was 1 μm after the discharge was caused and the microwave power was adjusted to the power shown in Table 7 and the external bias voltage was applied to the electrode.

【0067】こうして得られた電子写真用感光体を実施
例1と同様に電子写真特性の評価を行ったところ、実施
例1と同様に良好な結果が得られた。
When the thus obtained electrophotographic photoreceptor was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0068】(実施例5)実施例1と同様の手順で図3
に示したように、導電性円筒形基体201上に、光導電
層202、表面層203を、順次、表8に示す条件で形
成して電子写真用感光体を10ロット作成した。また、
光導電層において、放電を生起させてから、マイクロ波
電力を表8に示した電力に調整し、外部バイアス電圧を
電極に印加するまでの膜厚は、1μmとした。
(Example 5) Using the same procedure as in Example 1, FIG.
As shown in Table 8, a photoconductive layer 202 and a surface layer 203 were sequentially formed on a conductive cylindrical substrate 201 under the conditions shown in Table 8 to produce 10 lots of electrophotographic photoreceptors. Also,
In the photoconductive layer, the film thickness was 1 μm after the discharge was generated, the microwave power was adjusted to the power shown in Table 8, and the external bias voltage was applied to the electrodes.

【0069】こうして得られた電子写真用感光体を実施
例1と同様に電子写真特性の評価を行ったところ、実施
例1と同様に良好な結果が得られた。
When the thus obtained electrophotographic photoreceptor was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0070】(実施例6)実施例1と同様の手順で図4
に示したように、導電性円筒形基体301上に、第1の
光導電層302、第2の光導電層303、表面層304
を、順次、表9に示す条件で形成して電子写真用感光体
を10ロット作成した。また、第1の光導電層において
、放電を生起させてから、マイクロ波電力を表9に示し
た電力に調整し、外部バイアス電圧を電極に印加するま
での膜厚は、0.03μmとした。
(Example 6) Using the same procedure as in Example 1, FIG.
As shown in FIG.
were sequentially formed under the conditions shown in Table 9 to produce 10 lots of electrophotographic photoreceptors. In addition, in the first photoconductive layer, the film thickness was 0.03 μm after the discharge was caused and the microwave power was adjusted to the power shown in Table 9 and the external bias voltage was applied to the electrode. .

【0071】こうして得られた電子写真用感光体を実施
例1と同様に電子写真特性の評価を行ったところ、実施
例1と同様に良好な結果が得られた。
When the thus obtained electrophotographic photoreceptor was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0072】(実施例7)実施例1と同様の手順で図4
に示すように、導電性円筒形基体301上に、第1の光
導電層302、第2の光導電層303、表面層304を
、順次、表10に示す条件で形成して電子写真用感光体
を10ロット作成した。また、第1の光導電層において
、放電を生起させてから、マイクロ波電力を表10に示
した電力に調整し、外部バイアス電圧を電極に印加する
までの膜厚は、0.1μmとした。
(Example 7) Using the same procedure as in Example 1, FIG.
As shown in Table 10, a first photoconductive layer 302, a second photoconductive layer 303, and a surface layer 304 are sequentially formed on a conductive cylindrical substrate 301 under the conditions shown in Table 10 to obtain an electrophotographic photosensitive material. I made 10 lots of bodies. In addition, in the first photoconductive layer, the film thickness was 0.1 μm after the discharge was caused and the microwave power was adjusted to the power shown in Table 10 and the external bias voltage was applied to the electrode. .

【0073】こうして得られた電子写真用感光体を実施
例1と同様に電子写真特性の評価を行ったところ、実施
例1と同様に良好な結果が得られた。
When the thus obtained electrophotographic photoreceptor was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0074】(実施例8)実施例1と同様の手順で図6
に示すように、導電性円筒形基体501上に、電荷注入
阻止層502、第1の光導電層503、第2の光導電層
504、表面層505を、順次、表11に示す条件で形
成して電子写真用感光体を10ロット作成した。また、
電荷注入阻止層において、放電を生起させてから、マイ
クロ波電力を表11に示した電力に調整し、外部バイア
ス電圧を電極に印加するまでの膜厚は、0.1μmとし
た。
(Example 8) Using the same procedure as in Example 1, FIG.
As shown in Table 11, a charge injection blocking layer 502, a first photoconductive layer 503, a second photoconductive layer 504, and a surface layer 505 are sequentially formed on a conductive cylindrical substrate 501 under the conditions shown in Table 11. Then, 10 lots of electrophotographic photoreceptors were prepared. Also,
In the charge injection blocking layer, the film thickness was 0.1 μm after the discharge was caused and the microwave power was adjusted to the power shown in Table 11 and the external bias voltage was applied to the electrode.

