JPH02250975A - Glow-discharge decomposing device - Google Patents

Glow-discharge decomposing device

Info

Publication number
JPH02250975A
JPH02250975A JP7132889A JP7132889A JPH02250975A JP H02250975 A JPH02250975 A JP H02250975A JP 7132889 A JP7132889 A JP 7132889A JP 7132889 A JP7132889 A JP 7132889A JP H02250975 A JPH02250975 A JP H02250975A
Authority
JP
Japan
Prior art keywords
substrate
gas
electrode
film
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7132889A
Other languages
Japanese (ja)
Other versions
JP2920637B2 (en
Inventor
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7132889A priority Critical patent/JP2920637B2/en
Publication of JPH02250975A publication Critical patent/JPH02250975A/en
Application granted granted Critical
Publication of JP2920637B2 publication Critical patent/JP2920637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the formation of a film with a uniform characteristic simultaneously on plural substrates by providing the second electrode having a number of gas passage ports around the gas outlet pipe 9 of the first electrode. CONSTITUTION:The second electrode formed by a cylindrical mesh electrode 46 having numerous of gas passage ports 10 is arranged between the first electrode pierced with plural gas injection ports 10 and plural substrates 2 in a reaction chamber 1. A film forming gas is introduced from a gas inlet 11 and spouted toward the mesh electrode 46 through the gas outlet ports 10. The substrate 2 is heated and rotated, and a high-frequency voltage is impressed between the gas outlet pipe 9 and the mesh electrode 46. A glow-discharge is generated, and the resultantly decomposed product proceeds to the substrate 2 through the gas passage port of the mesh electrode 46 and is vapor-deposited around the substrate. The utilization efficiency of the film forming gas is enhanced by the glow-discharge decomposing device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばアモルファスシリコン又はアモルファス
シリコン合金系感光体ドラムを同時に複数個製作するこ
とができるグロー放電分解装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glow discharge decomposition apparatus that can simultaneously manufacture a plurality of amorphous silicon or amorphous silicon alloy photosensitive drums, for example.

(従来技術及びその問題点〕 第7図及び第8図は第1の従来例を示し、第9図及び第
1θ図は第2の従来例を示し、また、第13図及び第1
4図は第3の従来例を示す。
(Prior art and its problems) Fig. 7 and Fig. 8 show the first conventional example, Fig. 9 and Fig. 1θ show the second conventional example, and Fig. 13 and Fig. 1 show the second conventional example.
FIG. 4 shows a third conventional example.

第1の従来例の第7図は平面概略図であり、第8図はそ
の部分断面概略図である。
FIG. 7 is a schematic plan view of the first conventional example, and FIG. 8 is a schematic partial cross-sectional view thereof.

lは円筒形状の反応室であり、この反応室lの内部には
16個の円筒形状被成膜用基板2が実質上円周線上に且
つ等間隔になるように配置され、個々の基板2は基板支
持部3の上に載置され、そして、その基板2の上にはダ
ミーリング4が載置され、モータ5により軸6を介して
ダミーリング4を回転駆動し、基板2が成膜中回転する
。また、個々の基板2の内部には成膜中基板が所要な温
度に加熱されるようにヒータ7が設けられる。
1 is a cylindrical reaction chamber, and inside this reaction chamber 1, 16 cylindrical film-forming substrates 2 are arranged substantially on a circumferential line and at equal intervals, and each substrate 2 is placed on the substrate support part 3, and a dummy ring 4 is placed on the substrate 2, and the dummy ring 4 is rotationally driven by the motor 5 via the shaft 6, so that the substrate 2 is coated with a film. Rotate medium. Further, a heater 7 is provided inside each substrate 2 so that the substrate is heated to a required temperature during film formation.

反応室lの上面には絶縁性の蓋体8があり、この蓋体8
には円筒形状のガス噴出管9が接続され、この管9には
多数個のガス噴出口lOが形成される。11及び12は
それぞれガス導入口及びガス排出口である。
There is an insulating lid 8 on the top surface of the reaction chamber l, and this lid 8
A cylindrical gas ejection pipe 9 is connected to the cylindrical gas ejection pipe 9, and a large number of gas ejection ports 1O are formed in this pipe 9. 11 and 12 are a gas inlet and a gas outlet, respectively.

13は高周波電源であり、14はマツチングボックスで
あり、このマツチングボックス14の一方の出子端子は
ガス噴出管9に電気的に接続され、他方の出力端子は反
応室lに接続され、しかも、反応室1は軸6を介して基
板2と電気的に導通である。
13 is a high frequency power supply, 14 is a matching box, one output terminal of this matching box 14 is electrically connected to the gas ejection pipe 9, and the other output terminal is connected to the reaction chamber l, Moreover, the reaction chamber 1 is electrically connected to the substrate 2 via the shaft 6.

