JPS59104468A - Formation of deposited film by plasma cvd - Google Patents

Formation of deposited film by plasma cvd

Info

Publication number
JPS59104468A
JPS59104468A JP21343682A JP21343682A JPS59104468A JP S59104468 A JPS59104468 A JP S59104468A JP 21343682 A JP21343682 A JP 21343682A JP 21343682 A JP21343682 A JP 21343682A JP S59104468 A JPS59104468 A JP S59104468A
Authority
JP
Japan
Prior art keywords
substrate
electrode
raw material
material gas
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21343682A
Other languages
Japanese (ja)
Inventor
Shigeru Shirai
茂 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21343682A priority Critical patent/JPS59104468A/en
Publication of JPS59104468A publication Critical patent/JPS59104468A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5093Coaxial electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a uniform deposited film on a substrate with a high yield ratio at a low cost, by forming plasma while discharging raw material gas through the holes of a plurality of secondary electrodes vertically provided around the first cylindrical electrode in a diposition tank. CONSTITUTION:A cylindrical substrate 3 as an inner electrode is provided inside a vacuum chamber 1 as a deposition tank, and outer electrodes 2 comprising a plurality of pipes are provided in parallel with the axis of said inner electrode 3 on the circumference about said axis as a center. The interior of said chamber 1 is evacuated by an exhaust system 8, the substrate 3 is heated at a predetermined temp. by a built-in heater 10 and rotated by the driving of a motor 7, and plasma is formed by glow discharge between both of the electrodes 2 and 3 with a high-frequency generator 5 while discharging raw material gas containing silane, etc. introduced through a supply pipe 4 for raw material gas through many holes 11 provided at said outer electrodes 2. Hence, silicon-contg. solid matter is deposited on the substrate 3 by the decomposition of said raw material gas to form the film.

Description

【発明の詳細な説明】 本発明は、所謂プラズマCVDによって機能性膜を作製
する方法に関し、更に詳しくは、電子写真感光体として
通常望まれるドラム状の基体上に、光導電性部材を均一
に成Hりする方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a functional film by so-called plasma CVD, and more specifically, the present invention relates to a method for producing a functional film by so-called plasma CVD. The present invention relates to improvements in methods for making H.

一価の元素でダングリングボンドが修飾されたアモルフ
ァスシリコン(規下a−5iと略)は、その優れた光導
電性、耐擦性、耐熱性のために電子写真感光体とじての
応用が期待されている。また、a−Siはその製造詩に
原塊衛生上の問題も殆どなく、加えて感光体の大面積化
が容易であることもその范用メリントとして挙げられて
いる。
Amorphous silicon (hereinafter abbreviated as A-5I) whose dangling bonds are modified with a monovalent element is suitable for use as an electrophotographic photoreceptor due to its excellent photoconductivity, abrasion resistance, and heat resistance. It is expected. In addition, a-Si has almost no problems regarding the hygiene of the raw material during its production, and in addition, the fact that it is easy to increase the area of the photoreceptor is cited as an advantage for its use.

しかしなから、a−5iはそれ単独では電子写真感光体
に使用するには暗抵抗がやや低く、また、基体トラムか
87に荷か柱入するのを阻止するために阻止層を配した
り、添加物をドープすることによってこの問題を解決し
ている。また、a−5i表血には、通常電子写真装置が
置かれる環境下で酸化膜Singか自然に形成されやす
いために、その表面の水との親和性が高くなり、この状
恩でコロナ放電を多用する電子写真プロセスシこ用いる
と、高温環境下では表面電荷か感光体表面上で移動し、
俗に言う画像のボケが生してしまう。これを防止するた
めに表面保護層として、SiNx、 5iCx等を配し
たり、更には反射防止層、光吸収層、雀着層等も必黄に
応して設置されることが多い。
However, the dark resistance of a-5i is too low to be used alone as an electrophotographic photoreceptor, and a blocking layer is provided to prevent loads from entering the base tram 87. , this problem is solved by doping with additives. In addition, since an oxide film (Sing) tends to naturally form on the a-5i surface blood under the environment where electrophotographic equipment is normally placed, its surface has a high affinity for water, and this condition causes corona discharge. When using an electrophotographic process that makes extensive use of
This results in what is commonly called a blurred image. To prevent this, SiNx, 5iCx, etc. are often provided as a surface protective layer, and furthermore, an antireflection layer, a light absorbing layer, a sparrow adhesion layer, etc. are often provided depending on the necessary yellowing.

