JP2595575B2 - Manufacturing method of electrophotographic photoreceptor - Google Patents

Manufacturing method of electrophotographic photoreceptor

Info

Publication number
JP2595575B2
JP2595575B2 JP62282236A JP28223687A JP2595575B2 JP 2595575 B2 JP2595575 B2 JP 2595575B2 JP 62282236 A JP62282236 A JP 62282236A JP 28223687 A JP28223687 A JP 28223687A JP 2595575 B2 JP2595575 B2 JP 2595575B2
Authority
JP
Japan
Prior art keywords
layer
electrophotographic photoreceptor
charge transport
transport layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282236A
Other languages
Japanese (ja)
Other versions
JPH01124863A (en
Inventor
讓 福田
雅之 西川
茂 八木
健一 唐木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP62282236A priority Critical patent/JP2595575B2/en
Priority to US07/264,748 priority patent/US5082760A/en
Priority to GB8826096A priority patent/GB2212289B/en
Priority to KR1019880014688A priority patent/KR0156562B1/en
Priority to DE3838165A priority patent/DE3838165A1/en
Publication of JPH01124863A publication Critical patent/JPH01124863A/en
Application granted granted Critical
Publication of JP2595575B2 publication Critical patent/JP2595575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真感光体、特に非晶質ケイ素系電子
写真感光体の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoreceptor, and more particularly to a method for producing an amorphous silicon-based electrophotographic photoreceptor.

従来の技術 近年、感光層として非晶質ケイ素を主体とする蒸着層
を有する電子写真感光体が注目されている。これは、非
晶質ケイ素自体、従来の電子写真感光体の寿命要因を根
本的に改善できる可能性を有しており、電子写真感光体
に応用することにより、電気的に安定な繰返し特性を有
し、高硬度かつ熱的に安定で長寿命の電子写真感光体を
得る可能性を有するためであり、従来、これらの点に着
目して種々の非晶質ケイ素系電子写真感光体が提案され
ている。
2. Description of the Related Art In recent years, an electrophotographic photoreceptor having a vapor-deposited layer mainly composed of amorphous silicon as a photosensitive layer has attracted attention. This means that amorphous silicon itself has the potential to fundamentally improve the life factor of conventional electrophotographic photoreceptors, and by applying it to electrophotographic photoreceptors, electrically stable repetition characteristics can be achieved. It has the potential to provide a high hardness, thermally stable and long life electrophotographic photoreceptor, and various amorphous silicon-based electrophotographic photoreceptors have been proposed by focusing on these points. Have been.

中でも、感光層として、光照射により、電荷キャリア
を発生させる電荷発生層と、電荷発生層で生じた電荷キ
ャリアを効率よく注入でき、かつ効率的に移動可能な電
荷輸送層とに分離した、いわゆる機能分離型感光層を有
する非晶質ケイ素系電子写真感光体が優れたものとして
提案されている。この様な機能分離型の非晶質ケイ素系
電子写真感光体における電荷輸送層としては、例えば、
シラン、ジシラン等のシラン化合物のガスと、炭素、酸
素又は窒素含有ガス及び微量の第III族或いは第V族元
素含有ガスの混合ガスをグロー放電分解して、上記元素
を含んだ非晶質ケイ素膜を形成したものが用いられてい
る。
Among them, as a photosensitive layer, a so-called charge generation layer that generates charge carriers by light irradiation, and a charge transport layer that can efficiently inject charge carriers generated in the charge generation layer and can move efficiently, so-called, An amorphous silicon-based electrophotographic photoreceptor having a function-separated type photosensitive layer has been proposed as an excellent one. As the charge transport layer in such a function-separated type amorphous silicon-based electrophotographic photoreceptor, for example,
Glow discharge decomposition of a mixed gas of a silane compound gas such as silane and disilane, and a gas containing carbon, oxygen or nitrogen and a trace amount of a group III or group V element-containing gas, to form amorphous silicon containing the above elements What has formed the film is used.

