JPS63187619A - Plasma cvd system - Google Patents

Plasma cvd system

Info

Publication number
JPS63187619A
JPS63187619A JP2016887A JP2016887A JPS63187619A JP S63187619 A JPS63187619 A JP S63187619A JP 2016887 A JP2016887 A JP 2016887A JP 2016887 A JP2016887 A JP 2016887A JP S63187619 A JPS63187619 A JP S63187619A
Authority
JP
Japan
Prior art keywords
gas
holes
plate
electrode
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016887A
Other languages
Japanese (ja)
Inventor
Hideaki Mochizuki
望月 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016887A priority Critical patent/JPS63187619A/en
Publication of JPS63187619A publication Critical patent/JPS63187619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply uniform gas flow to all over the surface of an electrode and to form a homogeneous thin film, by providing one of the counter electrodes with a plate having gas inlet holes and with a gas distributing plate in which gas distribution holes are formed such that smaller gas flow is formed in the central region and larger gas flow is formed in the peripheral region. CONSTITUTION:Plane-parallel-plate-type electrodes 2 and 3 are opposed to each other so that a thin film is formed by using glow discharge. One of the electrodes, the electrode 3 for example is provided with a plate 9 having gas inlet holes and with a gas distributing plate 11 in which gas distribution holes 12, 12' are formed such that smaller gas flow is formed in the central region and larger one in the peripheral region thereof. The gas distribution holes 12, 12' may be provided at a lower density in the central region and at a higher density in the peripheral region. Alternatively, the gas distributions holes smaller in size are provided in the central region and larger holes are provided in the peripheral region at an equal density in both of the regions. In this manner, uniform gas flow can be supplied to all over the surface of the electrode and a homogeneous thin film can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はグロー放電を利用して薄膜を形成するプラズマ
CVD装置に係り、特に均質で均一な厚さの膜を得るた
めの電極形状の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a plasma CVD apparatus that forms a thin film using glow discharge, and in particular to improvement of the electrode shape in order to obtain a film with a homogeneous and uniform thickness. Regarding.

〔従来の技術〕[Conventional technology]

半導体技術において、酸化シリコン、窒化シリコン、多
結晶シリコン等の薄膜形成には気相成長法(Chemi
cal Vapour Deposition、以下略
してCVD法という)がしばしば用いられる。CVD法
の中でもCVDの反応に必要なエネルギーをグロー放電
のプラズマによって得るプラズマCVD法は膜の成長が
300℃程度の低温で起こること、膜の強度が強いなど
の特長があるため、特に半導体薄膜の形成などに非常に
有用である。
In semiconductor technology, the chemical vapor deposition method is used to form thin films such as silicon oxide, silicon nitride, and polycrystalline silicon.
cal vapor deposition (hereinafter abbreviated as CVD method) is often used. Among the CVD methods, the plasma CVD method, in which the energy required for the CVD reaction is obtained using glow discharge plasma, has the advantage that film growth occurs at a low temperature of about 300°C and the film is strong, so it is particularly suitable for semiconductor thin films. It is very useful for forming.

この装置は通常第3図、第4図に示すような構造になっ
ている。即ち図において1は反応室、2は基板側電極(
アノード)、a、33は高周波電極(カソード)、4は
基板加熱用ヒータ、5は薄膜が被着される基板、6は高
周波電源、7.37はガス導入口、8.38はガス排気
口である。
This device usually has a structure as shown in FIGS. 3 and 4. That is, in the figure, 1 is the reaction chamber, 2 is the substrate side electrode (
33 is a high frequency electrode (cathode), 4 is a heater for heating the substrate, 5 is a substrate to which a thin film is deposited, 6 is a high frequency power source, 7.37 is a gas inlet, 8.38 is a gas exhaust port It is.

