JPS6328872A - Plasma cvd device - Google Patents
Plasma cvd deviceInfo
- Publication number
- JPS6328872A JPS6328872A JP17084386A JP17084386A JPS6328872A JP S6328872 A JPS6328872 A JP S6328872A JP 17084386 A JP17084386 A JP 17084386A JP 17084386 A JP17084386 A JP 17084386A JP S6328872 A JPS6328872 A JP S6328872A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- electrode
- parallel
- plasma
- forming device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000376 reactant Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000012495 reaction gas Substances 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、例えばシランガスをプラズマ放電により分解
して水素化アモルファスシリコンの薄膜を形成すべく使
用されるプラズマCVD装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma CVD apparatus used to form a thin film of hydrogenated amorphous silicon by decomposing, for example, silane gas by plasma discharge.
(従来の技術)
本願出願人は、先にこの種装置として、例えば特願昭6
1−38197に見られるように、真空容器内に設けた
平行平板型電極に、高周波電圧を印加して該容器内に導
入した反応ガスをプラズマ化することにより、加熱機構
を備えた支持装置に装着した基板上に薄膜を形成するよ
うにした式のものにおいて、該電極上に閉ループ型の磁
界を形成する磁界形成装置を設け、がくて該電極上に生
ずるプラズマ中の電子は該開ループ型の磁界に捕えられ
てその部位に電子密度の高いプラズマ領域を生じ、これ
に伴い反応ガスの分解が促進されて成膜速度が増大され
るようにした式のものを提案した。(Prior Art) The applicant of the present application has previously proposed a device of this type, for example, in the patent application filed in 1983.
1-38197, a support device equipped with a heating mechanism is developed by applying a high frequency voltage to a parallel plate type electrode provided in a vacuum container and converting the reaction gas introduced into the container into plasma. In a type that forms a thin film on the attached substrate, a magnetic field forming device is provided on the electrode to form a closed-loop magnetic field, and the electrons in the plasma generated on the electrode are transferred to the open-loop type. We proposed a formula in which a plasma region with high electron density is generated in that region by being captured by the magnetic field of the reactor, thereby accelerating the decomposition of the reactive gas and increasing the deposition rate.
(発明が解決しようとする問題点)
然し乍ら、この場合、前記した閉ループ型の磁界に更に
別個の磁界を加えて前記した機能を更に増大すべき要求
が存する。(Problems to be Solved by the Invention) However, in this case, there is a need to add a separate magnetic field to the closed-loop magnetic field described above to further increase the above-mentioned functions.
(問題点を解決するための手段)
本発明はか)る要求に適合する装置を得ることをその目
的としたもので、真空容器内に設けた平行平板型電極に
、高周波電圧を印加して、該容器内に導入した反応ガス
をプラズマ化することにより、加熱機構を備えた支持装
置に装着した基板上に薄膜を形成させるようにし、更に
該電極上に、閉ループ型の磁界を形成する間ループ磁界
形成装置を設けるものにおいて、該電極上に電極面と略
平行する平行型の磁界を形成する平行磁界形成装置を設
けて成る。(Means for Solving the Problems) The present invention is aimed at obtaining a device that meets the above requirements, and involves applying a high-frequency voltage to parallel plate electrodes provided in a vacuum container. , by converting the reaction gas introduced into the container into plasma, a thin film is formed on the substrate mounted on a support device equipped with a heating mechanism, and a closed-loop magnetic field is further formed on the electrode. In the device provided with a loop magnetic field forming device, a parallel magnetic field forming device is provided on the electrode to form a parallel magnetic field substantially parallel to the electrode surface.
(作 用)
その作用を説明するに、電極上に生ずるプラズマ中の電
子は、閉ループ型の磁界に捕えられてその部位に電子密
度の高いプラズマ領域が得られ、該領域において、反応
ガスの分解が促進されて成膜速度が増大されるもので、
この点は先に提案したものと特に異ならないが、本発明
によれば、該電極上に前記した閉ループ型の磁界とは別
個に電極面に略平行する平行型の磁界が形成されるもの
で、この平行型磁界によっても略同様に該プラズマ内の
電子が捕えられてその部位に電子密度の高いプラズマ領
域が形成され、前記したと略同様、該領域において反応
ガスの分解が促進されて成膜速度が増大する。これを換
言すれば、電極上のプラズマは、ループ型の磁界と、平
行型の磁界との両者を作用されて、電子密度の高いプラ
ズマ領域を比較的広範囲に亘り確実に得ることが出来、
かくて反応ガスの分解を更に促進して成膜速度を更に増
大させることが可能となる。(Function) To explain its function, electrons in the plasma generated on the electrode are captured by a closed-loop magnetic field, and a plasma region with high electron density is obtained in that region, and in this region, the reaction gas is decomposed. is promoted and the film formation rate is increased.