かくして上記構成のグロー放電分解装置によれば、アモ
ルファスシリコン又はアモルファスシリコン合金系(以
下、a−Si系と略す)の成膜用ガスをガス導入口11
より導入し、ガス噴出口10を介して基板2に向けて噴
出し、そして、基板2を所要の温度に加熱するとともに
回転させ、更にガス噴出管9を個々の基板の共通電極と
し、該管9と基板2の間で高周波電力を印加するとグロ
ー放電が発生し、ガスの分解生成物が基板2の周面に蒸
着する。その分解生成物の残余ガスはガス排出口12よ
り出る。なお、図中の矢印はガスの流路を示す。
Thus, according to the glow discharge decomposition apparatus having the above configuration, amorphous silicon or amorphous silicon alloy-based (hereinafter abbreviated as a-Si-based) film-forming gas is supplied to the gas inlet 11.
Then, the substrate 2 is heated to a required temperature and rotated, and the gas ejection tube 9 is used as a common electrode for each substrate. When high frequency power is applied between the substrate 9 and the substrate 2, a glow discharge occurs, and gas decomposition products are deposited on the peripheral surface of the substrate 2. The residual gas of the decomposition products exits through the gas outlet 12. Note that the arrows in the figure indicate gas flow paths.

しかしながら、上記グロー放電分解装置によれば、基板
2の周方向に亘って成膜速度が均等になるように設定す
るのが難しく、また、a−3i系膜の光導電特性につい
ても基板2の周方向に亘って均等になるように設定する
のが難しい。かかる問題点を解決せんがために基板2を
回転させた場合、膜厚及び特性上改善されるが、未だ満
足し得ない。
However, according to the glow discharge decomposition apparatus described above, it is difficult to set the film formation rate to be uniform over the circumferential direction of the substrate 2, and the photoconductive properties of the a-3i film are also It is difficult to set it evenly over the circumferential direction. When the substrate 2 is rotated to solve this problem, the film thickness and properties are improved, but the results are still not satisfactory.

例えば各種ガスを用いて複合系の合金を形成したり、あ
るいは積層型の膜を形成する場合には更に改善を要する
For example, further improvements are required when forming a composite alloy using various gases or when forming a laminated film.

上記問題点は第2の従来例についても同様である。The above problem also applies to the second conventional example.

第9図は平面概略図であり、第10図はその部分断面概
略図である。
FIG. 9 is a schematic plan view, and FIG. 10 is a schematic partial cross-sectional view thereof.

第2の従来例は第1の従来例に比べて基板の配列が異な
っており、反応室15の内部に複数個の基板16を2列
に対称的に並べ、両列の基板16を基板支持体17の上
に載置する。そして、その他の各種構成部は第1の従来
例と同じ機能があり、個々の構成部として、18は基板
支持部、19はダミーリング、20は絶縁性の蓋体、2
1はガス噴出管、22はガス噴出口、23はガス導入口
、24はガス排出口、25は高周波電源、26はマツチ
ングボックスである。
The second conventional example differs in the arrangement of the substrates from the first conventional example, in that a plurality of substrates 16 are arranged symmetrically in two rows inside the reaction chamber 15, and both rows of substrates 16 are supported. It is placed on the body 17. The other various components have the same functions as those in the first conventional example, and the individual components include a substrate support section 18, a dummy ring 19, an insulating lid body 20, and a dummy ring 20.
1 is a gas ejection pipe, 22 is a gas ejection port, 23 is a gas inlet, 24 is a gas outlet, 25 is a high frequency power source, and 26 is a matching box.

反応室15には基板支持体17を搬入又は搬出するため
の搬入口27及び搬出口28が形成される。
The reaction chamber 15 is formed with an inlet 27 and an outlet 28 for carrying in or out the substrate support 17 .

かくして上記構成のグロー放電分解装置によれば、基板
16を載置した基板支持体17を搬入口27より反応室
15の内部へ入れ、そして、a−Si系成膜用ガスをガ
ス導入口23より導入し、ガス噴出口22を介して基板
16に向けて噴出し、また、ガス噴出管21と基板16
の間で高周波電力を印加し、基板16を回転駆動手段(
図示せず)により回転させ、グロー放電の発生とともに
成膜形成する。成膜が終了すると基板16を載置したま
ま基板支持体17を搬出口28より出す。
Thus, according to the glow discharge decomposition apparatus having the above configuration, the substrate support 17 on which the substrate 16 is placed is introduced into the reaction chamber 15 through the loading port 27, and the a-Si film forming gas is introduced into the gas inlet 23. The gas is introduced into the substrate 16 through the gas ejection port 22, and the gas ejection tube 21 and the substrate 16 are
High frequency power is applied between the substrate 16 and the rotation driving means (
(not shown) to form a film as glow discharge occurs. When the film formation is completed, the substrate support 17 is taken out from the outlet 28 with the substrate 16 placed thereon.