反応室1の中では平行平板型電極2と3.あるいは2と
33が対向しておシ、その対向電極の間に高周波電源6
によシ高周波電界を印加しグロー放電を起こす。反応ガ
スをその電極間に導入し放電のプラズマで活性化し、プ
ラズマ反応によシ基板加熱用ヒータ4で加熱された基板
側電極2上に配置した基板5の表面に薄膜を形成するも
のである0 ここで第3図のものは反応室1の側面の一ケ所にガス導
入口37が設けられ、それに対向する側面にガス排気口
38を設けてアシ、ガス導入口37よシ反応室1内に導
入された反応ガスは対向電極2と33間を流れつつプラ
ズマによシ活性化されて基板上に成膜するとともに残シ
のガスは排気口38より排気される。そのため、ガスの
流れ方向にガス濃度分布を生じ対向電極間のガス導入口
37に近い部分のガス濃度が他に比べて高くなる。一般
にガスの量、4a度によって基板5上に成膜する成長速
度や膜の特性が変化し、この場合ガス導入口37側の膜
厚が厚くな)膜質も均一にならない。
Inside the reaction chamber 1, parallel plate electrodes 2 and 3. Alternatively, 2 and 33 may be placed opposite each other, and a high frequency power source 6 may be used between the opposing electrodes.
A high-frequency electric field is applied to generate a glow discharge. A reactive gas is introduced between the electrodes, activated by discharge plasma, and a thin film is formed on the surface of the substrate 5 placed on the substrate side electrode 2 heated by the substrate heating heater 4 due to the plasma reaction. 0 Here, in the case of the one shown in FIG. 3, a gas inlet 37 is provided at one place on the side of the reaction chamber 1, and a gas exhaust port 38 is provided on the opposite side. The reactant gas introduced therein is activated by plasma while flowing between the opposing electrodes 2 and 33 to form a film on the substrate, and the remaining gas is exhausted from the exhaust port 38. Therefore, a gas concentration distribution occurs in the gas flow direction, and the gas concentration in a portion near the gas inlet 37 between the opposing electrodes is higher than in the other portions. In general, the growth rate and characteristics of the film formed on the substrate 5 change depending on the amount of gas and the 4A degree, and in this case, the quality of the film (the film is thicker on the gas inlet 37 side) is not uniform.

第4図のものは、この点を改良するためのもので、ガス
導入ロアをカソード側電極3内に設け。
The one in FIG. 4 is intended to improve this point, and a gas introduction lower is provided inside the cathode side electrode 3.

電極3のアノード側電極2対向面に多数のガス導入孔1
0が均等に配置されたガス導入孔付き板9と、その下に
前記ガス導入孔と孔の大きさは同じで数が粗であるガス
分散孔42を均等に設けたガス分散用板41を配置する
。第4図(b)はガス分散用板41の平面図を示し、ガ
ス分散孔42は板410表面でその大きさも配列も均等
に構成されている。
A large number of gas introduction holes 1 are provided on the anode-side surface of the electrode 3 facing the electrode 2.
A plate 9 with gas introduction holes in which the numbers 0 are evenly arranged, and a gas distribution plate 41 in which gas distribution holes 42 having the same size and a small number of holes as the gas introduction holes are evenly provided therebelow. Deploy. FIG. 4(b) shows a plan view of the gas dispersion plate 41, and the gas dispersion holes 42 are uniform in size and arrangement on the surface of the plate 410.

この形状の分散孔を持つガス分散用板41.ガス導入孔
付板9を介して反応ガスを対向電極間に導入して、活性
化させて基板上に薄膜を成長させ。
A gas dispersion plate 41 having dispersion holes of this shape. A reactive gas is introduced between the opposing electrodes through the plate 9 with gas introduction holes, activated, and a thin film is grown on the substrate.

残シの反応ガスはカソード側電極3の下方のガス排気口
8より排気する。
The remaining reaction gas is exhausted from the gas exhaust port 8 below the cathode side electrode 3.

この構造によれば反応室1内の一方の電極の中心から反
応ガスを電極面全体に分散させつつ導入することが出来
るので、対向電極間にそれらに平行に流れ方向を形成せ
ず、対向する基板5上に均質な膜を成膜することができ
る。
According to this structure, it is possible to introduce the reaction gas from the center of one electrode in the reaction chamber 1 while dispersing it over the entire electrode surface. A homogeneous film can be formed on the substrate 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

・  ところが、この構造にすると第3図の構成のもの
よシ膜の均一性は向上したが反応ガスはガス導入ロアに
近いガス分散用板41の中心部付近が周辺部に較べてや
はシガス流量が多くなシ、基板5上に成膜される薄膜の
膜厚は中央部で厚くなってしまうという問題点があった
・However, although this structure improves the uniformity of the film compared to the structure shown in FIG. 3, the reaction gas is more concentrated near the center of the gas dispersion plate 41 near the gas introduction lower than in the periphery. When the flow rate is large, there is a problem in that the thin film formed on the substrate 5 becomes thicker in the center.