発明が解決しようとする問題点 一般に、電荷輸送層と電荷発生層とに機能分離された
電子写真感光体において、その帯電性は、感光層中で膜
厚が最も大きい電荷輸送層自体の特性が寄与するが、上
記シラン化合物のグロー放電分解によって得られる水素
化非晶質ケイ素膜を用いた電子写真感光体の帯電性は、
略30V/μ程度或いはそれ以下であり、未だ十分なものと
はいえない。また、その暗減衰率は、使用条件によって
異なるが、一般的には少なくとも20%/sec程度で、極め
て高い。そのため、その様な非晶質ケイ素系の電荷輸送
層を有する電子写真感光体は、その用途が比較的高速な
システムに限られたり、或いは十分な帯電電位が得られ
ないために、特定の現像系を必要とするという問題があ
った。又、帯電電位を増加するためには、電荷輸送層の
膜厚を大にすればよいが、そのためには製造時間を増大
させねばならず、さらには、通常の製造法では、厚膜作
成に伴う膜欠陥の発生確率が増大し、得率の低下が引き
起こされ、感光体が極めて高コストになるという問題が
あった。
Problems to be Solved by the Invention In general, in an electrophotographic photoreceptor having a function separated into a charge transport layer and a charge generation layer, the chargeability of the charge transport layer itself is the largest in the photosensitive layer. Contribute, the chargeability of the electrophotographic photoreceptor using the hydrogenated amorphous silicon film obtained by glow discharge decomposition of the silane compound,
It is about 30 V / μ or less, which is not yet sufficient. The dark decay rate varies depending on use conditions, but is generally at least about 20% / sec, which is extremely high. Therefore, the electrophotographic photoreceptor having such an amorphous silicon-based charge transport layer is not suitable for use in a relatively high-speed system, or because a sufficient charge potential cannot be obtained, a specific development There was a problem that a system was required. Further, in order to increase the charge potential, the thickness of the charge transport layer may be increased, but for that purpose, the production time must be increased. Accordingly, there is a problem that the probability of occurrence of film defects increases, the yield decreases, and the cost of the photoconductor becomes extremely high.

本発明は、従来の技術における上記のような問題点に
鑑みてなされたものである。
The present invention has been made in view of the above-described problems in the related art.

したがって、本発明の目的は、新規な電荷輸送層を有
する電子写真感光体を製造する方法を提供することにあ
る。すなわち、本発明の目的は、透明性が優れ、ひび割
れが少なく、硬度の高い電荷輸送層を有する電子写真感
光体の製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for manufacturing an electrophotographic photoreceptor having a novel charge transport layer. That is, an object of the present invention is to provide a method for producing an electrophotographic photoreceptor having a charge transport layer having excellent transparency, less cracks, and high hardness.

問題点を解決するための手段及び作用 本発明者等は、先にアルミニウムの酸化物膜が電荷輸
送層としての機能を有することを見出だしたが、さらに
検討の結果、特定の方法によってアルミニウム酸化膜を
形成した場合に、物理的特性及び電子写真特性において
一層優れたものが得られることを見出だし、本発明を完
成するに至った。
Means and Action for Solving the Problems The inventors of the present invention have previously found that an aluminum oxide film has a function as a charge transport layer. It has been found that when a film is formed, more excellent physical properties and electrophotographic properties can be obtained, and the present invention has been completed.

本発明は、支持体上に、非晶質ケイ素を主成分とする
電荷発生層を形成した後、アルミニウムの酸化物を主成
分とする電荷輸送層を形成する工程を含む電子写真感光
体の製造方法において、該電荷輸送層を、酸素ガスを導
入しつつイオンプレーティング法により形成することを
特徴とする。
The present invention provides a method for producing an electrophotographic photoreceptor, comprising the steps of forming a charge generation layer mainly composed of amorphous silicon on a support, and then forming a charge transport layer mainly composed of aluminum oxide. The method is characterized in that the charge transport layer is formed by an ion plating method while introducing oxygen gas.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において、支持体としては、導電性支持体及び
絶縁性支持体のいずれをも用いることができるが、絶縁
性支持体を用いる場合には、少なくとも他の層と接触す
る面が導電処理されていることが必要である。導電性支
持体としては、ステンレススチール、アルミニウム等の
金属或いは合金等があげられ、絶縁性支持体としては、
ポリエステル、ポリエチレン、ポリカーボネート、ポリ
スチレン、ポリアミド等の合成樹脂フィルム又はシー
ト、ガラス、セラミック、紙等があげられる。
In the present invention, as the support, any of a conductive support and an insulating support can be used.When an insulating support is used, at least the surface in contact with another layer is subjected to conductive treatment. It is necessary to be. Examples of the conductive support include metals or alloys such as stainless steel and aluminum, and examples of the insulating support include:
Examples include synthetic resin films or sheets of polyester, polyethylene, polycarbonate, polystyrene, polyamide, and the like, glass, ceramic, paper, and the like.