このようにa−5iを電子写真感光体として実用に供す
るためには、多種のガスを使用して、目的に応した多層
構成の光導電部材を電子写真感光体として使用可能な大
きさで形成しなければならない。そしてこの際の光導電
部材の均一性は、極めて型費であり、例えばピンホール
等の欠陥が存在すると美麗な画像が提供できないばかり
でなく、実用に耐えないものとなる。
In order to put the a-5i into practical use as an electrophotographic photoreceptor, it is necessary to use a variety of gases to form a photoconductive member with a multilayer structure suitable for the purpose into a size that can be used as an electrophotographic photoreceptor. Must. In this case, the uniformity of the photoconductive member is extremely costly, and if defects such as pinholes are present, it is not only impossible to provide a beautiful image, but also impractical.

゛市r−写真感光体としてa−Siを採用するにあたっ
ては、他のSe、 CdS /<イングー系、OPC等
の感光体に比べてその、M’a率が大きいために、環境
変動、’1′[i:子写真装置の安定性等を考慮すると
、所用′取位を十分にとって定常的に良好な画像を得る
ためには110μs以上の膜厚が必要とされる。このた
め、感光体トラム−木当りの製作に必要となるガスの量
は決して少なくなく、加えて、特性の優れた1!父を1
するにはカス流量を増加させつつ、光導電+ldの1イ
を精動率は低下させた方が好ましいとされている。史に
、プラズマ放電に要する電カニネルキー費、人件費は小
さくなく、ドラム一本当りのコストは他の感・光体に比
してかなり高いものとなる。このため製造歩留りが低い
ことは実用化の大きな阻害原因の一つとなっている。
゛When using a-Si as a photographic photoreceptor, environmental fluctuations and 1'[i: Considering the stability of the secondary photographic device, etc., a film thickness of 110 μs or more is required in order to obtain sufficient alignment and consistently obtain good images. For this reason, the amount of gas required to manufacture the photoconductor tram is not at all small, and in addition, 1! father 1
In order to achieve this, it is said that it is preferable to increase the flow rate of waste while decreasing the active ratio of photoconductivity +ld. Historically, the electricity and labor costs required for plasma discharge are not small, and the cost per drum is considerably higher than that of other photosensitive and photosensitive materials. Therefore, the low manufacturing yield is one of the major obstacles to practical application.

従来、プラズマCVDを用いた電子写真感光ドラムの製
造方法として提案されているものは、大別して、誘導結
合型と容量結合型とに分けられる。
Conventionally, methods proposed for manufacturing electrophotographic photosensitive drums using plasma CVD are broadly classified into inductively coupled types and capacitively coupled types.

前者はドラム基体を取り囲むようにしてコイルを配置し
、該コイルに高周波電力をフィードし、電磁エネルギー
でガスをプラズマ化し、前記基体上に膜を形成するもの
であるが、コイルの径、間隔等のずれやコイルの定在波
に起因する放電ムラが発生しやすく、形成された膜は厚
さや電気特性が不均一なものとなる。
In the former method, a coil is arranged to surround the drum base, high-frequency power is fed to the coil, gas is turned into plasma by electromagnetic energy, and a film is formed on the base. However, the coil diameter, spacing, etc. Discharge unevenness due to misalignment and standing waves in the coil is likely to occur, and the formed film will have non-uniform thickness and electrical properties.