従って本発明ではプラズマCVD装置において反応室内
の対向電極間のガス濃度分布を均一にし。
Therefore, in the present invention, the gas concentration distribution between the opposing electrodes in the reaction chamber is made uniform in the plasma CVD apparatus.

基板上に均一な膜質および膜厚の薄膜を成膜することの
できるプラズマCVD装置を提供するものである。
The present invention provides a plasma CVD apparatus capable of forming a thin film of uniform quality and thickness on a substrate.

〔問題点を解決するための手段および作用〕本発明では
カソード側電極のガス導入孔付板の下に配置された。ガ
ス流量を分散させるガス分散用板のガス分散孔の配置密
度を分散用板の中心部を粗に周辺部を密に形成したυ、
ガス分散孔の間隔拳密度は均等にしその大きさを中心部
で小さく。
[Means and effects for solving the problems] In the present invention, the cathode side electrode is placed under the plate with gas introduction holes. The arrangement density of the gas distribution holes in the gas distribution plate that disperses the gas flow rate is υ, where the center of the distribution plate is coarse and the peripheral area is dense.
The spacing of the gas distribution holes makes the density even and its size smaller in the center.

周辺部で大きく構成したり、これらを混合した構成にす
るものである。
It is configured to have a large peripheral area, or a configuration that is a mixture of these.

この構成により対向電極間に導入される反応ガスのガス
流量は電極面の全体で均一となシ、従って基板上に形成
される薄膜の膜質も膜厚も均一になる。
With this configuration, the flow rate of the reaction gas introduced between the opposing electrodes is uniform over the entire electrode surface, and therefore the quality and thickness of the thin film formed on the substrate are also uniform.

〔実施例〕〔Example〕

本発明の一実施例を第1図によって説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図において1は反応室、2は基板側のアノード電極
、3は高周波カソード側電極、4は基板加熱用ヒータ、
5は基板、6は高周波電源、7はガス導入口、8はガス
排気口、9はガス導入孔付き板、11はガス分散用板を
示す。
In FIG. 1, 1 is a reaction chamber, 2 is an anode electrode on the substrate side, 3 is a high frequency cathode side electrode, 4 is a heater for heating the substrate,
5 is a substrate, 6 is a high frequency power source, 7 is a gas inlet, 8 is a gas exhaust port, 9 is a plate with gas inlet holes, and 11 is a gas dispersion plate.

反応室1内の基本構造は第3図の従来例とはソ変らず、
その動作もはソ同様で2反応室1内に例えばシラン(S
iH4)から成る反応ガスをガス導入ロアから導入し、
平行平板型の基板側電極2とカソード側電極3との間に
高周波電源6によシ13゜56MHzの高周波電圧を印
加してプラズマを発生させる。このプラズマ中で反応ガ
スを分解・反応させて基板5の表面上に半導体膜である
アモルファスシリコン膜を成膜させる。この時成膜処理
中は余剰反応ガスを排気口8から排気させ、基板5はヒ
ータ4により150〜350℃に加熱される0ここでガ
ス導入ロアはカンード側高周波電極3内に形成され、カ
ソード側電極3の基板側電極2との対向面のガス導入孔
付板9には多数のガス導入孔10が等間隔で均等に配置
されておシ、その下側にはガス導入ロアから導入された
ガスが電極3の表面に均等に分散されるように多数のガ
ス分散孔12 、12’を設けたガス分散用板11が配
置されている。
The basic structure inside the reaction chamber 1 is the same as the conventional example shown in Figure 3.
Its operation is the same as that in 2 reaction chambers 1, for example, silane (S
A reaction gas consisting of iH4) is introduced from the gas introduction lower,
Plasma is generated by applying a high frequency voltage of 13.degree. 56 MHz from a high frequency power source 6 between a parallel plate type substrate side electrode 2 and a cathode side electrode 3. The reactive gas is decomposed and reacted in this plasma to form an amorphous silicon film, which is a semiconductor film, on the surface of the substrate 5. At this time, during the film forming process, excess reaction gas is exhausted from the exhaust port 8, and the substrate 5 is heated to 150 to 350°C by the heater 4. Here, the gas introduction lower is formed inside the high frequency electrode 3 on the cando side, and the cathode A large number of gas introduction holes 10 are arranged at equal intervals on the plate 9 with gas introduction holes on the side electrode 3 facing the substrate side electrode 2, and below the gas introduction holes 10, gas is introduced from the gas introduction lower. A gas distribution plate 11 provided with a large number of gas distribution holes 12 and 12' is disposed so that the gas is evenly distributed over the surface of the electrode 3.