ところで、第1、第2の従来例に生じる問題点は被成膜
用基板2.16が円筒形状であり、この基板を個別の電
極とし、ガス噴出管9.21を共通電極とし、両電極間
でグロー放電を発生させることに起因しており、それを
第11図及び第12図により説明する。
By the way, the problem that arises in the first and second conventional examples is that the substrate 2.16 for film formation has a cylindrical shape, and this substrate is used as an individual electrode, and the gas jet pipe 9.21 is used as a common electrode, and both electrodes are used as separate electrodes. This is caused by generating a glow discharge between the two, and this will be explained with reference to FIGS. 11 and 12.

ガス圧力P(torr)と電極間距離d(cm )の積
が所定の値、即ちに値(torr−cm)になるとグロ
ー放電開始の電圧が最小値となり、このに値の近傍で最
も安定した放電を持続させることができる。
When the product of the gas pressure P (torr) and the interelectrode distance d (cm) reaches a predetermined value, that is, the value (torr-cm), the glow discharge starting voltage becomes the minimum value, and the voltage becomes most stable near this value. The discharge can be sustained.

この現象はパッシェンの法則として知られ、P×dとV
s(放電開始電圧)の関係を第11図に示す。
This phenomenon is known as Paschen's law, and P×d and V
The relationship between s (discharge starting voltage) is shown in FIG.

本発明者が繰り返し行った実験によれば、モノシランガ
スを導入し、13M)1zの高周波電力を印加してグロ
ー放電を発生させた場合、k・0.35±0.2であり
、ガス圧力P=0.1 torrであれば電極開路jl
dが3.5caiになることを確かめた。
According to experiments repeatedly conducted by the present inventor, when monosilane gas is introduced and a high frequency power of 13M)1z is applied to generate a glow discharge, k 0.35 ± 0.2, and the gas pressure P If = 0.1 torr, electrode open circuit jl
It was confirmed that d was 3.5 cai.

このようにに値は最も安定した放電条件を示す指標とな
り得るが、被成膜用基板が円筒形状であり且つ一方の電
極である場合には電極間距離dが一定にならず、基板の
周面に亘って不均一な放電条件となる。
In this way, the value can be an indicator of the most stable discharge conditions, but if the substrate for film formation is cylindrical and only one electrode is used, the distance d between the electrodes will not be constant, and the periphery of the substrate will This results in non-uniform discharge conditions over the surface.

即ち、第12図に示すように反応室29の内部に円筒形
状の基板30と平板電極31を対向して配置し、両者3
0.31の間に高周波電力を印加した場合、電極間距離
dは屯からd!の間に定まるが、基板の周方向A−H点
における成膜速度が一様でなく、光導電特性なども均等
にならない。
That is, as shown in FIG.
When high frequency power is applied between 0.31 and 0.31, the distance d between the electrodes is d! However, the film formation rate is not uniform at points A-H in the circumferential direction of the substrate, and the photoconductive properties are also not uniform.

そこで、第1、第2の従来例の問題点に鑑みて第3の従
来例が提案された。
Therefore, in view of the problems of the first and second conventional examples, a third conventional example was proposed.

第13図は平面概略図であり、第14図はその部分断面
概略図である。
FIG. 13 is a schematic plan view, and FIG. 14 is a schematic partial cross-sectional view thereof.

反応室32には一方が開放された8個の円筒状電極板3
3が円周線上に且つ等間隔になるように設置され、各々
の電極板33の内部には円筒状基板34が設置される。
The reaction chamber 32 includes eight cylindrical electrode plates 3 with one side open.
3 are installed on the circumferential line and at equal intervals, and a cylindrical substrate 34 is installed inside each electrode plate 33.

この基板34は下部ダミーリング35の上に載置され、
更に基板34の上には上部ダミーリング36が載置され
、モータ37が軸38を介して上部ダミーリング36を
回転駆動し、基板34が回転する。
This substrate 34 is placed on a lower dummy ring 35,
Further, an upper dummy ring 36 is placed on the substrate 34, and a motor 37 rotates the upper dummy ring 36 via a shaft 38, thereby rotating the substrate 34.

また、基板34の内部にはヒータ39が配置され、これ
により、成膜中に基板34が所要な温度にまで加熱する
Further, a heater 39 is arranged inside the substrate 34, thereby heating the substrate 34 to a required temperature during film formation.

a−5i系成膜用ガスはガス導入口40から反応室32
の内部へ入り、このガスは電極板33に形成されたガス
噴出口41より基板34へ噴き出し、そして、成膜の残
余ガスはガス排出口42より排出する。
The a-5i film forming gas is supplied from the gas inlet 40 to the reaction chamber 32.
This gas enters the inside of the electrode plate 33 and is ejected to the substrate 34 from a gas ejection port 41 formed in the electrode plate 33, and the remaining gas from the film formation is exhausted from a gas exhaust port 42.