【0075】こうして得られた電子写真用感光体を実施
例1と同様に電子写真特性の評価を行ったところ、実施
例1と同様に良好な結果が得られた。
When the thus obtained electrophotographic photoreceptor was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0076】(実施例9)実施例1と同様の手順で図4
に示したように、導電性円筒形基体301上に、第1の
光導電層302、第2の光導電層303、表面層304
を、順次、表12に示す条件で形成して電子写真用感光
体を10ロット作成した。また、第1の光導電層におい
て、放電を生起させてから、マイクロ波電力を表12に
示した電力に調整し、外部バイアス電圧を電極に印加す
るまでの膜厚は、0.5μmとした。  こうして得ら
れた電子写真用感光体を実施例1と同様に電子写真特性
の評価を行ったところ、実施例1と同様に良好な結果が
得られた。
(Example 9) Using the same procedure as in Example 1,
As shown in FIG.
were sequentially formed under the conditions shown in Table 12 to produce 10 lots of electrophotographic photoreceptors. In addition, in the first photoconductive layer, the film thickness was 0.5 μm after the discharge was generated until the microwave power was adjusted to the power shown in Table 12 and an external bias voltage was applied to the electrode. . When the electrophotographic photoreceptor thus obtained was evaluated for electrophotographic properties in the same manner as in Example 1, good results were obtained as in Example 1.

【0077】[0077]

【表1】[Table 1]

【0078】[0078]

【表2】[Table 2]

【0079】[0079]

【表3】[Table 3]

【0080】[0080]

【表4】[Table 4]

【0081】[0081]

【表5】[Table 5]

【0082】[0082]

【表6】[Table 6]

【0083】[0083]

【表7】[Table 7]

【0084】[0084]

【表8】[Table 8]

【0085】[0085]

【表9】[Table 9]

【0086】[0086]

【表10】[Table 10]

【0087】[0087]

【表11】[Table 11]

【0088】[0088]

【表12】[Table 12]

【0089】[0089]

【発明の効果】以上説明したように、本発明によれば、
外部バイアスを併用したマイクロ波プロズマCVD法に
よる機能性堆積膜の製造方法において、放電の開始時に
外部バイアス電圧を導電性基体に対して0Vとし、放電
を生起させた後に所定の外部バイアス電圧を印加するこ
とによって、「しみ」のない外観に優れた堆積膜を高速
で、しかも安定して得ることが可能になる。とりわけ電
子写真用感光体のような大面積の堆積膜形成においては
、特性のムラのない均質な膜を供給でき、製品の品質を
向上させ、またその収率も向上させることができる。
[Effects of the Invention] As explained above, according to the present invention,
In a method for manufacturing a functional deposited film by a microwave plasma CVD method using an external bias, the external bias voltage is set to 0 V with respect to the conductive substrate at the start of discharge, and a predetermined external bias voltage is applied after the discharge is generated. By doing so, it becomes possible to rapidly and stably obtain a deposited film with no "stains" and excellent appearance. Particularly in the formation of deposited films over large areas such as electrophotographic photoreceptors, it is possible to supply a homogeneous film with even characteristics, thereby improving the quality of the product and its yield.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明を実施するにあたって使用すること
ができるマイクロ波プラズマCVD法による堆積膜形成
装置を示す模式的縦断面図。
FIG. 1 is a schematic vertical cross-sectional view showing a deposited film forming apparatus using a microwave plasma CVD method that can be used in carrying out the present invention.

【図2】  図1の装置の模式的横断面図。FIG. 2 is a schematic cross-sectional view of the device in FIG. 1.

【図3】  本発明の実験例に於いて作成した電子写真
用感光体の層構成を示す模式的断面図。
FIG. 3 is a schematic cross-sectional view showing the layer structure of an electrophotographic photoreceptor prepared in an experimental example of the present invention.

【図4】  本発明の実施例1に於いて作成した電子写
真用感光体の層構成を示す模式的断面図。
FIG. 4 is a schematic cross-sectional view showing the layer structure of the electrophotographic photoreceptor produced in Example 1 of the present invention.

【図5】  本発明の実施例3に於いて作成した電子写
真用感光体の層構成を示す模式的断面図。
FIG. 5 is a schematic cross-sectional view showing the layer structure of an electrophotographic photoreceptor produced in Example 3 of the present invention.

【図6】  本発明の実施例8に於いて作成した電子写
真用感光体の層構成を説明するための断面模式図である
FIG. 6 is a schematic cross-sectional view for explaining the layer structure of an electrophotographic photoreceptor produced in Example 8 of the present invention.