一方、後者のタイプは、外部電極でもある円筒型の堆積
槽内の内部に内部電極としてドラム基体そのものを用い
た二重同軸円筒電極を使用し、両円筒電極間にガスを流
しながら、両電極間に直流若しくは交流の電界を電力U
し、この際のグロー放電によってガスプラズマを形成し
、堆積膜をトラムノ、(体上に形成するものである。こ
の方式は放電か安定している限り円筒端部を除いて良好
な成膜か行なえる。放′市を安定に行なうためには、直
流を印加するよりも高周波電力をフィードする方がイ妾
れている。円筒端部の放電ムラは基体ドラムの両端にク
ミーを設置することで防ぐことができる。しかしなから
、両電極間に設置された原料ガス供給パイプの存在ある
いは放電時にガスがこの原料ガス供給パイプから供給さ
れることによりグロー放電に乱れのが発生するといった
問題があった。
On the other hand, the latter type uses double coaxial cylindrical electrodes using the drum base itself as the internal electrode inside a cylindrical deposition tank that also serves as the external electrode. A DC or AC electric field between the electric power U
However, gas plasma is formed by the glow discharge at this time, and the deposited film is formed on the body.This method is good for film formation except for the cylindrical end as long as the discharge is stable. It can be done.In order to perform the market stably, it is better to feed high frequency power than to apply direct current.To prevent uneven discharge at the end of the cylinder, install a comb at both ends of the base drum. However, there are problems such as disturbances in glow discharge due to the presence of a raw material gas supply pipe installed between the two electrodes or gas being supplied from this raw material gas supply pipe during discharge. there were.

a−SiはI+!、!のモルフォロジーが基板形状に大
きく左右されることが知られている。すなわち、殆どの
場所でほぼ同一の電気的特性が必要となる大面°積の電
子写真感光体にあっては、基板の表面状態は極めて1要
であり、基板面に凹凸が存在すると膜の均一性が悪くな
り、柱状構造や球状突起が形成されるため電気的な不均
一さの生じる原因となる。
a-Si is I+! ,! It is known that the morphology of is greatly influenced by the substrate shape. In other words, in the case of large-area electrophotographic photoreceptors that require almost the same electrical characteristics in most places, the surface condition of the substrate is extremely important, and the presence of irregularities on the substrate surface can cause the film to deteriorate. The uniformity deteriorates and columnar structures and spherical protrusions are formed, which causes electrical non-uniformity.

ところが、前述したような放電の乱れが起ると、内部電
極であるドラム基体の近傍のガスプラズマ、ラジカルま
たはイオンの濃度や分4jが定常時とは大きく変化し、
ドラム基体上に例えば結晶核あるいは島状の構造が形成
され、このため全般的には放電安定性が優れたものであ
っても、形成される光導電膜は結果として不均一なもの
になってしまう。また、異常放電によって著しく大きな
エネルギーを得たガス分子、イオンまたはラジカルか基
体表面を攻撃することにより基体に凹凸を作ることもあ
り、やはり均一な膜を得ることは難かしい。
However, when the above-mentioned discharge disturbance occurs, the concentration of gas plasma, radicals, or ions in the vicinity of the drum base, which is the internal electrode, changes greatly from the steady state.
For example, crystal nuclei or island-like structures are formed on the drum substrate, and even if the overall discharge stability is excellent, the resulting photoconductive film is non-uniform. Put it away. In addition, gas molecules, ions, or radicals that have obtained significantly large amounts of energy due to abnormal discharge may attack the surface of the substrate, creating irregularities on the substrate, making it difficult to obtain a uniform film.

また、従来の二重同軸円筒電極方式による感光体ドラム
の製造に従えば、感光体ドラム自体もかなり大きなもの
であるからこれに使用される外部電極あるいは堆積槽は
かなり大きなものになり、高性能な堆積膜を形成するに
はこれらの内部表面を常に清潔な状態に保つ必要があり
、そのための清掃が欠かせない。したがって、このよう
な堆積膜の形成法に使用される装置としては、清掃のし
やすいものであることも要請される。
Furthermore, if photoconductor drums are manufactured using the conventional double coaxial cylindrical electrode method, the photoconductor drum itself is quite large, so the external electrodes or deposition tank used for it are quite large, and high performance is required. In order to form a deposited film, it is necessary to keep these internal surfaces clean at all times, and cleaning is essential for this purpose. Therefore, it is also required that the apparatus used in such a method of forming a deposited film be easy to clean.