43は高周波電源、44はマツチングボックスであり、
その一方の端子は反応室320周面を介して電極板33
に電気的に導通し、他方の端子は反応室32の下面を介
して基板34に電気的に導通し、これにより、基板34
と電極板33の間に高周波電力が印加される。なお、4
5は絶縁リングである。
43 is a high frequency power supply, 44 is a matching box,
One terminal is connected to the electrode plate 33 through the circumferential surface of the reaction chamber 320.
and the other terminal is electrically connected to the substrate 34 through the lower surface of the reaction chamber 32, thereby making the substrate 34
High frequency power is applied between the electrode plate 33 and the electrode plate 33 . In addition, 4
5 is an insulating ring.

かくして上記構成のグロー放電分解装置によれば、基板
34と電極板330間でグロー放電領域ができ、これに
より、電極間距離dを一定にでき、基板の周方向に亘っ
て均一な成膜速度並びに光導電特性などが得られる。
Thus, according to the glow discharge decomposition apparatus having the above configuration, a glow discharge region is formed between the substrate 34 and the electrode plate 330, thereby making it possible to keep the distance d between the electrodes constant and to achieve a uniform film formation rate over the circumferential direction of the substrate. In addition, photoconductive properties and the like can be obtained.

しかしながら、第3の従来例の場合、個々の基板を覆う
ように電極板を配置しており、これにより、電極板の径
の大きさにより反応室内部の容積が決められ、基板数が
制約を受け、その結果、単一の反応室に配置する基板数
が少なくなるという問題点がある。
However, in the case of the third conventional example, the electrode plates are arranged to cover each substrate, and as a result, the internal volume of the reaction chamber is determined by the diameter of the electrode plate, and the number of substrates is limited. As a result, there is a problem in that the number of substrates to be placed in a single reaction chamber is reduced.

また、個々の基板に対しで円筒状の電極板を備えている
ため、基板の装着並びに脱着を困難とし、これにより、
製造上の作業性が低下し、製造効率が低くなる。
In addition, since each board is equipped with a cylindrical electrode plate, it is difficult to attach and detach the board.
Manufacturing workability decreases and manufacturing efficiency decreases.

更にまた、モノシランガスなどの成膜用ガスを分解する
とラジカル種が発生し、これが基板上に付着するが、同
時に電極板33の内面にも付着し、しかも、電極板33
に付着する量が多く、例えば電極の径が基板の径に比べ
て2倍であれば面積比で4倍となり、基板周面の付着効
率は約25χになりこのような成膜用ガスの利用効率の
低さも問題点として挙げられる。
Furthermore, when a film-forming gas such as monosilane gas is decomposed, radical species are generated, which adhere to the substrate, but also adhere to the inner surface of the electrode plate 33;
For example, if the diameter of the electrode is twice the diameter of the substrate, the area ratio will be four times that of the substrate, and the adhesion efficiency on the peripheral surface of the substrate will be approximately 25χ, making it difficult to use such a film-forming gas. Low efficiency is also cited as a problem.

〔発明の目的〕[Purpose of the invention]

従って本発明は叙上に鑑みて完成されたものであり、そ
の目的は単一の装置を用いて複数個の基体に同時に成膜
形成でき、しかも、その個々の基体間並びに基体の成膜
面に亘って同じ成長速度が得られやすく、また、均一な
膜特性が得られたグロー放電分解装置を提供することに
ある。
Therefore, the present invention has been completed in view of the above, and its purpose is to be able to simultaneously form a film on a plurality of substrates using a single device, and to be able to form a film on a plurality of substrates at the same time, as well as between the individual substrates and on the film-forming surface of the substrate. It is an object of the present invention to provide a glow discharge decomposition device in which it is easy to obtain the same growth rate throughout the film and in which uniform film characteristics can be obtained.

また本発明の他の目的は製造上の作業性を高め、しかも
、成膜用ガスの利用効率を高め、これによって製造効率
及び製造コストが改善できたグロー放電分解装置を提供
することにある。
Another object of the present invention is to provide a glow discharge decomposition apparatus that can improve workability during manufacturing and improve the utilization efficiency of film-forming gas, thereby improving manufacturing efficiency and manufacturing cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のグロー放電分解装置は、反応室の内部に複数個
のガス噴出口が形成された第1電極部、複数個の被成膜
用基体、該基体と第1電極部の間に配置して複数個のガ
ス通過口が形成された第2電極部を設け、第1電極部と
第2電極部の間に噴出したガスをグロー放電分解してそ
の分解ガスを上記ガス通過口を通して基体表面に吹きつ
け成膜形成したことを特徴とする。
The glow discharge decomposition apparatus of the present invention includes a first electrode portion in which a plurality of gas jet ports are formed inside a reaction chamber, a plurality of substrates for film formation, and a plurality of substrates disposed between the substrate and the first electrode portion. A second electrode part is provided in which a plurality of gas passage ports are formed, and the gas ejected between the first electrode part and the second electrode part is decomposed by glow discharge, and the decomposed gas is passed through the gas passage ports to the substrate surface. It is characterized by being formed into a film by spraying it on.