本実施例ではこのガス分散用板11に設けたガス分散孔
の配置密度を、中心部付近で粗にしガスを通シにくくシ
1周辺部で密にしガスが容易に通過出来るようにしたも
のである。その結果ガス導入孔付板9のガス導入孔10
よシ反応室1内に導入される反応ガス流量を均一に近い
量に調整できる。第1図(b)は本実施例のガス分散用
板11の平面図であってその中心部の分散孔12は周辺
部の分散孔12′に比べて少なく設けである。従ってガ
ス導入ロアよシ導入された反応ガスの流量はガス分散用
板11を通過する際に中心部のみにかたよらず均一にガ
ス導入孔を介して反応室1内に導入される。
In this embodiment, the arrangement density of the gas dispersion holes provided in the gas dispersion plate 11 is made coarser near the center to prevent gas from passing through, and denser at the periphery of the plate 1 to allow gas to easily pass through. be. As a result, the gas introduction holes 10 of the plate 9 with gas introduction holes
The flow rate of the reaction gas introduced into the reaction chamber 1 can be adjusted to a nearly uniform amount. FIG. 1(b) is a plan view of the gas dispersion plate 11 of this embodiment, in which the number of dispersion holes 12 at the center thereof is smaller than the number of dispersion holes 12' at the periphery. Therefore, the flow rate of the reaction gas introduced from the gas introduction lower is uniformly introduced into the reaction chamber 1 through the gas introduction hole when passing through the gas distribution plate 11, without being concentrated only in the center.

ここでガス導入孔付板9は放電の際の電極となシ放電状
態に直接影響を及ぼすので、この電極の形状が不均一に
なると放電もアンバランスになるため !極の形状を均
一にする必要がある。従ってガス導入孔10は均等に設
けその下側のガス分散用板11の孔12の状態をかえて
ガス流量を均一化させるのである。
Here, the gas introduction hole plate 9 acts as an electrode during discharge and directly affects the discharge state, so if the shape of this electrode becomes uneven, the discharge will also become unbalanced! It is necessary to make the shape of the poles uniform. Therefore, the gas introduction holes 10 are arranged evenly and the condition of the holes 12 in the gas distribution plate 11 below them is changed to make the gas flow rate uniform.

本発明の他の実施例を第2図によシ説明する。Another embodiment of the present invention will be explained with reference to FIG.

第2図ではガス分散用板11に形成した孔の大きさに大
小をつけたものである。ガス導入ロアの近くの中心部分
には小さな孔22−1を形成し、その周辺部分に順次大
きな孔22−2.22−3を設けて、ガス流を均一にす
ることもできる。順次大きな孔を設ける代シに周辺部分
のみ大きな孔を形成してもよい。
In FIG. 2, the sizes of the holes formed in the gas dispersion plate 11 are shown in different sizes. It is also possible to make the gas flow uniform by forming a small hole 22-1 in the center near the gas introduction lower and sequentially forming larger holes 22-2 and 22-3 in the surrounding area. Instead of sequentially forming larger holes, larger holes may be formed only in the peripheral portion.