本発明はこれらの↓実に鑑みなされたものであり、」二
記問題を解決する新規な堆積H分の形成法を提供するこ
とを目的とする。
The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a novel method for forming a deposited H component that solves the second problem.

本発明の他の目的は、電気特性、環境安定性に優れ、感
光体全域に亘って良好な画像を供することのできる電子
写真感光体用の光導電膜を、低コスト、高沙留りで製造
する方法を提供することにある。
Another object of the present invention is to produce a photoconductive film for electrophotographic photoreceptors, which has excellent electrical properties and environmental stability and can provide good images over the entire area of the photoreceptor, at low cost and with high sand retention. The goal is to provide a way to do so.

本発明の更に他の1」的は、堆積槽内の清掃を容易に行
なうことのできるを行なうことなく、堆積膜の形成状を
提供することにある。
Yet another object of the present invention is to provide a deposited film in a well-formed manner without requiring easy cleaning of the interior of the deposition tank.

かかる本発明の(」的は、外部電極として複数個の円筒
パイプを使用し、この円筒パイプに設けた原料ガスの放
出孔から原料ガスを堆積槽内に放出することよって成膜
時の放電安定性が高められることによって達成されるこ
とが見い出された。
The object of the present invention is to stabilize the discharge during film formation by using a plurality of cylindrical pipes as external electrodes and releasing the raw material gas into the deposition tank from the raw material gas discharge holes provided in the cylindrical pipes. It was found that this can be achieved by increasing gender.

すなわち本発明は、堆積槽内に設置された第1第1の電
極と第2の電極との間で放電を生じさせ、この放電によ
り堆積槽内に導入された気体からシリコンを含む固体を
基体上に堆積させて膜を形成する方法において、前記第
1の電極か円筒状形状であり、前記第2の電極が、第1
の電極の軸を中心とした円周上に該軸とほぼ平行な複数
個のパイプとして配置され、該パイプの−・部又は全て
に設けた1個以上の孔より前記気体を堆積槽内に放出す
ることを特徴とする堆積膜の形成法である。
That is, the present invention generates a discharge between a first electrode and a second electrode installed in a deposition tank, and converts a solid containing silicon into a substrate from a gas introduced into the deposition tank by this discharge. In the method of forming a film by depositing on the first electrode, the first electrode has a cylindrical shape, and the second electrode has a cylindrical shape.
A plurality of pipes are arranged on a circumference centered on the axis of the electrode and are substantially parallel to the axis, and the gas is introduced into the deposition tank through one or more holes provided in the - part or all of the pipes. This is a method of forming a deposited film characterized by the release of the film.

以下、図面を参照しつつ本発明の方法につき詳細に説明
する。
Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

1は真空チャンバーであり、このチャン/\−の中心に
堆積層を形成する円筒状の基体3が設置されており、こ
れがア一)−ド電極としての第2の電極(以下、内部電
極と称す)でもあり、その周りにカス導入管を兼ねたパ
イプ2のカソード電極としての第1の電極(以下、外部
電極と称す)が内部電極の中心軸を中心とする円周上に
該軸とほぼ平行にほぼ等間隔で複数個設置されている。
Reference numeral 1 designates a vacuum chamber, and a cylindrical base 3 on which a deposited layer is formed is installed at the center of this chamber, and this serves as a second electrode (hereinafter referred to as an internal electrode) as an electrode. The first electrode (hereinafter referred to as the external electrode) as a cathode electrode of the pipe 2 which also serves as the waste introduction pipe is connected to the central axis of the internal electrode on a circumference centered on the central axis of the internal electrode. Multiple pieces are installed approximately parallel to each other at approximately equal intervals.

