JPS63170971A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63170971A
JPS63170971A JP277887A JP277887A JPS63170971A JP S63170971 A JPS63170971 A JP S63170971A JP 277887 A JP277887 A JP 277887A JP 277887 A JP277887 A JP 277887A JP S63170971 A JPS63170971 A JP S63170971A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
crystal particles
semiconductor device
grown
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP277887A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiba
宏 柴
Keimei Mikoshiba
御子柴 啓明
Susumu Kurosawa
晋 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP277887A priority Critical patent/JPS63170971A/en
Publication of JPS63170971A publication Critical patent/JPS63170971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enhance the mobility of a current carrier and to enhance the current drive force and the mutual conductance of a semiconductor device by a method wherein crystal particles inside a polycrystalline silicon substrate are grown and arranged in the same vertical direction as a transistor-activating region which is formed in such a way that the current carrier flows along the interface of the crystal particles. CONSTITUTION:A device incorporates n<+> polycrystalline silicon layers 1, 2 and p<+> polycrystalline silicon layers 3, 4, which form each region for a source, a drain and two gates, as well as n<-> polycrystalline silicon layers 5, 6 which form a channel region. The polycrystalline layers are deposited in succession on an insulating substrate 7; crystal particles are grown in the vertical direction with reference to the insulating substrate 7. That is to say, the crystal particles are grown in such a way that, inside the n<-> polycrystalline layers 5, 6 in the channel region, the interface of the crystal particles runs along their respective channels and that it does not cross the flow of a current carrier. By this method, the opportunity that the current carrier disappears due to the recombination or other forces is reduced; the mutual conductance and the current drive force of a device can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置に関し、特にトランジスタ活性化領
域を多結晶シリコンを用いて形成する半導体装置の構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and particularly to the structure of a semiconductor device in which a transistor activation region is formed using polycrystalline silicon.

(従来の技術) 今日、薄膜トランジスタの例に見る如く単結晶シリコン
に代わる基板材料を用いた半導体装置の開発が盛んであ
る。この場合、単結晶シリコンに代わる材料には、通常
、アモナハスまたは多結晶のシリコン材が用いられ、半
導体素子は従来の技術をそのまま踏襲して所謂横型構造
に形成される。
(Prior Art) Today, as seen in the example of thin film transistors, there is active development of semiconductor devices using substrate materials that replace single crystal silicon. In this case, amonahas or polycrystalline silicon material is usually used as the material to replace single crystal silicon, and the semiconductor element is formed into a so-called lateral structure by following the conventional technology.

(発明が解決しようとする問題点) しかしながら、絶縁基板(例えばガラス)上に例えば多
結晶シリコンを成長せしめると結晶粒は絶縁基板と垂直
方向に成長配列されるので横型半導体素子では電流担体
(電子または正孔)が多数の結晶粒界面を横切ることと
なる。このように電流担体が多数の結晶粒界面を横切る
構造であると電流担体の移動度は小さくなり、半導体装
置の相互コンダクタンス(gm)および電流駆動力をそ
れぞれ低下させる。従って、単結晶シリコンに代わる基
板材料を用いた従来の半導体装置の負荷に対する電流駆
動力は弱く薄膜トランジスタが利用される分野も高々液
晶表示装置の周辺駆動素子程度に過ぎない。
(Problem to be Solved by the Invention) However, when polycrystalline silicon is grown on an insulating substrate (e.g. glass), the crystal grains are grown and arranged perpendicularly to the insulating substrate. or holes) cross many crystal grain interfaces. If the structure is such that the current carriers cross many crystal grain boundaries, the mobility of the current carriers decreases, reducing the mutual conductance (gm) and current driving force of the semiconductor device. Therefore, conventional semiconductor devices using a substrate material instead of single-crystal silicon have a weak current driving ability for loads, and thin film transistors are used only in the peripheral driving elements of liquid crystal display devices.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の情況に鑑み、相互コンダクタン
スおよび電流駆動力をそれぞれ改善した多結晶シリコン
基板による半導体装置を提供することにある。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a semiconductor device using a polycrystalline silicon substrate with improved mutual conductance and current driving force.