支持体上には、非晶質ケイ素を主成分とする電荷発生
層が形成されるが、この層は公知の方法によって形成す
ることができる。例えば、グロー放電分解法、スパッタ
リング法、イオンプレーティング法、真空蒸着法等によ
って形成することができる。これ等の成膜方法は、目的
に応じて適宜選択されるが、プラズマCVD法によりシラ
ン或いはシラン系ガスをグロー放電分解する方法が好ま
しく、この方法によれば、膜中に適量の水素を含有した
比較的暗抵抗が高く、かつ光感度も高い膜が形成され、
電荷発生層として好適な特性を得ることができる。
A charge generation layer containing amorphous silicon as a main component is formed on the support, and this layer can be formed by a known method. For example, it can be formed by a glow discharge decomposition method, a sputtering method, an ion plating method, a vacuum evaporation method, or the like. These film formation methods are appropriately selected according to the purpose, but a method of decomposing silane or a silane-based gas by glow discharge by a plasma CVD method is preferable, and according to this method, an appropriate amount of hydrogen is contained in the film. A film with relatively high dark resistance and high light sensitivity is formed,
Suitable characteristics can be obtained for the charge generation layer.

以下、プラズマCVD法を例にあげて説明する。 Hereinafter, the plasma CVD method will be described as an example.

ケイ素を主成分とする電荷発生層を作成するための原
料ガスとしては、シラン、ジシランを初めとするシラン
類、或いはシリコン結晶を用いて得られたガスがあげら
れる。又、電荷発生層を形成する際に、必要に応じて、
水素、ヘリウム、アルゴン、ネオン等のキャリアガスを
用いることも可能である。これらの原料ガス中にジボラ
ン(B2H6)ガス、ホスフィン(PH3)ガスなどのドーパ
ントガスを混入させ、膜中にほう素或いは燐等の不純物
元素を添加することもできる。又、暗抵抗の増加、光感
度の増加、或いは帯電能の増加を目的として、ハロゲン
原子、炭素原子、酸素原子、窒素原子等を含有させても
よい。さらに又、長波長域感度の増加を目的として、ゲ
ルマニウム、錫等の元素を添加することも可能である。
Examples of a source gas for forming the charge generation layer containing silicon as a main component include silanes such as silane and disilane, and a gas obtained by using a silicon crystal. Also, when forming the charge generation layer, if necessary,
It is also possible to use a carrier gas such as hydrogen, helium, argon, or neon. A dopant gas such as diborane (B 2 H 6 ) gas or phosphine (PH 3 ) gas can be mixed into these source gases, and an impurity element such as boron or phosphorus can be added to the film. Further, a halogen atom, a carbon atom, an oxygen atom, a nitrogen atom, or the like may be contained for the purpose of increasing the dark resistance, the light sensitivity, or the charging ability. Further, it is also possible to add elements such as germanium and tin for the purpose of increasing the sensitivity in the long wavelength region.

電荷発生層はケイ素を主成分とし、1〜40原子%、好
ましくは5〜20原子%の水素を含んだものが好ましい。
膜厚としては、0.1〜30μmの範囲、好ましくは0.2〜5
μmの範囲に設定される。
The charge generation layer preferably contains silicon as a main component and contains 1 to 40 atomic%, preferably 5 to 20 atomic% of hydrogen.
The thickness is in the range of 0.1 to 30 μm, preferably 0.2 to 5 μm.
It is set in the range of μm.

又、成膜条件は、交流放電を例にとると、周波数50Hz
〜5GHz、反応器内圧10-4〜10Torr、放電電力10〜2000
W、支持体温度30〜600℃の範囲で適宜設定される。電荷
発生層の膜厚は、放電時間の調整により適宜設定するこ
とができる。
In addition, the film formation conditions are, for example, an AC discharge, a frequency of 50 Hz.
~ 5GHz, reactor internal pressure 10 -4 ~ 10Torr, discharge power 10 ~ 2000
W, the support temperature is appropriately set in the range of 30 to 600 ° C. The thickness of the charge generation layer can be appropriately set by adjusting the discharge time.