この例においては、内部電極が感光体ドラム基体に一致
しているが、これは必ずしも一致することを要するもの
ではない。
In this example, the internal electrodes match the photoreceptor drum substrate, but this does not necessarily have to be the case.

この装置を使用して円筒状の基体3上に堆積層を形成す
る場合には、まず真空チャンバー1内に円1.5状のノ
、(体3をセントシ、υ1気系8を作動させてチャンバ
ー内を真空にする。一般に排気系には、所用到達真空度
と、生産性との兼ね合いで、ロータリーポンプ、メカニ
カルブースターポンプ、ディフュージョンポンプまたは
それらを組み合わせたものが使用される。同時に基体3
をヒー9−10を用いて加熱し、基体3はモーター7に
よって数〜数十秒に一回の割合で回転されることによっ
てツξ1体の温度分布が均一にされる。円f4状のり、
(体3の温度制御には、内部電極の内部に配されたヒー
ターと、内部電極3あるいはその近傍に設置された温度
センサ、例えば熱電対とを用いた帰ぶ制御系か通常用い
られ、例えば100〜350°Cの温度に保たれる。ガ
ス供給パイプ4及び真空チャンバー1は、1絶縁ガイシ
6により外部電極とは絶縁されている。
When using this device to form a deposited layer on a cylindrical substrate 3, first place a circular 1.5-shaped hole in the vacuum chamber 1 (the body 3 is centered, and the υ1 gas system 8 is activated). The inside of the chamber is evacuated.Generally, a rotary pump, mechanical booster pump, diffusion pump, or a combination thereof is used for the exhaust system, depending on the desired degree of vacuum and productivity.At the same time, the substrate 3
is heated using heaters 9-10, and the base body 3 is rotated by the motor 7 at a rate of once every several to several tens of seconds, thereby making the temperature distribution of the body ξ uniform. Circle f4 shaped glue,
(To control the temperature of the body 3, a control system is usually used that uses a heater placed inside the internal electrode and a temperature sensor, such as a thermocouple, installed at or near the internal electrode 3. The temperature is maintained at 100 to 350° C. The gas supply pipe 4 and the vacuum chamber 1 are insulated from the external electrodes by an insulating insulator 6.

〕、(体の温度か一定になった時点でガス供給パイプ4
から原料カスを供給する。原料カスとじては、a−3i
成膜材料としてのシラン(SiH,、S i、、 H6
、Si、H8,5i4H,o等)の他、ベースカスとし
てのH2、希ガス、フッ素導入用のSiF4、P又はn
伝導の制御用のB2H6、PH3,、As、H3,窒素
ドープ用のN2、NHl、酸素ドープ用のN20 、 
NO1炭素ドーフ。
], (When the body temperature becomes constant, the gas supply pipe 4
Supplies raw material scraps from For raw material waste, a-3i
Silane (SiH, Si, H6) as a film forming material
, Si, H8, 5i4H, o, etc.), H2 as a base gas, rare gas, SiF4, P or n for introducing fluorine.
B2H6, PH3, As, H3 for conduction control, N2, NHL for nitrogen doping, N20 for oxygen doping,
NO1 Carbon Dorf.