〔発明の構成〕[Structure of the invention]

本発明によれば、半導体装置は多結晶シリコン基板と前
記多結晶シリコン基板内にトランジスタ活性化領域を縦
型方向に形成する縦型構造素子とを含んで成シ、前記多
結晶シリコン基板は結晶粒界面のそれぞれが前記トラン
ジスタ活性化領域における電流担体の流れと交差するこ
となき前記縦型方向に成長配列される結晶粒により形成
されることを含む。
According to the present invention, a semiconductor device includes a polycrystalline silicon substrate and a vertical structure element in which a transistor activation region is vertically formed in the polycrystalline silicon substrate, and the polycrystalline silicon substrate is crystalline. Each of the grain boundaries is formed by crystal grains grown and aligned in the vertical direction without intersecting the flow of current carriers in the transistor activation region.

(問題点を解決するための手段〕 すなわち、本発明によれば、多結晶シリコン基板半導体
装置のトランジスタ素子は縦型構造に形成され、その多
結晶シリコン基板の結晶粒は電流担体が結晶粒界面に沿
って流れるように、形成されるトランジスタ活性化領域
と同じ縦型方向に成長配列される。
(Means for Solving the Problems) That is, according to the present invention, a transistor element of a polycrystalline silicon substrate semiconductor device is formed in a vertical structure, and the crystal grains of the polycrystalline silicon substrate have current carriers located at the crystal grain interface. It is grown and arranged in the same vertical direction as the transistor activation region to be formed, so that it flows along.

(作用) この際、多結晶シリコンの結晶粒はトランジスタ活性化
領域における電流担体の流れに対しそれぞれの結晶粒界
面を交差させることがないので、電流担体の移動度を高
め半導体装置の電流駆動力および相互コンダクタンスを
向上せしめるよう作用する。以下図面を参照して本発明
の詳細な説明する。
(Function) At this time, the crystal grains of polycrystalline silicon do not cross each grain interface with respect to the flow of current carriers in the transistor activation region, so the mobility of current carriers is increased and the current driving force of the semiconductor device is increased. and acts to improve mutual conductance. The present invention will be described in detail below with reference to the drawings.

(実施例) 第1図は本発明の一実施例を示す断面図で、素子構造を
縦を電界効果トランジスタとした場合を示すものである
。本実施例によれば、本発明の半導体装置はソース、ド
レインおよび2つのゲートの各領域を形成するn多結晶
シリ37層1,2およびp多結晶シリコン層3,4と、
チャネル領域を形成するn−多結晶シリコン層5,6と
を含む。
(Embodiment) FIG. 1 is a sectional view showing an embodiment of the present invention, in which the device structure is a field effect transistor with the vertical direction. According to this embodiment, the semiconductor device of the present invention includes n-polycrystalline silicon 37 layers 1 and 2 and p-polycrystalline silicon layers 3 and 4 forming the source, drain, and two gate regions,
n-polycrystalline silicon layers 5 and 6 forming channel regions.

ここで、S、GおよびDはソース、ゲートおよびドレイ
ンの各領域からの引出電極、7はガラス材からなる絶縁
基板、8,9,10.11はそれぞれシリコン酸化絶縁
機である。
Here, S, G, and D are lead electrodes from the source, gate, and drain regions, 7 is an insulating substrate made of glass material, and 8, 9, 10, and 11 are silicon oxide insulators, respectively.

本実施例によれば多結晶7リコン層は絶縁基板7上に順
次堆積されて形成されるので結晶粒を絶縁基板7に対し
垂直方向に成長させるようになる。
According to this embodiment, the polycrystalline silicon layer is formed by being sequentially deposited on the insulating substrate 7, so that the crystal grains are grown in a direction perpendicular to the insulating substrate 7.

すなわち、チャネル領域のn−多結晶シリコン層5゜6
内では結晶粒界面をそれぞれチャネルに沿う方向に成長
させ電流担体(電子)の流れ(矢印で示す)と交差せし
めないようになる。従って、再結合その他による電流担
体(電子)の消滅機会を減少して素子の相互コンダクタ
ンス(gm)および電流駆動力を改善せしめることがで
きる。
That is, the n-polycrystalline silicon layer 5°6 in the channel region
Within the channel, grain boundaries grow in the direction along the channel so that they do not intersect with the flow of current carriers (electrons) (indicated by arrows). Therefore, the chances of current carriers (electrons) disappearing due to recombination or the like can be reduced, and the mutual conductance (gm) and current driving force of the device can be improved.

第2図は本発明の他の実施例を示す断面図で多結晶シリ
コンからなる2つの縦型電界効果トランジスタを多段に
積層した構造を示したものである。
FIG. 2 is a sectional view showing another embodiment of the present invention, showing a structure in which two vertical field effect transistors made of polycrystalline silicon are stacked in multiple stages.