勿論本発明では孔の数を中心部分と周辺部分で不均一に
し、しかも孔の大きさを中心部分と周辺部分とで不均一
としてもよい0 また2本発明はアモルファスシリコン膜の形成等半導体
装置の製造ばかりでなく、プラズマCvD法で成膜する
ものであればいかなる薄膜形成の場合も適用できる。
Of course, in the present invention, the number of holes may be made non-uniform between the center and the periphery, and the size of the pores may also be made non-uniform between the center and the periphery. It can be applied not only to the production of , but also to the formation of any thin film as long as it is formed by the plasma CVD method.

〔発明の効果〕 本発明によりガス導入孔より反応室1内に導入されるガ
ス流量が均一に近い量に調整することができ、対向する
基板5の表面上に従来よりかなシ犬面積にわたり均一で
良好な膜厚および膜質の膜を得ることができた。
[Effects of the Invention] According to the present invention, the gas flow rate introduced into the reaction chamber 1 through the gas introduction hole can be adjusted to a nearly uniform amount, and the gas flow rate can be adjusted to be nearly uniform over a larger area on the surface of the opposing substrate 5 than before. A film with good thickness and quality could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の詳細な説明図。 第3図、第4図は従来例の説明図である。 1・・・反応室。 2・・・基板側電極(アノード)。 3・・・高周波電極(カソード)。 4・・・基板加熱用ヒータ。 5・・・基板。 6・・・高周波電源。 7・・・・ガス導入口。 8・・・ガス排気口。 9・・・ガス導入孔付板。 10・・・ガス導入孔。 11・・・ガス分散用板。 12 、12’・・・ガス分散孔。 22−1〜22−3・・・ガス分散孔。 1 and 2 are detailed explanatory diagrams of the present invention. FIGS. 3 and 4 are explanatory diagrams of conventional examples. 1...Reaction chamber. 2... Substrate side electrode (anode). 3...High frequency electrode (cathode). 4... Heater for heating the substrate. 5... Board. 6...High frequency power supply. 7...Gas inlet. 8...Gas exhaust port. 9...Plate with gas introduction holes. 10...Gas introduction hole. 11...Gas dispersion plate. 12, 12'... Gas distribution hole. 22-1 to 22-3...Gas distribution holes.

Claims (3)

【特許請求の範囲】[Claims] (1)平行平板型の対向電極を備え、グロー放電を利用
して薄膜を形成するプラズマCVD装置において、一方
の電極にガス導入孔付板と、そのガス流が中心部分が小
に周辺部分が大になるようなガス分散孔が形成されたガ
ス分散用板を配置したことを特徴とするプラズマCVD
装置。
(1) In a plasma CVD apparatus that is equipped with parallel plate-type counter electrodes and forms thin films using glow discharge, one electrode is equipped with a plate with gas introduction holes, and the gas flow is small in the center and small in the periphery. Plasma CVD characterized by disposing a gas dispersion plate in which large gas dispersion holes are formed.
Device.
(2)前記ガス分散用板には中心部分より周辺部分のガ
ス分散孔の密度が大きくなるようにガス分散孔を設けた
ことを特徴とする特許請求の範囲第1項記載のプラズマ
CVD装置。
(2) The plasma CVD apparatus according to claim 1, wherein the gas dispersion plate is provided with gas dispersion holes such that the density of gas dispersion holes is higher in the peripheral portion than in the central portion.
(3)前記ガス分散用板には、ガス分散孔の大きさを中
心部分で小さく、周辺部分で大きくなるように形成した
ことを特徴とする特許請求の範囲第1項記載のプラズマ
CVD装置。
(3) The plasma CVD apparatus according to claim 1, wherein the gas dispersion plate is formed so that the size of the gas dispersion holes is smaller in the center portion and larger in the peripheral portion.
JP2016887A 1987-01-30 1987-01-30 Plasma cvd system Pending JPS63187619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016887A JPS63187619A (en) 1987-01-30 1987-01-30 Plasma cvd system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016887A JPS63187619A (en) 1987-01-30 1987-01-30 Plasma cvd system

Publications (1)

Publication Number Publication Date
JPS63187619A true JPS63187619A (en) 1988-08-03

Family

ID=12019636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016887A Pending JPS63187619A (en) 1987-01-30 1987-01-30 Plasma cvd system

Country Status (1)