【符号の説明】[Explanation of symbols]

101    反応容器 102    マイクロ波導入窓 103    導波管 104    排気管 105    導電性円筒形基体 106    放電領域 107    ヒーター 108    電極 109    電源 110    モーター 111    原料ガス導入管 201    導電性円筒形基体 202    光導電層 203    表面層 301    導電性円筒形基体 302    第1の光導電層 303    第2の光導電層 304    表面層 401    導電性円筒形基体 402    電荷注入阻止層 403    光導電層 404    表面層 501    導電性円筒形基体 502    電荷注入阻止層 503    第1の光導電層 504    第2の光導電層 505    表面層 101 Reaction container 102 Microwave introduction window 103 Waveguide 104 Exhaust pipe 105 Conductive cylindrical substrate 106 Discharge area 107 Heater 108 Electrode 109 Power supply 110 Motor 111 Raw material gas introduction pipe 201 Conductive cylindrical substrate 202 Photoconductive layer 203 Surface layer 301 Conductive cylindrical substrate 302 First photoconductive layer 303 Second photoconductive layer 304 Surface layer 401 Conductive cylindrical substrate 402 Charge injection blocking layer 403 Photoconductive layer 404 Surface layer 501 Conductive cylindrical substrate 502 Charge injection blocking layer 503 First photoconductive layer 504 Second photoconductive layer 505 Surface layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  実質的に密封し得る反応容器内に形成
された放電空間を取り囲むように導電性基体を配置し、
マイクロ波の作用で、原料ガスに由来する成膜に寄与す
る反応物質を含むマイクロ波放電プラズマを形成し、放
電空間中に設けた電極と前記導電性基体間に外部電気バ
イアス電圧を印加して、前記基体表面に堆積膜を形成す
る堆積膜形成方法において、マイクロ波放電プラズマを
形成する際には前記導電性基体に対する外部バイアス電
圧を0Vとし、放電が生起した後に所定の外部電気バイ
アス電圧を印加する工程を具備することを特徴とする堆
積膜形成方法。
1. A conductive substrate is disposed so as to surround a discharge space formed in a reaction vessel that can be substantially sealed,
By the action of microwaves, a microwave discharge plasma containing a reactant derived from the source gas and contributing to film formation is formed, and an external electric bias voltage is applied between an electrode provided in the discharge space and the conductive substrate. In the deposited film forming method of forming a deposited film on the surface of the substrate, an external bias voltage to the conductive substrate is set to 0 V when forming a microwave discharge plasma, and a predetermined external electric bias voltage is applied after discharge occurs. A method for forming a deposited film, comprising the step of applying an electric voltage.
【請求項2】  前記堆積膜が電子写真感光体の光受容
層を構成するものである請求項1に記載の堆積膜形成方
法。
2. The method for forming a deposited film according to claim 1, wherein the deposited film constitutes a light-receiving layer of an electrophotographic photoreceptor.
JP3128283A 1991-05-02 1991-05-02 Formation of deposited film by microwave plasma cvd method Pending JPH04329882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3128283A JPH04329882A (en) 1991-05-02 1991-05-02 Formation of deposited film by microwave plasma cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3128283A JPH04329882A (en) 1991-05-02 1991-05-02 Formation of deposited film by microwave plasma cvd method

Publications (1)

Publication Number Publication Date
JPH04329882A true JPH04329882A (en) 1992-11-18

Family

ID=14980996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3128283A Pending JPH04329882A (en) 1991-05-02 1991-05-02 Formation of deposited film by microwave plasma cvd method

Country Status (1)

Country Link
JP (1) JPH04329882A (en)

Similar Documents

Publication Publication Date Title
US5439715A (en) Process and apparatus for microwave plasma chemical vapor deposition
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
US5129359A (en) Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
US5433790A (en) Deposit film forming apparatus with microwave CVD method
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
JPH04329882A (en) Formation of deposited film by microwave plasma cvd method
JP2925310B2 (en) Deposition film formation method
KR100256192B1 (en) Plasma process apparatus and plasma process method
JP2768539B2 (en) Deposition film forming equipment
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
KR100269930B1 (en) Plasma processing apparatus and plasma processing method
JP2753084B2 (en) Deposition film formation method
JPH04247877A (en) Deposited film forming device
JP2925298B2 (en) Deposition film formation method
JP2867150B2 (en) Microwave plasma CVD equipment
JP2841222B2 (en) Deposition film formation method
JP2784784B2 (en) Method and apparatus for forming functional deposited film by microwave plasma CVD
JPH06196407A (en) Method and device for forming deposited film
JPH062153A (en) Deposited film forming method
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JPH0714786A (en) Film deposition method by microwave plasma cvd
JPH02138475A (en) Microwave plasma cvd device
JPH04165077A (en) Microwave plasma cvd device having improved microwave introducing means