〔実施例〕〔Example〕

以下本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

第1図及び第2図に示すグロー放電分解装置は第1の例
であり、第3図及び第4図に示す装置並びに第5図及び
第6図に示す装置はいずれも他の実施例であり、それぞ
れ第2及び第3の例と称する。
The glow discharge decomposition apparatus shown in FIGS. 1 and 2 is a first example, and the apparatus shown in FIGS. 3 and 4 and the apparatus shown in FIGS. 5 and 6 are other embodiments. , and are referred to as the second and third examples, respectively.

第1の例によれば、第1図は平面概略図であり、第2図
はその部分断面概略図であり、第1の従来例(第7図、
第8図)に比べてガス噴出管9の周囲に多数個のガス通
過口を形成した円筒形状のメツシュ状電極46を配置し
た点が特徴である。なお、第1の従来例と同一箇所には
同一符号が付しである。
According to the first example, FIG. 1 is a schematic plan view, and FIG. 2 is a schematic partial cross-sectional view thereof, and the first conventional example (FIG. 7,
8) is characterized in that a cylindrical mesh electrode 46 with a large number of gas passage ports is arranged around the gas ejection pipe 9. Note that the same parts as in the first conventional example are given the same reference numerals.

上記構成においては、マツチングボックス14の一方の
出力端子は反応室1に接続され、しかも、反応室1は電
気的にメツシュ状電極46に導通している。
In the above configuration, one output terminal of the matching box 14 is connected to the reaction chamber 1, and the reaction chamber 1 is electrically connected to the mesh electrode 46.

上記グロー放電分解装置によれば、a−Si系の成膜用
ガスをガス導入口11より導入し、ガス噴出口lOを介
してメツシュ状電極46に向けて噴出し、そして、基板
2を所要の温度に加熱するとともに回転させ、ガス噴出
管9とメツシュ状電極46の間で高周波電力を印加する
とグロー放電が発生し1、その分解生成物はメツシュ状
電極46のガス通過口を介して基板2へ向かい、その周
面に蒸着する。上記分解生成物の残余ガスはガス排出口
12より出る。
According to the glow discharge decomposition apparatus described above, an a-Si film forming gas is introduced from the gas inlet 11, and is ejected toward the mesh electrode 46 through the gas ejection port 10, and then the substrate 2 is removed as required. When heated and rotated to a temperature of 2, and evaporate on the peripheral surface thereof. The residual gas of the decomposition products exits from the gas outlet 12.

上記構成のグロー放電分解装置を用いてa−5i系の膜
を形成する場合、そのグロー放電領域においては電子が
十分に大きな運動エネルギーを得ており、モノシランな
どの原料はその高速な電子の衝突を受け、これにより、
多数のイオン種(SiH−)や発光種(SiH,”)ま
た中性種(SiH,)が生じ、このような−次反応に対
して更に上記反応種が相互に衝突し、分解及び合成が繰
り返される(二次反応と呼ばれる)。
When forming an a-5i film using the glow discharge decomposition apparatus with the above configuration, electrons have sufficiently large kinetic energy in the glow discharge region, and raw materials such as monosilane are collided with high-speed electrons. and this results in
A large number of ionic species (SiH-), luminescent species (SiH,"), and neutral species (SiH,) are generated, and in response to such -order reactions, the above-mentioned reactive species further collide with each other, resulting in decomposition and synthesis. repeated (called a secondary reaction).

上記反応種は定常状態下で一般的に下記のような空間密
度である。
Under steady-state conditions, the reactive species generally have a spatial density as follows:

イオン種(Sillxl)・・・約10’/cm”発光
種(SiH,”)  ・・・約10’/cs+3中性種
(SiIlK)・・・約101〜lO自* / c m
 3従って反応種の主体は中性種であり、電界(ドリフ
ト移動)に影響を受けないで拡散により基板側へ輸送さ
れ、成膜形成する。この中性種には主としてSi+ S
iH+ 5illt+ SiH3などがあり、そのなか
でS i 113ラジカルが最も寿命が長いために多く
存在しており、次に多く存在するのは5il12ラジカ
ルである。
Ionic species (Sillxl)...approximately 10'/cm" Luminescent species (SiH,")...approximately 10'/cs+3 Neutral species (SiIlK)...approximately 101~10*/cm
3. Therefore, the main reactive species are neutral species, which are transported to the substrate side by diffusion without being affected by the electric field (drift movement), and are formed into a film. This neutral species mainly contains Si+S
There are iH+ 5illt+ SiH3, etc., among which the S i 113 radical has the longest life and is therefore present in large numbers, and the next most abundant radical is the 5il12 radical.

かくして、このような中性種が濃度拡散により輸送され
、基板周面に蒸着する。
Thus, such neutral species are transported by concentration diffusion and deposited on the peripheral surface of the substrate.