Country Link
JP (1) JPS63187619A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058527A (en) * 1990-07-24 1991-10-22 Ricoh Company, Ltd. Thin film forming apparatus
US5136975A (en) * 1990-06-21 1992-08-11 Watkins-Johnson Company Injector and method for delivering gaseous chemicals to a surface
JPH04364024A (en) * 1990-01-29 1992-12-16 American Teleph & Telegr Co <Att> Manufacture of semiconductor device
US5188671A (en) * 1990-08-08 1993-02-23 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
US5382911A (en) * 1993-03-29 1995-01-17 International Business Machines Corporation Reaction chamber interelectrode gap monitoring by capacitance measurement
US5423936A (en) * 1992-10-19 1995-06-13 Hitachi, Ltd. Plasma etching system
US5769952A (en) * 1994-06-07 1998-06-23 Tokyo Electron, Ltd. Reduced pressure and normal pressure treatment apparatus
US5997649A (en) * 1998-04-09 1999-12-07 Tokyo Electron Limited Stacked showerhead assembly for delivering gases and RF power to a reaction chamber
US6083363A (en) * 1997-07-02 2000-07-04 Tokyo Electron Limited Apparatus and method for uniform, low-damage anisotropic plasma processing
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6173673B1 (en) 1999-03-31 2001-01-16 Tokyo Electron Limited Method and apparatus for insulating a high power RF electrode through which plasma discharge gases are injected into a processing chamber
US6302057B1 (en) 1998-09-15 2001-10-16 Tokyo Electron Limited Apparatus and method for electrically isolating an electrode in a PECVD process chamber
US6477980B1 (en) * 2000-01-20 2002-11-12 Applied Materials, Inc. Flexibly suspended gas distribution manifold for plasma chamber
US6681716B2 (en) * 2001-11-27 2004-01-27 General Electric Company Apparatus and method for depositing large area coatings on non-planar surfaces
US6772827B2 (en) 2000-01-20 2004-08-10 Applied Materials, Inc. Suspended gas distribution manifold for plasma chamber
US7641762B2 (en) 2005-09-02 2010-01-05 Applied Materials, Inc. Gas sealing skirt for suspended showerhead in process chamber
US7722925B2 (en) 2004-02-24 2010-05-25 Applied Materials, Inc. Showerhead mounting to accommodate thermal expansion
US7776178B2 (en) 2006-10-25 2010-08-17 Applied Materials, Inc. Suspension for showerhead in process chamber
US20110126764A1 (en) * 2009-12-01 2011-06-02 Industrial Technology Research Institute Gas supply apparatus
US9200368B2 (en) 2004-05-12 2015-12-01 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US9580804B2 (en) 2007-06-22 2017-02-28 Applied Materials, Inc. Diffuser support
WO2018041599A1 (en) * 2016-09-02 2018-03-08 Asml Netherlands B.V. Lithographic apparatus
US10453734B2 (en) 2015-07-02 2019-10-22 Asml Netherlands B.V. Substrate holder, a lithographic apparatus and method of manufacturing devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121233A (en) * 1981-01-20 1982-07-28 Matsushita Electronics Corp Plasma process device
JPS6164128A (en) * 1984-09-05 1986-04-02 Toshiba Corp Treating device for sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121233A (en) * 1981-01-20 1982-07-28 Matsushita Electronics Corp Plasma process device
JPS6164128A (en) * 1984-09-05 1986-04-02 Toshiba Corp Treating device for sample