電荷発生層の上には、アルミニウムの酸化物を主成分
とする電荷輸送層が形成されるが、この層は、可視光を
透過し、又、可視光領域において、実質的に光感度を有
しないものである。なお、紫外光に対しては光感度を有
していてもよい。
On the charge generation layer, a charge transport layer mainly composed of an aluminum oxide is formed. This layer transmits visible light and has substantially photosensitivity in a visible light region. It does not. In addition, it may have light sensitivity to ultraviolet light.

この電荷輸送層は、イオンプレーティング法によって
形成する必要がある。原料としては、アルミニウム単
体、酸化アルミニウムなどの化合物が用いられる。具体
的に説明すると、イオンプレーティング装置の真空槽内
に設けられた水冷可能な無酸素銅るつぼ内に、原料を挿
入する。成膜条件は、真空槽内の真空度10-6〜10-7Tor
r、イオン化電極への印加電圧+1〜500V、基板へのバ
イアス印加電圧0〜−2000V、電子銃電圧0.5〜50KV、電
子銃電流1〜1000mAである。又、基板温度は20〜1000℃
に設定する。
This charge transport layer needs to be formed by an ion plating method. As a raw material, a compound such as aluminum simple substance and aluminum oxide is used. More specifically, a raw material is inserted into a water-coolable oxygen-free copper crucible provided in a vacuum chamber of an ion plating apparatus. The film formation conditions are as follows: the degree of vacuum in the vacuum chamber is 10 -6 to 10 -7 Tor.
r, the applied voltage to the ionization electrode +1 to 500 V, the bias applied voltage to the substrate 0 to -2000 V, the electron gun voltage 0.5 to 50 KV, and the electron gun current 1 to 1000 mA. The substrate temperature is 20 ~ 100 ℃
Set to.

本発明においては、別に酸素ガスを真空槽内に直接導
入するが、酸素ガスの導入量は、真空槽内の酸素ガス圧
力によって規定することができる。すなわち、真空槽内
を上記の真空度まで排気した後、酸素ガスを、真空度10
-6〜102Torr、好ましくは10-4〜10-1Torrの範囲になる
ように導入する。この場合、酸素ガスの導入量が少ない
と、形成された膜の透明度が低下し、一方、酸素ガスの
導入量が多くなると、形成された膜に発生するひび割れ
が減少する。しかしながら、過剰量の酸素ガスは、膜を
過度に軟らかくするので適宜の範囲に設定することが必
要である。
In the present invention, oxygen gas is separately introduced directly into the vacuum chamber, but the amount of oxygen gas introduced can be regulated by the oxygen gas pressure in the vacuum chamber. That is, after the inside of the vacuum chamber is evacuated to the above-mentioned degree of vacuum, oxygen gas is exhausted to a degree of vacuum
-6 to 10 2 Torr, preferably 10 -4 to 10 -1 Torr. In this case, if the introduced amount of oxygen gas is small, the transparency of the formed film is reduced, while if the introduced amount of oxygen gas is large, cracks generated in the formed film are reduced. However, an excessive amount of oxygen gas makes the film excessively soft, so it is necessary to set the oxygen gas in an appropriate range.

又、電荷輸送層の膜厚は、イオンプレーティング時間
の調整により適宜設定することができるが、本発明にお
いては、2〜100μm、好ましくは3〜30μmの範囲に
設定される。
The thickness of the charge transport layer can be appropriately set by adjusting the ion plating time. In the present invention, the thickness is set in the range of 2 to 100 μm, preferably 3 to 30 μm.

本発明の電子写真感光体の製造においては、必要に応
じて電荷発生層及び電荷輸送層の組の上部あるいは下部
に隣接して、他の層を形成してもよい。これらの層とし
ては、例えば次のものがあげられる。
In the production of the electrophotographic photoreceptor of the present invention, if necessary, another layer may be formed adjacent to the upper or lower part of the set of the charge generation layer and the charge transport layer. Examples of these layers include the following.