第1の例のグロー放電分解装置によれば、基板2が一方
の電極とならず、そのために基板の周面並びに個々の基
板間で成膜速度が一様になりやす(、しかも、均一な光
導電特性の膜が得られる。
According to the glow discharge decomposition apparatus of the first example, the substrate 2 does not serve as one of the electrodes, and therefore the film formation rate tends to be uniform on the circumferential surface of the substrate and between the individual substrates (in addition, the film formation rate is uniform). A film with photoconductive properties is obtained.

また、個々の基板に対応してそれぞれ電極板を配置する
必要がなく、これにより、第3の従来例で述べたような
問題点が解決でき、その結果、製造効率及び製造コスト
が改善できる。
Further, there is no need to arrange electrode plates corresponding to individual substrates, so that the problems described in the third conventional example can be solved, and as a result, manufacturing efficiency and manufacturing cost can be improved.

次に第2の例によれば、第3図は平面概略図であり、第
4図はその部分断面概略図であり、第2の従来例(第9
図、第10図)に比べてガス噴出管21と基板160間
に多数個のガス通過口を形成した平面形状のメツシュ状
電極47を配置した点が特徴である。なお、第2の従来
例と同一箇所には同一符号が付しである。
Next, according to the second example, FIG. 3 is a schematic plan view, FIG. 4 is a schematic partial cross-sectional view thereof, and FIG.
10) is characterized in that a planar mesh-like electrode 47 with a large number of gas passage ports is disposed between the gas ejection pipe 21 and the substrate 160. Note that the same parts as in the second conventional example are given the same reference numerals.

上記構成においては、マツチングボックス26の一方の
出力端子は反応室15に接続され、しかも、反応室15
は電気的にメツシュ状電極47に導通している。
In the above configuration, one output terminal of the matching box 26 is connected to the reaction chamber 15;
is electrically connected to the mesh-like electrode 47.

上記グロー放電分解装置によれば、a−Si系の成膜用
ガスをガス導入口23より導入し、ガス噴出口22を介
してメツシュ状電極47に向けて噴出し、そして、基板
16を所要の温度に加熱するとともに回転させ、そして
、ガス噴出管21とメツシュ状電極47の間で高周波電
力を印加するとグロー放電が発生し、その分解生成物は
メツシュ状電極47のガス通過口を介して基板16へ向
かい、その周面に蒸着する。上記分解生成物の残余ガス
はガス排出口24より出る。
According to the glow discharge decomposition apparatus described above, an a-Si film forming gas is introduced from the gas inlet 23 and ejected toward the mesh electrode 47 through the gas ejection port 22, and then the substrate 16 is removed as required. When heated to a temperature of The vapor is directed toward the substrate 16 and deposited on the peripheral surface thereof. The residual gas of the decomposition products exits from the gas outlet 24.

第3の例は第2の例に比べてガス排出口の位置が異なっ
ている。第5図は平面概略図であり、第6図はその部分
断面概略図であり、第2の例と同一箇所には同一符号が
付しである。
The third example differs from the second example in the position of the gas outlet. FIG. 5 is a schematic plan view, and FIG. 6 is a schematic partial cross-sectional view thereof, in which the same parts as in the second example are given the same reference numerals.

第3の例によれば、ガス排出口48が反応室の側面に形
成されており、これにより、前述した中性種はすべて基
板側へ向かい、その有効利用により成膜される比率が高
くなり、成膜速度を高めることができる。
According to the third example, a gas outlet 48 is formed on the side surface of the reaction chamber, whereby all the neutral species mentioned above head toward the substrate, and their effective use increases the rate of film formation. , the film formation rate can be increased.

本発明者は第1の例〜第3の例のグロー放電分解装置に
ついて種々の実験を繰り返し行った結果、共通電極・(
ガス噴出管9.21 )とメツシュ状電極46.47の
間を実質上等距離に配置してその間隔を10〜300a
am 、好適には30〜100II11の範囲内に設定
した場合、安定な放電が維持できるという点でよいこと
を見い出した。
The inventor repeatedly conducted various experiments on the glow discharge decomposition devices of the first to third examples, and found that the common electrode (
The gas ejection pipe 9.21) and the mesh electrode 46.47 are arranged at substantially the same distance, and the distance is 10 to 300 mm.
It has been found that setting am preferably within the range of 30 to 100II11 is advantageous in that stable discharge can be maintained.

また、基板2.16とメツシュ状電極46.47の間隔
は1〜100m5−1好適には5〜20mmの範囲内に
設定。
Further, the distance between the substrate 2.16 and the mesh electrode 46.47 is set within the range of 1 to 100 m5-1, preferably 5 to 20 mm.