本実施例によれば、第1図と全く同一構造のトランジス
タ素子A、Bが層間絶縁膜12を介し2層構造に形成さ
れる。本発明の半導体装置は殆んど全てを多結晶シリコ
ンで形成できるので本実施例の如く複数個のトランジス
タ素子を積み重ねた3次元構成を容易にとらせることが
できる。このように3次元構成をとシ得る利点は通常用
いられる他のトランジスタ素子との組合せでも容易に実
現し得る。
According to this embodiment, transistor elements A and B having exactly the same structure as in FIG. 1 are formed in a two-layer structure with an interlayer insulating film 12 interposed therebetween. Since the semiconductor device of the present invention can be formed almost entirely from polycrystalline silicon, it can easily have a three-dimensional configuration in which a plurality of transistor elements are stacked as in this embodiment. The advantage of having a three-dimensional configuration can be easily realized by combining with other commonly used transistor elements.

第3図は本発明のその他の実施例を示す断面図で、第1
層を通常用いられる単結晶シリコン基板によるMOS)
ランジスタで形成し第2層以降を本発明にかかる縦型電
界効果トランジスタとする3次元構造を示したものであ
る。ここで、Cは単結晶シリコン基板を用いた通常のM
OSトランジスタを示し、13はその単結晶シリコン基
板を表わしている。
FIG. 3 is a sectional view showing another embodiment of the present invention.
(MOS using a single crystal silicon substrate, which is usually used as a layer)
This figure shows a three-dimensional structure formed of transistors, in which the second and subsequent layers are vertical field effect transistors according to the present invention. Here, C is a normal M using a single crystal silicon substrate.
An OS transistor is shown, and 13 represents its single crystal silicon substrate.

以上は本発明を縦型電界効果トランジスタに実施した場
合のみを説明したが、この他にも縦型バイポーラ・トラ
ンジスタの如く素子が縦型構造であれば何れのものに対
しても容易に実施することができ、それぞれ相互コンダ
クタンスおよび電流駆動力の改善された多結晶シリコン
半導体装置を得ることができる。従って、第2図および
第3図に示した3次元構成はトランジスタの種類の組合
わせによって幾通シもの半導体電子回路を形成せしめ得
る。
Although the present invention has been described above only when applied to a vertical field effect transistor, it can also be easily applied to any device having a vertical structure, such as a vertical bipolar transistor. Thus, it is possible to obtain a polycrystalline silicon semiconductor device with improved mutual conductance and improved current driving power. Therefore, the three-dimensional configuration shown in FIGS. 2 and 3 can be used to form any number of semiconductor electronic circuits by combining the types of transistors.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、多結晶シ
リコン半導体装置の相互コンダクタンスおよび外部回路
への電流駆動力特性を改善し得る他3次元構成を著しく
容易にならしめる顕著なる効果を有する。
As described above in detail, the present invention has the remarkable effect of improving the mutual conductance of a polycrystalline silicon semiconductor device and the current driving force characteristics to an external circuit, and also significantly facilitating three-dimensional configuration. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図、第3図は本発明の更に他
の実施例を示す断面図である。 1・・・・・・ソース領域を形成するn+多結晶シリコ
ン層、2・・・・・・ドレイン領域を形成するn+多結
晶シリコン層、3,4・・・・・・ゲート領域を形成す
るn+多結晶シリコン層、5,6・・・・・・チャネル
領域を形成するn−多結晶シリコン層、7・・・・・・
ガラス材からなる絶縁基板、8,9,10.11・・・
・・・シリコン酸化絶縁膜、12・・・・・・層間絶縁
膜、13・・・・・・単結晶シリコン基板、S・・・・
・・ソース引出電極、G・・・・・・ゲート引出電極、
D・・・・・・ドレイン引出電極、A・・・・・・第1
層縦型電界効果トランジスタ素子、B・・・・・・第2
層縦型電界効果トランジスタ素子、C・・・・・・単結
晶シリコン基板によるMOS)ランジスタ。 /・・・ソース順鍼′と#黛;′0匁・う、ト呑晶ジ9
コ−42・−・下レイ啜も戎と形層;4ろグー多、聞晶
ンジコン1、シ4・ケニト々需嬉&形メ’<”qbpf
多3J−うタコン層、s、6  ラセオラレリb戎°ε
彩底γろlL−拶場鼾9コン17・・・ガラス材からな
る。be、v19反3ノ移10. / f −°゛ シ
タコ濠イし、f!、屡I芙δ・・・・ソーズ引止ギJ極 6・・・ケート引止電極 D  ド°し4ンイ1止禰18 A・・・自Gk皆六道型U更カ某Lランシン7禾千B−
考ダZ眉、!v型1配渭咬ガ匙トクンシ゛°兄名樹了/
Z・・/f刈忽羽
FIG. 1 is a sectional view showing one embodiment of the invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIG. 3 is a sectional view showing still another embodiment of the invention. 1... N+ polycrystalline silicon layer forming a source region, 2... N+ polycrystalline silicon layer forming a drain region, 3, 4... Forming a gate region n+ polycrystalline silicon layer, 5, 6... n- polycrystalline silicon layer forming channel region, 7...
Insulating substrates made of glass material, 8, 9, 10.11...
...Silicon oxide insulating film, 12...Interlayer insulating film, 13...Single crystal silicon substrate, S...
...Source extraction electrode, G...Gate extraction electrode,
D...Drain extraction electrode, A...First
Layered vertical field effect transistor element, B...Second
Layered vertical field effect transistor element, C...MOS (MOS) transistor based on a single crystal silicon substrate. /...Sauce Jun Acupuncture' and #Mayuzhi;'0 Momme・U, Tonchoji 9
Ko-42 --- The lower level is also the same and the shape layer; 4 rogu, listening to the sound, 1, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5
Multi 3J-utacon layer, s, 6 raceoraleri b 戎°ε
Aya bottom γro lL-Gaiba snoring 9 con 17...Made of glass material. be, v19 anti-3 no transfer 10. / f −°゛ Shitako moat, f! , 屡I 芙δ...Swords retaining gear J pole 6...Kate retaining electrode D Do°shi 4 in 1 stop 18 A...Self Gk all Rokudo type U Saraka certain L Ranshin 7 He Thousand B-
Thoughts on Z eyebrows! V-type 1 stroke bite spoon /
Z.../f Kariwa