This point is not particularly different from what was proposed earlier, but according to the present invention, a parallel magnetic field that is approximately parallel to the electrode surface is formed on the electrode, separate from the closed-loop magnetic field described above. This parallel magnetic field also traps electrons in the plasma, forming a plasma region with high electron density in that region, and in substantially the same way as described above, the decomposition of the reactant gas is promoted in this region. Membrane speed increases. In other words, the plasma on the electrode is subjected to both a loop magnetic field and a parallel magnetic field, and a plasma region with high electron density can be reliably obtained over a relatively wide range.
In this way, it becomes possible to further accelerate the decomposition of the reaction gas and further increase the film formation rate.
(実施例) 本発明の実施例を別紙図面に付説明する。(Example) Embodiments of the present invention will be described with reference to attached drawings.
第1図はその一例を示すもので、(1)は真空容器を示
し、該容器(1)はシランガスその他の反応ガスを導入
する給気系(つと、該容器(1)内を所定の真空度に排
気する排気系(3)とを備える。Figure 1 shows an example of this. (1) shows a vacuum container, and the container (1) is connected to an air supply system for introducing silane gas and other reaction gases, and the inside of the container (1) is maintained at a predetermined vacuum. It is equipped with an exhaust system (3) that exhausts air at once.
該容器(1)内には、高周波印加電圧を印加される平行
平板型電極(4)が備えられるもので、図示の場合、該
電極(4)は高周波電源(5)にマツチング回路(6)
を介して連なる図面で下側の陰極作用の放電電極から成
り、その上側にこれに対向させて、陽極作用の接地電極
(ト)を備えるようにした。The container (1) is provided with a parallel plate type electrode (4) to which a high frequency applied voltage is applied, and in the case shown, the electrode (4) is connected to a high frequency power source (5) and a matching circuit (6).
As shown in the drawings, the discharge electrode has a cathode function on the lower side, and a ground electrode (G) that has an anode function is provided on the upper side of the discharge electrode.
尚該接地電極(Dは加熱機構(8)を備えた支持装置(
9)としても作用するもので、その前面に基板CIOが
装着されるようにした。該加熱機v4(8)は例えば電
源(8a)に連なるヒータから成る。更に前記した放電
電極(4)は、高周波電圧の印加によればその前面にプ
ラズマGtlを生ずるが、その内部には該前面に半径方
向の閉ループ型の磁界(I2)を形成すべき閉ループ磁
界形成装置(13が備えられるようにした。該装置1G
3は内周の環状の一方の磁ffi (13a )と、そ
の外周の環状の他方の電極(13b)を該電極(4)内
に埋設して成るもので、両磁極(13a)(13b)間
に閉ループ型の磁界■が形成されるようにした。かくて
、該ループ型の磁界■は該プラズマ(Ivの発生に際し
、該プラズマ(+1)内の電子を捕えて該部位に電子密
度の高いプラズマ領域を作るもので、図中該部位はXで
示され、該部位Xにおいて、反応ガスはその分解を促進
されて、該基板0G上に所定の膜が比較的高速に堆積さ
れるようにした。The ground electrode (D is a support device (8) equipped with a heating mechanism (8)
9), and the board CIO is mounted on the front of it. The heating device v4 (8) consists of a heater connected to a power source (8a), for example. Furthermore, the above-described discharge electrode (4) generates plasma Gtl on its front surface when a high frequency voltage is applied, but there is a closed-loop magnetic field formed therein to form a radial closed-loop magnetic field (I2) on the front surface. A device (13) is provided.The device 1G
3 is composed of an annular magnetic ffi (13a) on the inner periphery and the other annular electrode (13b) on the outer periphery embedded in the electrode (4), and has both magnetic poles (13a) (13b). A closed-loop magnetic field (2) was created between the two. Thus, when the plasma (Iv) is generated, the loop-shaped magnetic field (2) captures the electrons in the plasma (+1) and creates a plasma region with high electron density in the region. As shown, at the site X, the reactant gas was encouraged to decompose so that a given film could be deposited on the substrate OG at a relatively high rate.