するのが望ましく、この範囲内であれば高い成膜速度が
得られることも見い出した。
It has also been found that it is desirable to do so, and that a high film formation rate can be obtained within this range.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、単一の装置を用いて複数
個の基体に同時に成膜形成でき、しかも、その基体の成
膜面並びに個々の基体間に亘って−様な成長速度が得ら
れ、また、均一な膜特性が得られたグロー放電分解装置
を提供することができた。
As described above, according to the present invention, it is possible to simultaneously form a film on a plurality of substrates using a single device, and moreover, the growth rate can be varied over the film-forming surface of the substrate and between the individual substrates. In addition, it was possible to provide a glow discharge decomposition device in which uniform film characteristics were obtained.

また、本発明のグロー放電分解装置は製造作業性、成膜
用ガスの利用効率が高められ、これによって製造効率及
び製造コストが改善できた。
Furthermore, the glow discharge decomposition apparatus of the present invention has improved manufacturing workability and film-forming gas utilization efficiency, thereby improving manufacturing efficiency and manufacturing cost.

更にまた本発明のグロー放電分解装置は次のような利点
も有する。
Furthermore, the glow discharge decomposition apparatus of the present invention also has the following advantages.

(i)・・・被成膜用基体を電極とせず、これにより、
基体に対する導通手段が不要 となり、基体の搬送が容易となり、 その結果、インライン型の量産シス テムが可能となる。
(i)...The substrate for film formation is not used as an electrode, thereby,
There is no need for a conductive means for the substrate, making it easier to transport the substrate, and as a result, an in-line mass production system becomes possible.

(ii )・・・被成膜用基体が径の比較的小さい円筒
状基板である場合、第3の従来例 にて述べて問題点が最も顕著に解決 でき、そのため、同一反応室内部に 多(の基板が配置でき、量産性に優 れる。
(ii) When the substrate for film formation is a cylindrical substrate with a relatively small diameter, the problem described in the third conventional example can be solved most noticeably, and therefore, multiple (The board can be arranged, and it is excellent in mass production.

(iii )・・・反応室、メツシュ状電極及び基体を
電気的に導通でき、その同電位状態 に対して接地でき、これにより、電 波放射防止のために反応室を遮蔽す るシールド手段が不要となり、コン パクトな成膜装置となる。
(iii)...The reaction chamber, the mesh-like electrode, and the substrate can be electrically connected and grounded to the same potential state, which eliminates the need for shielding means to shield the reaction chamber to prevent radio wave radiation. , it becomes a compact film deposition device.

(iv )・・・基体が一方の電極とならず、そのため
、グロー放電分解により発生した イオンなどが電界により加速されな がら基体に衝突しなくなり、これに 伴う基体の温度上昇が生じなくなり 、その結果、基体を所要の温度に設 定するための温度コントロールが容 易となり、従来必要に応じて用いて きた基体の冷却手段が不要となった。
(iv)...The base does not serve as one of the electrodes, and as a result, ions generated by glow discharge decomposition do not collide with the base while being accelerated by the electric field, and the temperature of the base does not rise due to this, resulting in This makes it easier to control the temperature of the substrate to set it to a desired temperature, and eliminates the need for cooling means for the substrate, which has conventionally been used as needed.

(v)・・・基体が円筒形状以外の種々の形状であって
も均一な成膜形成が可能であ る。
(v) Even if the substrate has various shapes other than a cylindrical shape, uniform film formation is possible.

(vi )・・・基体は導電性である必要はなく、絶縁
体から成ってもよい。
(vi)...The base does not need to be conductive and may be made of an insulator.

(vi )・・・従来、電子写真感光体用にAI製トド
ラム被成膜用基体に用いられ、そし て、そのドラムに電極の機能があっ たために大きな厚みの基板が用いら れ、これによって基板がプラズマに 直接曝されることにより生じる基板 の変形を小さ(していたが、本発明 においては上記問題点が解決でき、 厚みの小さいA!製トドラム用いるこ とができた。
(vi)... Conventionally, an AI drum was used as a substrate for film formation for electrophotographic photoreceptors, and because the drum had the function of an electrode, a large thick substrate was used, which made the substrate thinner. Although the deformation of the substrate caused by direct exposure to plasma was minimized, the above-mentioned problems were solved in the present invention, and a thin drum made by A! could be used.