電荷注入阻止層として、例えばアモルファスシリコン
に元素周期律表第III族元素あるいはV族元素を添加し
てなるp型半導体層、n型半導体層、あるいは窒化ケイ
素、炭化ケイ素、酸化ケイ素、非晶質炭素等の絶縁層
が、又、接着層として、アモルファスシリコンに窒素、
炭素、酸素等を添加してなる層があげられる。その他、
元素周期律表第III B族元素、第V族元素を同時に含む
層など、感光体の電気的及び画像的特性を制御できる層
があげられる。これらの各層の膜厚は任意に決定できる
が、通常0.01μm〜10μmの範囲に設定して用いられ
る。
As a charge injection blocking layer, for example, a p-type semiconductor layer or an n-type semiconductor layer obtained by adding an element of Group III or Group V of the periodic table to amorphous silicon, or silicon nitride, silicon carbide, silicon oxide, amorphous An insulating layer of carbon or the like, as an adhesive layer, nitrogen,
A layer formed by adding carbon, oxygen, or the like can be given. Others
Layers that can control the electrical and image characteristics of the photoreceptor, such as a layer that simultaneously contains a Group IIIB element and a Group V element of the periodic table of the elements. The thickness of each of these layers can be arbitrarily determined, but is usually set in the range of 0.01 μm to 10 μm.

更に、感光体表面のコロナイオンによる変質を防止す
るための表面保護層を設けてもよい。
Further, a surface protective layer for preventing deterioration of the photoreceptor surface due to corona ions may be provided.

上記の各層は、プラズマCVD法により形成することが
できる。電荷発生層の場合に説明したように、不純物元
素を添加する場合は、それらの不純物元素を含む物質の
ガス化物を、シランガスと共にプラズマCVD装置内に導
入してグロー放電分解を行う。各層の膜形成手段として
は、交流放電及び直流放電のいずれをも有効に採用する
ことができるが、交流放電の場合を例にとると、膜形成
条件は次の通りである。すなわち、周波数は、通常0.1
〜30MHz、好適には5〜20MHz、放電時の真空度は0.1〜5
Torr(13.3〜66.7Pa)、基板加熱温度は100〜400℃であ
る。
Each of the above layers can be formed by a plasma CVD method. As described in the case of the charge generation layer, when impurity elements are added, a gaseous substance containing the impurity element is introduced into a plasma CVD apparatus together with a silane gas to perform glow discharge decomposition. Either an AC discharge or a DC discharge can be effectively used as a film forming means of each layer. In the case of an AC discharge, for example, the film forming conditions are as follows. That is, the frequency is usually 0.1
~ 30MHz, preferably 5 ~ 20MHz, the degree of vacuum during discharge is 0.1 ~ 5
Torr (13.3 to 66.7 Pa), substrate heating temperature is 100 to 400 ° C.

実施例 以下、本発明を実施例によって説明する。Examples Hereinafter, the present invention will be described with reference to examples.

実施例1 直径約120mmのアルミニウムパイプ上に膜厚1μmの
a−Si:H膜を形成した。すなわち、容量結合型プラズマ
CVD装置にシランガス200cc/minを導入し、圧力を1.5Tor
rとした。支持体温度を250℃にして、13.56MHzの高周波
出力300Wで10分間グロー放電分解を行った。
Example 1 An a-Si: H film having a thickness of 1 μm was formed on an aluminum pipe having a diameter of about 120 mm. That is, capacitively coupled plasma
Introduce 200 cc / min silane gas into the CVD system and set the pressure to 1.5 Torr
r. Glow discharge decomposition was performed at a support temperature of 250 ° C. and a high frequency output of 13.56 MHz at 300 W for 10 minutes.