用の炭化水素、例えばCH4,02H4等をはしめ、プ
ラズマCVDあるいはそのドーピング可能なものとして
知られている各種ガスを、マスフローコントローラー等
を用いて所定の比率で混合したものであり、これらが適
宜必要に応じて供給される。0を給される原料ガスの放
出量は、外部電極を兼ねたガス放出パイプ2にあけられ
たガス放出孔の径及び数を調整することによっても変化
させること力1でき、これによって基体表面に堆積する
膜の膜厚分!1j、の調整を実施することができる。カ
ス放出量くイブ2は通常は円筒パイプ形状であり、ガス
放出孔の設置の向きは、例えば真空チャン/X−の壁I
I¥iに向けて削孔するなどの工夫により、直接基体方
向に原料ガスを吹きつけることから生じるグロー放電の
乱れの発生や基体表面への異物の伺着を回避し得る。ま
た、真空チャンバー内に設けるカス放出パイプの本数と
しては、3〜50本、好ましくは6〜20本程度か適当
である。外部電極でもあるカス放出パイプの本数が余り
にも少ないと真空チャンバー内の電界のムラが大きくな
り異常放電が発生しやすくなるし、逆に本数が多過ぎて
も外部電極の適切な位置設定が難かしくなったり、外部
電極の清掃に手間がかかるという問題が生じるため適当
ではない。
Hydrocarbons such as CH4, 02H4, etc. are mixed in a predetermined ratio using a mass flow controller or the like with plasma CVD or various gases known as those capable of doping. Supplied accordingly. The release amount of the raw material gas fed with 0 can also be changed by adjusting the diameter and number of gas release holes drilled in the gas release pipe 2, which also serves as an external electrode. The thickness of the deposited film! 1j, adjustments can be made. The gas discharge tube 2 is usually in the shape of a cylindrical pipe, and the direction in which the gas discharge hole is installed is determined, for example, by the direction of the vacuum chamber/X-wall I.
By drilling holes in the direction of I\i, it is possible to avoid disturbances in glow discharge caused by blowing source gas directly toward the substrate and foreign matter from adhering to the surface of the substrate. The number of waste discharge pipes provided in the vacuum chamber is approximately 3 to 50, preferably 6 to 20. If the number of waste discharge pipes, which are also external electrodes, is too small, the electric field in the vacuum chamber will become uneven and abnormal discharges will easily occur.On the other hand, if the number is too large, it will be difficult to set the appropriate position of the external electrodes. This is not suitable because it causes problems such as the external electrode becoming hard to clean and requiring time and effort to clean the external electrode.

真空チャンバー内に原料ガスが安定して供給されている
状y魚で、例えば13.58MHzの高周波電源5によ
り外部電極2に高周波電圧を印加し、アース9で接地S
れている基体3との間でグロー放電を発生5せて真空チ
ャン/へ一内の原料ガスを分解してノ、(体」二に堆積
物を適宜堆積させ、例えばa−8iを成11りすること
ができる。
In a state where the raw material gas is stably supplied in the vacuum chamber, a high frequency voltage is applied to the external electrode 2 by the high frequency power supply 5 of 13.58 MHz, for example, and the ground S is connected to the earth 9.
A glow discharge is generated between the substrate 3 and the substrate 3, which decomposes the raw material gas in the vacuum chamber/tube 1, and deposits are appropriately deposited on the substrate 2 to form, for example, a-8i. can be used.

この本発明の方法に従って成膜を行なったところ、ガス
の種類を随時種々変更しても順調なグロー放電がm続さ
れ、電子写真用の感光体として良好な均一性の高い成膜
を低コストで少留り良〈実施することができた。また、
外部電極が従来の同軸二重円筒電極方式の大きな円筒状
のものとは異り小さなパイプ状のものなので、清掃のた
めにこれらを容易に分解摘出することが可能であり、真
空チャンバー内を常時清潔な状態に保持して堆a膜の形
成に供することができた。
When a film was formed according to the method of the present invention, a steady glow discharge continued even if the type of gas was changed from time to time, and a film with high uniformity that was suitable for electrophotographic photoreceptors could be formed at a low cost. So I was able to implement it with a little effort. Also,
The external electrodes are small pipe-shaped, unlike the large cylindrical ones of the conventional coaxial double cylindrical electrode method, so they can be easily disassembled and removed for cleaning, and the inside of the vacuum chamber can be kept at all times. It was possible to keep it in a clean state and use it for forming a sediment film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法に使用するのが適当な堆積膜の
形成装器を模式的に描いたものである。 1:真空チ丁ンパー 2:パイプ(外部電極) 3:基体(内部電極) 4:原料ガス供給パイプ 5:高周波発生装置 6:絶縁ガイシ 7:モーター 8:排気系 9:アース 10:ヒータ7 11:原料ガス放出孔
FIG. 1 is a schematic depiction of a deposited film forming apparatus suitable for use in the method of the present invention. 1: Vacuum puncher 2: Pipe (external electrode) 3: Substrate (internal electrode) 4: Raw material gas supply pipe 5: High frequency generator 6: Insulation insulator 7: Motor 8: Exhaust system 9: Earth 10: Heater 7 11 : Raw material gas release hole