Claims (1)

【特許請求の範囲】[Claims] 多結晶シリコン基板と前記多結晶シリコン基板内にトラ
ンジスタ活性化領域を縦型方向に形成する縦型構造素子
とを含んで成り、前記多結晶シリコン基板は結晶粒界面
のそれぞれが前記トランジスタ活性化領域における電流
担体の流れと交差することなき前記縦型方向に成長配列
される結晶粒により形成されていることを特徴とする半
導体装置。
The polycrystalline silicon substrate includes a polycrystalline silicon substrate and a vertical structure element that forms a transistor activation region in a vertical direction in the polycrystalline silicon substrate, and the polycrystalline silicon substrate has a crystal grain interface in which each of the transistor activation regions is formed. A semiconductor device characterized in that the semiconductor device is formed of crystal grains grown and arranged in the vertical direction without intersecting the flow of current carriers.
JP277887A 1987-01-09 1987-01-09 Semiconductor device Pending JPS63170971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP277887A JPS63170971A (en) 1987-01-09 1987-01-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP277887A JPS63170971A (en) 1987-01-09 1987-01-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63170971A true JPS63170971A (en) 1988-07-14

Family

ID=11538798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP277887A Pending JPS63170971A (en) 1987-01-09 1987-01-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63170971A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660795A (en) * 1992-05-13 1994-03-04 Micron Technol Inc Field emission structure manufactured on macroparticle polysilicon substrate
US5481121A (en) * 1993-05-26 1996-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having improved crystal orientation
JP2755369B2 (en) * 1992-02-25 1998-05-20 エージー.アソシェーツ、インコーポレイテッド Gas phase doping of semiconductor materials under reduced pressure in a radiantly heated cold wall reactor
US5962871A (en) * 1993-05-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6090646A (en) * 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6475840B1 (en) * 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009111426A (en) * 2003-12-05 2009-05-21 Internatl Rectifier Corp Structure of group iii nitride monolithic power ic and its manufacturing method
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8803203B2 (en) 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755369B2 (en) * 1992-02-25 1998-05-20 エージー.アソシェーツ、インコーポレイテッド Gas phase doping of semiconductor materials under reduced pressure in a radiantly heated cold wall reactor
JPH0660795A (en) * 1992-05-13 1994-03-04 Micron Technol Inc Field emission structure manufactured on macroparticle polysilicon substrate
US5481121A (en) * 1993-05-26 1996-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having improved crystal orientation
US5824573A (en) * 1993-05-26 1998-10-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5962871A (en) * 1993-05-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6090646A (en) * 1993-05-26 2000-07-18 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6121076A (en) * 1993-05-26 2000-09-19 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6337231B1 (en) 1993-05-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6765229B2 (en) * 1993-05-26 2004-07-20 Semiconductor Energy Laboratory Co., Ltd. Method for producing semiconductor device
US6475840B1 (en) * 1993-06-12 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2009111426A (en) * 2003-12-05 2009-05-21 Internatl Rectifier Corp Structure of group iii nitride monolithic power ic and its manufacturing method