以上は先に提案したものと特に異ならないが、本発明に
よれば、該電極(4)上に、その電極面と略平行する平
行型の磁界(l@を形成すべき平行磁界形成装置as+
を備えるもので、図示のものでは該装置(+51は、該
電極(4)の中心から前方に突出する一方の磁極(Is
a )と、その外周を囲繞する環状の他方の磁極(I
Sb)とから成り、両磁極(15a)(15b)間にお
いて該電極(4)の前面に半径方向にのびる平行型の磁
界0Φが得られるようにした。この磁界Cl41は、前
記した磁界(+21と略同様に、前記したプラズマaつ
の発生に際し、該プラズマaつ内の電子を捕えて該部位
に電子密度の高いプラズマ領域を作るもので、図中類部
位は同じくXで示され、該部位Xにおいて反応ガスはそ
の分解を促進されて該基板(10上に所定の膜を比較的
高速に堆積すべく作用する。かくて本発明によれば、電
極(4)の前面には、ループ型の磁界■と平行型の磁界
(14)とが存して生ずるプラズマ中の電子は各磁界(
12+ (1@に捕えられて各部位に電子密度の高いプ
ラズマ領域が作られるもので、該領域は全体として該電
極(4)の前面に略前面に亘る広範囲に得られる。Although the above is not particularly different from what was proposed earlier, according to the present invention, the parallel magnetic field forming device as
In the illustrated device (+51), one magnetic pole (Is) protrudes forward from the center of the electrode (4).
a ) and the other annular magnetic pole (I
A parallel magnetic field 0Φ extending in the radial direction on the front surface of the electrode (4) was obtained between the two magnetic poles (15a and 15b). This magnetic field Cl41, similar to the magnetic field (+21) described above, captures electrons in the plasma a when the plasma a is generated and creates a plasma region with high electron density in the region. The site is also indicated by X, and in the site X, the reaction gas is decomposed and acts to deposit a predetermined film on the substrate (10) at a relatively high speed.Thus, according to the present invention, the electrode In front of (4), a loop magnetic field ■ and a parallel magnetic field (14) exist, and the electrons in the plasma are generated by each magnetic field (
12+ (1@) to create a plasma region with high electron density at each location, and the region is obtained over a wide range approximately in front of the electrode (4) as a whole.
尚、前記した基板(IGは、該プラズマ領域に対し適宜
の間隔を存してその前方に位置されて、その前面に所定
の膜を可及的均一の膜厚分布に得へきもので、該膜厚分
布の均一化に備えて該間隔を適宜に加減すべく、図示の
ものでは該基板(IOを保持する支持装置(9)として
作用する接地電極ωの背側にこれを前後方向に移動自在
の昇降型の移動装置(16a )を備えるようにした。The above-mentioned substrate (IG) is placed in front of the plasma region at an appropriate distance, and is capable of depositing a predetermined film on the front surface with as uniform a film thickness distribution as possible. In order to adjust the spacing appropriately in preparation for making the film thickness distribution uniform, in the illustrated example, the substrate (IO) is moved in the front-back direction to the back side of the ground electrode ω, which acts as a support device (9) for holding the IO. It is equipped with a movable lifting device (16a).
尚、膜厚分布を均一化する手段はこれに限ることなく、
例えば第2図乃至第4図示のように基板(IGに対し閉
ループ磁界形成装置(13と、平行磁界形成装置(ls
lとの少なくとも一方を、相対的に回転走査させるもの
で、第2図示のものでは閉ループ磁界形成装N■をこれ
を埋設する放電電極(4)と共にその下側のモータその
他の移動装置1(16b)で回転させるようにし、第3
図示のものでは平行磁界形成装置aslをその下側のモ
ータその他の移動装置1 (16C)で回転させるよう
にし、更に第4図示のものでは基板(IOをその背側の
接地電極(7)において、その背側のモータその他の移
動装置(16d )で回転させるようにした。Note that the means for making the film thickness distribution uniform is not limited to this.