Claims (1)

【特許請求の範囲】[Claims] ■、堆積槽内に設置された第lの電極と第2の電極との
間で放電を生じさせ、この放電により堆v1槽内に導入
された気体からシリコンを含む固体を基体上に堆植させ
てHりを形成する方法において、前記第1の電極が円筒
状形状であり、前記第2の電極が、第1の電極の軸を中
心とした円周上に該軸とほぼ平行な複数(iのパイプと
して配置され、該パイプの一部又は全てに設けた1偏重
」二の孔より前記気体を堆精槽内に放出することを特徴
とする堆積膜の形成法。
(2) A discharge is generated between the first electrode and the second electrode installed in the deposition tank, and solids containing silicon are deposited on the substrate from the gas introduced into the deposition tank by this discharge. In the method of forming an H-hole by forming a hole, the first electrode has a cylindrical shape, and the second electrode has a plurality of electrodes arranged on a circumference centered on the axis of the first electrode and substantially parallel to the axis. (A method for forming a deposited film, characterized in that the gas is discharged into a sedimentation tank from holes arranged as a pipe with one bias and two holes provided in a part or all of the pipe.
JP21343682A 1982-12-07 1982-12-07 Formation of deposited film by plasma cvd Pending JPS59104468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21343682A JPS59104468A (en) 1982-12-07 1982-12-07 Formation of deposited film by plasma cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21343682A JPS59104468A (en) 1982-12-07 1982-12-07 Formation of deposited film by plasma cvd

Publications (1)

Publication Number Publication Date
JPS59104468A true JPS59104468A (en) 1984-06-16

Family

ID=16639194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21343682A Pending JPS59104468A (en) 1982-12-07 1982-12-07 Formation of deposited film by plasma cvd

Country Status (1)

Country Link
JP (1) JPS59104468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273731A (en) * 1986-05-21 1987-11-27 Tokyo Electron Ltd Plasma processor
JPH0565652A (en) * 1991-03-12 1993-03-19 Boc Group Inc:The Apparatus for plasma-intensified chemical vapor deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273731A (en) * 1986-05-21 1987-11-27 Tokyo Electron Ltd Plasma processor
JPH0551172B2 (en) * 1986-05-21 1993-07-30 Tokyo Electron Ltd
JPH0565652A (en) * 1991-03-12 1993-03-19 Boc Group Inc:The Apparatus for plasma-intensified chemical vapor deposition

Similar Documents

Publication Publication Date Title
EP0717127B1 (en) Plasma processing method and apparatus
JPH06287760A (en) Plasma treating device and treatment
JP2582553B2 (en) Functional deposition film forming apparatus by plasma CVD
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JPH0459390B2 (en)
JPS6137354B2 (en)
JPS59104468A (en) Formation of deposited film by plasma cvd
JPS6026667A (en) Deposited film forming device
JP2553331B2 (en) Deposited film forming apparatus by plasma CVD method
JPS6024376A (en) Plasma cvd device
JPS59104469A (en) Formation of film by glow discharge
JPS59104470A (en) Formation of film
JPS62235471A (en) Deposited film forming device by plasma cvd method
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JPH0438449B2 (en)
JP3022794B2 (en) Diamond-like carbon thin film deposition equipment
JP2925310B2 (en) Deposition film formation method
JPS59107072A (en) Forming method of film
JP2867150B2 (en) Microwave plasma CVD equipment
JPS6024375A (en) Film forming method
JPS63479A (en) Device for forming functional deposited film by plasma cvd method
JPS6013074A (en) Plasma cvd device
JPH0426764A (en) Built-up film forming device
JP2005068455A (en) Method and apparatus for forming deposition film
JPH0344475A (en) Device for producing amorphous silicon photosensitive body