次に、上記アルミニウムパイプをイオンプレーティン
グ装置の真空槽内に設置し、99.99%のアルミナ(Al
2O3)を真空槽内の水冷無酸素銅るつぼに投入し、真空
ポンプにより、真空度を1×10-6Torrになるまで排気し
た後、真空度2×10-4Torrになるまで酸素ガスを導入し
た。電子銃に電圧8.5KVを印加して、電流240mAとなるよ
うに電源出力を設定した。このとき、イオン化電極の電
圧を80Vとし、基板自体には−500Vのバイアス電圧を印
加した。アルミニウムパイプ付近に設置された水晶振動
子膜厚モニタにより、付着速度が34Å/secで一定となる
よう電子ビームの出力を制御した。このようにして、約
25分間成膜し、膜厚約5μmの酸化アルミニウム膜より
なる電荷輸送層を形成した。
Next, the above aluminum pipe was placed in a vacuum chamber of an ion plating apparatus, and 99.99% of alumina (Al
2 O 3 ) is charged into a water-cooled oxygen-free copper crucible in a vacuum chamber, evacuated by a vacuum pump to a degree of vacuum of 1 × 10 -6 Torr, and then oxygen is reduced to a degree of vacuum of 2 × 10 -4 Torr Gas was introduced. A voltage of 8.5 KV was applied to the electron gun, and the power output was set so that the current became 240 mA. At this time, the voltage of the ionization electrode was set to 80 V, and a bias voltage of -500 V was applied to the substrate itself. The output of the electron beam was controlled by a quartz crystal film thickness monitor installed near the aluminum pipe so that the deposition rate was constant at 34 ° / sec. In this way, about
Film formation was performed for 25 minutes to form a charge transport layer made of an aluminum oxide film having a thickness of about 5 μm.

試料を真空槽より取り出して電荷輸送層を調べたとこ
ろ、形成された酸化アルミニウム膜は透明であり、又、
膜中にひび割れ(クラック)の数も少ないことが確認さ
れた。さらに又、ビッカース硬度(荷重10g)も680であ
って、高い硬度を有していた。
When the sample was taken out of the vacuum chamber and the charge transport layer was examined, the formed aluminum oxide film was transparent,
It was confirmed that the number of cracks (cracks) in the film was also small. Further, the Vickers hardness (load: 10 g) was 680, indicating a high hardness.

実施例2 真空度7×10-4Torrになるまで酸素ガスを導入した以
外は、実施例1と同様にして電子写真感光体を製造し
た。形成された電荷輸送層は、透明であり、ひび割れも
さらに少ないものであった。又、ビッカース硬度(荷重
10g)も500であった。
Example 2 An electrophotographic photosensitive member was manufactured in the same manner as in Example 1 except that oxygen gas was introduced until the degree of vacuum reached 7 × 10 −4 Torr. The formed charge transport layer was transparent and had less cracks. Also, Vickers hardness (load
10g) was also 500.

比較例 酸素ガスを導入しなかった以外は、実施例1と同様に
して電子写真感光体を製造した。形成された電荷輸送層
は、黒色であり、膜にはひび割れが多数発生していた。
又、ビッカース硬度(荷重10g)も200であり、強度の点
でも劣ったものであった。
Comparative Example An electrophotographic photosensitive member was manufactured in the same manner as in Example 1 except that oxygen gas was not introduced. The formed charge transport layer was black, and the film had many cracks.
The Vickers hardness (load 10 g) was 200, and the strength was poor.