For example, as shown in FIGS. 2 to 4, a closed loop magnetic field forming device (13) and a parallel magnetic field forming device (ls
In the second figure, at least one of the closed loop magnetic field forming device N and the discharge electrode (4) embedded therein is rotated and scanned relative to the motor and other moving devices 1 ( 16b), and the third
In the one shown in the figure, the parallel magnetic field forming device asl is rotated by a motor or other moving device 1 (16C) below it, and in the one shown in the fourth figure, the substrate (IO is connected to the ground electrode (7) on the back side thereof). , and is rotated by a motor or other moving device (16d) on its back side.
(発明の効果)
このように、本発明によるときは、放電電極上に、閉ル
ープ状の磁界を形成して高いプラズマ領域を形成される
式のものにおいて、該電極上に更に電極面と平行する平
行型の磁界を形成させて、該閉ループ状の磁界と略同様
に電子密度の高いプラズマ領域を形成させるもので、両
磁界の協動により高密度のプラズマ領域を広範囲に亘り
確実に得ることが可能であり、反応ガスの分解その他の
化学反応を一層促進させて成膜速度を一層増大させ得ら
れ、その構成は平行磁界形成装置を追加すれば足りて比
較的問単である等の効果を有する。更に第2発明によれ
ば、移動装置を備えるもので、膜厚分布を均一化するこ
とが出来る効果を有する。(Effects of the Invention) As described above, according to the present invention, in a type in which a closed loop magnetic field is formed on a discharge electrode to form a high plasma region, a magnetic field is further placed on the discharge electrode parallel to the electrode surface. A parallel magnetic field is formed to form a plasma region with high electron density, similar to the closed-loop magnetic field, and by the cooperation of both magnetic fields, it is possible to reliably obtain a high-density plasma region over a wide range. It is possible to further accelerate the decomposition of the reaction gas and other chemical reactions, thereby further increasing the film formation rate, and its configuration is relatively simple as it only requires the addition of a parallel magnetic field forming device. have Furthermore, according to the second aspect of the invention, since the moving device is provided, the film thickness distribution can be made uniform.
【図面の簡単な説明】
第1図は本発明装置の1例の截断側面図、第ぢ呈 q
2図文乎第合図はその変形例の截断fi1面図である。
(1)・・・真空容器、(4)・・・放電電極、(8)
・・・加熱聚構、(9)・・・支持装置(接地電極)、
00・・・基板、C’+1・・・プラズマ、(+21・
・・閉ループ型磁界、C3・・・閉ループ磁界形成装置
、0Φ・・・平行型磁界、(IsI・・・平行磁界形成
装置。
外どるBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional side view of one example of the device of the present invention, and FIG. (1)...Vacuum vessel, (4)...Discharge electrode, (8)
... Heating structure, (9) ... Support device (ground electrode),
00...Substrate, C'+1...Plasma, (+21・
... Closed loop magnetic field, C3... Closed loop magnetic field forming device, 0Φ... Parallel magnetic field, (IsI... Parallel magnetic field forming device. Outside)
Claims (1)
を印加して、該容器内に導入した反応ガスをプラズマ化
することにより、加熱機構を備えた支持装置に装着した
基板上に薄膜を形成させるようにし、更に該電極上に、
閉ループ型の磁界を形成する開ループ磁界形成装置を設
けるものにおいて、該電極上に電極面と略平行する平行
型の磁界を形成する平行磁界形成装置を設けて成るプラ
ズマCVD装置。 2、真空容器内に設けた平行平板型電極に、高周波電圧
を印加して、該容器内に導入した反応ガスをプラズマ化
することにより、加熱機構を備えた支持装置に装着した
基板上に薄膜を形成させるようにし、更に該電極上に、
閉ループ型の磁界を形成する開ループ磁界形成装置を設
けるものにおいて、該電極上に電極面と略平行する平行
型の磁界を形成する平行磁界形成装置を設け、更に該基
板に対し該閉ループ磁界形成装置と、該平行磁界形成装
置との少なくとも一方を、相対的に移動させる移動装置
を設けて成るプラズマCVD装置。[Claims] 1. A support device equipped with a heating mechanism is produced by applying a high frequency voltage to a parallel plate type electrode provided in a vacuum container and converting the reaction gas introduced into the container into plasma. A thin film is formed on the attached substrate, and further on the electrode,
A plasma CVD apparatus which is provided with an open-loop magnetic field forming device that forms a closed-loop magnetic field, and is provided with a parallel magnetic field forming device that forms a parallel magnetic field substantially parallel to the electrode surface on the electrode. 2. By applying a high frequency voltage to the parallel plate type electrodes provided in the vacuum container and turning the reactant gas introduced into the container into plasma, a thin film is formed on the substrate mounted on a support device equipped with a heating mechanism. is formed, and further on the electrode,