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364024A (en) * 1990-01-29 1992-12-16 American Teleph & Telegr Co <Att> Manufacture of semiconductor device
US5136975A (en) * 1990-06-21 1992-08-11 Watkins-Johnson Company Injector and method for delivering gaseous chemicals to a surface
US5058527A (en) * 1990-07-24 1991-10-22 Ricoh Company, Ltd. Thin film forming apparatus
US5188671A (en) * 1990-08-08 1993-02-23 Hughes Aircraft Company Multichannel plate assembly for gas source molecular beam epitaxy
US5423936A (en) * 1992-10-19 1995-06-13 Hitachi, Ltd. Plasma etching system
US5382911A (en) * 1993-03-29 1995-01-17 International Business Machines Corporation Reaction chamber interelectrode gap monitoring by capacitance measurement
US5769952A (en) * 1994-06-07 1998-06-23 Tokyo Electron, Ltd. Reduced pressure and normal pressure treatment apparatus
US6083363A (en) * 1997-07-02 2000-07-04 Tokyo Electron Limited Apparatus and method for uniform, low-damage anisotropic plasma processing
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US6368987B1 (en) 1997-09-30 2002-04-09 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
US5997649A (en) * 1998-04-09 1999-12-07 Tokyo Electron Limited Stacked showerhead assembly for delivering gases and RF power to a reaction chamber
US6302057B1 (en) 1998-09-15 2001-10-16 Tokyo Electron Limited Apparatus and method for electrically isolating an electrode in a PECVD process chamber
US6173673B1 (en) 1999-03-31 2001-01-16 Tokyo Electron Limited Method and apparatus for insulating a high power RF electrode through which plasma discharge gases are injected into a processing chamber
US7017269B2 (en) 2000-01-20 2006-03-28 Applied Materials, Inc. Suspended gas distribution plate
US6477980B1 (en) * 2000-01-20 2002-11-12 Applied Materials, Inc. Flexibly suspended gas distribution manifold for plasma chamber
US6772827B2 (en) 2000-01-20 2004-08-10 Applied Materials, Inc. Suspended gas distribution manifold for plasma chamber
US6823589B2 (en) * 2000-01-20 2004-11-30 Applied Materials, Inc. Flexibly suspended gas distribution manifold for plasma chamber
US6681716B2 (en) * 2001-11-27 2004-01-27 General Electric Company Apparatus and method for depositing large area coatings on non-planar surfaces
US7722925B2 (en) 2004-02-24 2010-05-25 Applied Materials, Inc. Showerhead mounting to accommodate thermal expansion
US9200368B2 (en) 2004-05-12 2015-12-01 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US10262837B2 (en) 2004-05-12 2019-04-16 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US10312058B2 (en) 2004-05-12 2019-06-04 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US7641762B2 (en) 2005-09-02 2010-01-05 Applied Materials, Inc. Gas sealing skirt for suspended showerhead in process chamber
US7776178B2 (en) 2006-10-25 2010-08-17 Applied Materials, Inc. Suspension for showerhead in process chamber
US9580804B2 (en) 2007-06-22 2017-02-28 Applied Materials, Inc. Diffuser support
US20110126764A1 (en) * 2009-12-01 2011-06-02 Industrial Technology Research Institute Gas supply apparatus
US10453734B2 (en) 2015-07-02 2019-10-22 Asml Netherlands B.V. Substrate holder, a lithographic apparatus and method of manufacturing devices
WO2018041599A1 (en) * 2016-09-02 2018-03-08 Asml Netherlands B.V. Lithographic apparatus
US10747127B2 (en) 2016-09-02 2020-08-18 Asml Netherlands B.V. Lithographic apparatus

Similar Documents

Publication Publication Date Title
JPS63187619A (en) Plasma cvd system
JP3468859B2 (en) Gas phase processing apparatus and gas phase processing method
KR100687530B1 (en) Plasma ??? Film-Forming Device
US4264393A (en) Reactor apparatus for plasma etching or deposition
JP4441590B2 (en) Apparatus and method for coupling RF power to an RF electrode or showerhead for a plasma chamber
US8097120B2 (en) Process tuning gas injection from the substrate edge
US5015330A (en) Film forming method and film forming device
US6344420B1 (en) Plasma processing method and plasma processing apparatus
US20050145170A1 (en) Substrate processing apparatus and cleaning method therefor
KR20010096568A (en) Device for Fabricating Film for Plasma-Forming Thin Film
JPH09115893A (en) Prasma reactor involving programmed sprinkling reactant gas
JP2758845B2 (en) Plasma CVD equipment
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
US5948167A (en) Thin film deposition apparatus
JPS6213573A (en) Cvd device
JPS63190173A (en) Plasma treating device
JPS60123032A (en) Plasma treatment and device thereof
JP2004508706A (en) Plasma treatment
JPS6239532B2 (en)
JP2848755B2 (en) Plasma CVD equipment
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPS6236280Y2 (en)
JPH08209349A (en) Plasma cvd device
JPH0590939U (en) Plasma CVD equipment