US9142637B2 (en) 2003-12-05 2015-09-22 International Rectifier Corporation III-nitride monolithic IC
US8803203B2 (en) 2010-02-26 2014-08-12 Eastman Kodak Company Transistor including reentrant profile
US9337828B2 (en) 2010-02-26 2016-05-10 Eastman Kodak Company Transistor including reentrant profile
US7923313B1 (en) 2010-02-26 2011-04-12 Eastman Kodak Company Method of making transistor including reentrant profile
US8847232B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including reduced channel length
US8338291B2 (en) 2011-01-07 2012-12-25 Eastman Kodak Company Producing transistor including multiple reentrant profiles
US8383469B2 (en) 2011-01-07 2013-02-26 Eastman Kodak Company Producing transistor including reduced channel length
US8409937B2 (en) 2011-01-07 2013-04-02 Eastman Kodak Company Producing transistor including multi-layer reentrant profile
US8492769B2 (en) 2011-01-07 2013-07-23 Eastman Kodak Company Transistor including multi-layer reentrant profile
US8304347B2 (en) 2011-01-07 2012-11-06 Eastman Kodak Company Actuating transistor including multiple reentrant profiles
US7985684B1 (en) 2011-01-07 2011-07-26 Eastman Kodak Company Actuating transistor including reduced channel length
US8847226B2 (en) 2011-01-07 2014-09-30 Eastman Kodak Company Transistor including multiple reentrant profiles
US8617942B2 (en) 2011-08-26 2013-12-31 Eastman Kodak Company Producing transistor including single layer reentrant profile
US8637355B2 (en) 2011-08-26 2014-01-28 Eastman Kodak Company Actuating transistor including single layer reentrant profile
US8592909B2 (en) 2011-08-26 2013-11-26 Eastman Kodak Company Transistor including single layer reentrant profile
US8803227B2 (en) 2011-09-29 2014-08-12 Eastman Kodak Company Vertical transistor having reduced parasitic capacitance
US8865576B2 (en) 2011-09-29 2014-10-21 Eastman Kodak Company Producing vertical transistor having reduced parasitic capacitance

Similar Documents

Publication Publication Date Title
JPS63170971A (en) Semiconductor device
JP3016298B2 (en) Semiconductor device
JPS63151083A (en) Thin film semiconductor device
JPS625661A (en) Thin film transistor
US3643139A (en) Integrated circuit having four mosfet devices arranged in a circle surrounding a guard diffusion
JPH06318702A (en) Semiconductor device and light valve device
JPH0666412B2 (en) Stacked semiconductor integrated circuit
JPH08102501A (en) Semiconductor device
JPS63137450A (en) Laminated type cmos gate array
JPS61139067A (en) Semiconductor device
JPH1065148A (en) Semiconductor device and its manufacture
JPS5892254A (en) Semiconductor device
JPH0787219B2 (en) Semiconductor memory device
JP2002009183A (en) Semiconductor storage device and its manufacturing method
JPS63237559A (en) Complementary mos type semiconductor device and manufacture thereof
JPS5814072B2 (en) Semiconductor integrated circuit device and its manufacturing method
JPH04142081A (en) Mos transistor
KR20030050907A (en) TFT with Multiple Gate
JPH03270268A (en) Semiconductor integrated circuit device
JPS63204628A (en) Semiconductor integrated circuit device
JPS63293882A (en) Semiconductor integrated circuit
JPH01309368A (en) Mos type semiconductor memory circuit device
JPS60200573A (en) Semiconductor device
JPH04260373A (en) Semiconductor integrated circuit
JPS61144038A (en) Manufacture of semiconductor wafer