In a device that is provided with an open-loop magnetic field forming device that forms a closed-loop magnetic field, a parallel magnetic field forming device that forms a parallel magnetic field that is approximately parallel to the electrode surface is provided on the electrode, and the closed-loop magnetic field forming device is further provided with respect to the substrate. A plasma CVD apparatus comprising a moving device that relatively moves at least one of the device and the parallel magnetic field forming device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17084386A JPS6328872A (en) | 1986-07-22 | 1986-07-22 | Plasma cvd device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17084386A JPS6328872A (en) | 1986-07-22 | 1986-07-22 | Plasma cvd device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6328872A true JPS6328872A (en) | 1988-02-06 |
Family
ID=15912355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17084386A Pending JPS6328872A (en) | 1986-07-22 | 1986-07-22 | Plasma cvd device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6328872A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5435172A (en) * | 1977-08-24 | 1979-03-15 | Anelva Corp | Chemical reactor using electric discharge |
JPS5756036A (en) * | 1980-09-20 | 1982-04-03 | Mitsubishi Electric Corp | Plasma chemical vapor phase reactor |
JPS60190562A (en) * | 1984-03-08 | 1985-09-28 | Tdk Corp | Method and device for forming thin film |
JPS619577A (en) * | 1984-06-25 | 1986-01-17 | Nec Corp | Plasma chemical vapor phase growing method |
-
1986
- 1986-07-22 JP JP17084386A patent/JPS6328872A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5435172A (en) * | 1977-08-24 | 1979-03-15 | Anelva Corp | Chemical reactor using electric discharge |
JPS5756036A (en) * | 1980-09-20 | 1982-04-03 | Mitsubishi Electric Corp | Plasma chemical vapor phase reactor |
JPS60190562A (en) * | 1984-03-08 | 1985-09-28 | Tdk Corp | Method and device for forming thin film |
JPS619577A (en) * | 1984-06-25 | 1986-01-17 | Nec Corp | Plasma chemical vapor phase growing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4963539B2 (en) | Method for producing carbon nanotube and plasma CVD apparatus for carrying out the method | |
AU2001283323A1 (en) | Field emission devices having carbon containing tips | |
JP2006265079A (en) | Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube | |
EP0449081B1 (en) | Microwave plasma CVD apparatus | |
JP4741060B2 (en) | Method and apparatus for epitaxially depositing atoms or molecules from a reaction gas on a deposition surface of a substrate | |
JPS62203328A (en) | Plasma cvd apparatus | |
JPS6328872A (en) | Plasma cvd device | |
JPS61213377A (en) | Method and apparatus for plasma deposition | |
JPS6328873A (en) | Plasma cvd device | |
JPH01298174A (en) | Formation of thin film using ion cyclotron resonance and device therefor | |
JPH0249386B2 (en) | PURAZUMACVD SOCHI | |
JPH0445580B2 (en) | ||
JP2911127B2 (en) | Plasma polymerization reactor | |
JPH08222554A (en) | Film deposition and film deposition system using plasma | |
JPS63114966A (en) | Apparatus for producing thin film | |
JPS6383271A (en) | Production of diamond-like carbon film | |
JPS6277465A (en) | Formation of amorphous silicon film | |
JPH0249385B2 (en) | PURAZUMACVD SOCHI | |
JPS62124277A (en) | Plasma cvd device | |
JPS62209821A (en) | Plasma cvd apparatus | |
JPH1060655A (en) | Formation of thin film and apparatus therefor | |
JPH1154432A (en) | Method of forming thin silicon polycrystal film | |
JPH02197576A (en) | Thin film building-up device | |
JP2715277B2 (en) | Thin film forming equipment | |
JPS59133364A (en) | Electric discharge chemical reaction device |