発明の効果 本発明によれば、アルミニウムまたはその化合物を用
いて、透明性が優れ、ひび割れが少なく、硬度の高い新
規な電荷輸送層を有する電子写真感光体を製造すること
ができる。したがって、本発明によって製造された電子
写真感光体は、耐久性に優れ、又電子写真特性も優れた
ものである。
Effects of the Invention According to the present invention, an electrophotographic photoreceptor having a novel charge transporting layer having excellent transparency, less cracking and high hardness can be produced using aluminum or a compound thereof. Therefore, the electrophotographic photosensitive member manufactured according to the present invention has excellent durability and excellent electrophotographic characteristics.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/50 C23C 16/50 (72)発明者 唐木田 健一 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (56)参考文献 特開 昭62−254158(JP,A)Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C23C 16/50 C23C 16/50 (72) Inventor Kenichi Karakida 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Fujize Rocks Co., Ltd. In-house (56) References JP-A-62-254158 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】支持体上に、非晶質ケイ素を主成分とする
電荷発生層を形成した後、アルミニウムの酸化物を主成
分とする電荷輸送層を形成する工程を含む電子写真感光
体の製造方法において、該電荷輸送層を、酸素ガスを導
入しつつイオンプレーティング法により形成することを
特徴とする電子写真感光体の製造方法。
1. An electrophotographic photoreceptor comprising a step of forming a charge generation layer mainly composed of amorphous silicon on a support and then forming a charge transport layer mainly composed of aluminum oxide. A method for producing an electrophotographic photoreceptor, wherein the charge transport layer is formed by ion plating while introducing oxygen gas.
【請求項2】原料として、Al2O3を用いることを特徴と
する特許請求の範囲第1項に記載の電子写真感光体の製
造方法。
2. The method for producing an electrophotographic photoreceptor according to claim 1, wherein Al 2 O 3 is used as a raw material.
【請求項3】原料として、アルミニウムを用いることを
特徴とする特許請求の範囲第1項に記載の電子写真感光
体の製造方法。
3. The method for producing an electrophotographic photosensitive member according to claim 1, wherein aluminum is used as a raw material.
JP62282236A 1987-11-10 1987-11-10 Manufacturing method of electrophotographic photoreceptor Expired - Lifetime JP2595575B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62282236A JP2595575B2 (en) 1987-11-10 1987-11-10 Manufacturing method of electrophotographic photoreceptor
US07/264,748 US5082760A (en) 1987-11-10 1988-10-31 Method for preparing an electrophotographic photoreceptor having a charge transporting layer containing aluminum oxide
GB8826096A GB2212289B (en) 1987-11-10 1988-11-08 A method for preparing an electrophotographic photoreceptor
KR1019880014688A KR0156562B1 (en) 1987-11-10 1988-11-09 A method for preparing an electrophotographic photoreceptor
DE3838165A DE3838165A1 (en) 1987-11-10 1988-11-10 METHOD FOR PRODUCING AN ELECTROPHOTOGRAPHIC PHOTO RECEPTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282236A JP2595575B2 (en) 1987-11-10 1987-11-10 Manufacturing method of electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01124863A JPH01124863A (en) 1989-05-17
JP2595575B2 true JP2595575B2 (en) 1997-04-02

Family

ID=17649828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282236A Expired - Lifetime JP2595575B2 (en) 1987-11-10 1987-11-10 Manufacturing method of electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2595575B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595591B2 (en) * 1987-12-15 1997-04-02 富士ゼロックス株式会社 Electrophotographic photoreceptor
JPH0810332B2 (en) * 1988-02-10 1996-01-31 富士ゼロックス株式会社 Method for manufacturing electrophotographic photoreceptor
US11486042B2 (en) 2018-01-18 2022-11-01 Viavi Solutions Inc. Silicon coating on hard shields

Also Published As

Publication number Publication date
JPH01124863A (en) 1989-05-17

Similar Documents

Publication Publication Date Title
JPS6055347A (en) Photoconductive element
JP2629223B2 (en) Manufacturing method of electrophotographic photoreceptor
US4943503A (en) Amorphous silicon photoreceptor
JP2595575B2 (en) Manufacturing method of electrophotographic photoreceptor
JP4562163B2 (en) Method for producing electrophotographic photosensitive member and electrophotographic photosensitive member
JPH0782240B2 (en) Electrophotographic photoreceptor
JP2720448B2 (en) Manufacturing method of electrophotographic photoreceptor
US4965164A (en) Method for producing electrophotographic photoreceptor
JP2595591B2 (en) Electrophotographic photoreceptor
US5082760A (en) Method for preparing an electrophotographic photoreceptor having a charge transporting layer containing aluminum oxide
JPH01179166A (en) Bipolarly electrified electrophotographic sensitive body
EP0348843B1 (en) Photosensitive member for electrophotography
KR910003982B1 (en) Electrophotographic photoreceptor
JP2668407B2 (en) Electrophotographic image forming member
JPS60140357A (en) Electrophotographic sensitive body
JPS62151857A (en) Photoconductive member
JPS6410066B2 (en)
JPH0241023B2 (en)
JP2668406B2 (en) Electrophotographic image forming member
JPH01156758A (en) Electrophotographic sensitive body
JPS62178974A (en) Electrophotographic sensitive body
JPH07117764B2 (en) Method for manufacturing electrophotographic photoreceptor
JPH03242653A (en) Electrophotographic sensitive body
JPH0454945B2 (en)
JPS63152178A (en) Photocorductive sensitized material and its manufacture