なお、本発明は上記実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲内において種々の変更、
改善などは何等差支えない。
Note that the present invention is not limited to the above embodiments,
Various modifications may be made without departing from the spirit of the present invention.
There is no difference in any improvements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明筒1の例の平面概略
図及び部分断面概略図、第3図及び第4図はそれぞれ本
発明筒2の例の平面概略図及び部分断面概略図、第5図
及び第6図はそれぞれ本発明筒3の例の平面概略図及び
部分断面概略図である。また、第7図及び第8図はそれ
ぞれ第1の従来例の平面概略図及び部分断面概略図、第
9図及び第10図はそれぞれ第2の従来例の平面概略図
及び部分断面概略図、第11図はパッシェンの法則を説
明する線図、第12図は円筒基板と基板電極の間の放電
により生じる成膜ムラを述べる説明図、第13図及び第
14図はそれぞれ第3の従来例の平面概略図及び部分断
面概略図である。 2.16.34  ・・・基板  9.21・・・ガス
噴出管10.22.41・・・ガス噴出口 11.23.40・・・ガス導入口 12.24.42..4B  ・・・ガス排出口46.
47  ・・・メツシュ状電極 特許出願人 (663)京セラ株式会社代表者安城欽寿
1 and 2 are a schematic plan view and a partial cross-sectional schematic diagram of an example of the cylinder 1 of the present invention, respectively; FIGS. 3 and 4 are a schematic plan view and a schematic partial cross-section of an example of the cylinder 2 of the present invention, respectively; 5 and 6 are a schematic plan view and a schematic partial cross-sectional view of an example of the cylinder 3 of the present invention, respectively. Further, FIGS. 7 and 8 are a schematic plan view and a partial cross-sectional view of the first conventional example, respectively, and FIGS. 9 and 10 are a schematic plan view and a partial cross-sectional view of the second conventional example, respectively. Figure 11 is a diagram explaining Paschen's law, Figure 12 is an explanatory diagram explaining film formation unevenness caused by discharge between a cylindrical substrate and a substrate electrode, and Figures 13 and 14 are respectively the third conventional example. FIG. 2 is a schematic plan view and a schematic partial cross-sectional view. 2.16.34...Substrate 9.21...Gas ejection pipe 10.22.41...Gas ejection port 11.23.40...Gas inlet 12.24.42. .. 4B...Gas exhaust port 46.
47 ...Mesh-shaped electrode patent applicant (663) Kinju Anjo, representative of Kyocera Corporation

Claims (1)

【特許請求の範囲】[Claims]  反応室の内部に複数個のガス噴出口が形成された第1
電極部、複数個の被成膜用基体、該基体と第1電極部の
間に配置して複数個のガス通過口が形成された第2電極
部を設け、第1電極部と第2電極部の間に噴出したガス
をグロー放電分解して該分解ガスを上記ガス通過口を通
して基体表面に吹きつけ成膜形成したことを特徴とする
グロー放電分解装置。
A first gas outlet in which a plurality of gas outlets are formed inside the reaction chamber.
An electrode part, a plurality of substrates for film formation, a second electrode part disposed between the substrate and the first electrode part and formed with a plurality of gas passage ports, and the first electrode part and the second electrode part are provided. A glow discharge decomposition device characterized in that gas ejected between the parts is decomposed by glow discharge and the decomposed gas is sprayed onto the surface of the substrate through the gas passage port to form a film.
JP7132889A 1989-03-23 1989-03-23 Glow discharge decomposition equipment Expired - Fee Related JP2920637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7132889A JP2920637B2 (en) 1989-03-23 1989-03-23 Glow discharge decomposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7132889A JP2920637B2 (en) 1989-03-23 1989-03-23 Glow discharge decomposition equipment

Publications (2)

Publication Number Publication Date
JPH02250975A true JPH02250975A (en) 1990-10-08
JP2920637B2 JP2920637B2 (en) 1999-07-19

Family

ID=13457368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7132889A Expired - Fee Related JP2920637B2 (en) 1989-03-23 1989-03-23 Glow discharge decomposition equipment

Country Status (1)

Country Link
JP (1) JP2920637B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018908A (en) * 2002-06-13 2004-01-22 Onward Giken:Kk Method and apparatus for treating surface of workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018908A (en) * 2002-06-13 2004-01-22 Onward Giken:Kk Method and apparatus for treating surface of workpiece

Also Published As

Publication number Publication date
JP2920637B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US4452828A (en) Production of amorphous silicon film
JPS63187619A (en) Plasma cvd system
US4915978A (en) Method and device for forming a layer by plasma-chemical process
JPS61127866A (en) Plasma cvd device
JPH02250975A (en) Glow-discharge decomposing device
JPS6010618A (en) Plasma cvd apparatus
JP2590534B2 (en) Thin film formation method
JP2848755B2 (en) Plasma CVD equipment
JPS6137969A (en) Plasma cvd device for manufacturing thin film
JP3572204B2 (en) Plasma CVD apparatus and thin film electronic device manufacturing method
JPS6010619A (en) Film formation by glow discharge
JP3546095B2 (en) Plasma CVD equipment
JPS641958Y2 (en)
JPS6086277A (en) Formation of deposited film by discharge
JPH0211771A (en) Glow discharge cracking device
JP3276445B2 (en) Plasma CVD equipment
JP2511737B2 (en) Plasma gas phase reactor
JPS59217614A (en) Apparatus for forming amorphous silicon film
JP2670248B2 (en) Deposition film formation method
JPH05311448A (en) High frequency plasma cvd device
JPH06151334A (en) Plasma cvd apparatus
JPS62205618A (en) Plasma cvd unit
JPH0649648A (en) Plasma cvd device
JPS60215767A (en) Decomposing device by glow discharge
JPS60215766A (en) Decomposing device by glow discharge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees