JPS625661A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPS625661A
JPS625661A JP14504485A JP14504485A JPS625661A JP S625661 A JPS625661 A JP S625661A JP 14504485 A JP14504485 A JP 14504485A JP 14504485 A JP14504485 A JP 14504485A JP S625661 A JPS625661 A JP S625661A
Authority
JP
Japan
Prior art keywords
polycrystalline
insulating film
thin film
layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14504485A
Other languages
Japanese (ja)
Inventor
Hiroo Wakaumi
若海 弘夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14504485A priority Critical patent/JPS625661A/en
Publication of JPS625661A publication Critical patent/JPS625661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To increase the capacity of a display device by forming a conductive electrode through an insulating film on a glasslike substrate, forming a polycrystalline Si active layer thereon, further forming a thin insulating film and a conductive electrode thereon to use the both electrodes as a common gate, and forming a channel in the polycrystalline Si active layer. CONSTITUTION:A conductive layer 15' is formed through an insulating film 12 on a glasslike substrate 11, a thin insulating film 12' is deposited thereon, a polycrystalline Si is deposited thereon, boron is doped to form an active layer 13. A high density impurity is doped on part of the layer to form N<+> type impurity layers 14, 14'. A thin insulating film 12' is formed thereon, and a conductive layer 15 is formed thereon. Thereafter, a passivation film is formed on the entire surface, only source and drain are opened, aluminum is deposited to lead an electrode 16. Thus, the capacity of a display device driven by an active matrix TFT by the high speed operation of a driver can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、LC,]li:L、 VF等の表示デバイス
駆動用のTPTやその周辺回路の基本構成要素である薄
膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor that is a basic component of a TPT and its peripheral circuits for driving display devices such as LC, ]li:L, and VF.

〔従来の技術〕[Conventional technology]

近年、EL%LC等の表示装置が大面積化するKつれて
、アクティブマトリックスTPTで駆動する方式が検討
され始めてきた。この方式では、各セルに対応して設け
たTPTの他に、X%Yの電極線を駆動するためのドラ
イバが必要であるが、これらはTPTと共に、ガラス状
基板の上にIC化されるのがコスト的に望ましい。これ
らTPTやドライバは5.9mt−大きくとれ、高速に
動作する程、表示デバイスの性能が向上する。例えば、
ドライバの動作速度を向上できれば、大面積化が可能に
なる。また、TPTのgm (相互コンダクタンス)を
大きくとれれば、トランジスタのw/Lヲ小さくするこ
とが可能となシ、1つのセルの開口率を向上できるよう
Kなる。
In recent years, as display devices such as EL%LC have become larger in area, studies have begun to consider driving systems using active matrix TPT. In this method, in addition to the TPT provided for each cell, a driver is required to drive the X%Y electrode lines, but these are integrated into an IC on the glass substrate together with the TPT. is desirable in terms of cost. These TPTs and drivers can be made larger by 5.9 mt, and the faster they operate, the better the performance of the display device will be. for example,
If the operating speed of the driver can be improved, it becomes possible to increase the area. Furthermore, if the gm (mutual conductance) of the TPT can be increased, the w/L of the transistor can be reduced, and the aperture ratio of one cell can be improved.

第2図に、従来の多結晶Slを用いて構成された薄膜ト
ランジスタの構造を示す。トランジスタは、ガラス状基
板11上に絶縁膜12ヲ介して設けた多結晶81活性層
13と、ソース・ドレインとなるn+不純物層14 、
14’及び薄い絶縁膜12′ヲ介して設けたゲートとな
る多結晶S14電層15と、ソース・ドレインの討不純
物層14.14’と、オーミックコンタクトをとるため
のAI!電極16とから構成される。このトランジスタ
では、y−ト下の活性層13内にチャネルを形成して導
電性がゲート電位で制御される。
FIG. 2 shows the structure of a thin film transistor constructed using conventional polycrystalline Sl. The transistor includes a polycrystalline 81 active layer 13 provided on a glass substrate 11 via an insulating film 12, an n+ impurity layer 14 serving as a source/drain,
14' and a thin insulating film 12' to make an ohmic contact with the polycrystalline S14 conductive layer 15 serving as the gate, and the source/drain impurity layer 14 and 14'. It is composed of an electrode 16. In this transistor, a channel is formed in the active layer 13 under the y-t and conductivity is controlled by the gate potential.

TPTはこのようなトランジスタで構成され、またドラ
イバはこの種のトランジスタ全複数用いて構成される。
The TPT is made up of such transistors, and the driver is made up of all the plurality of such transistors.

上述のトランジスタにおける電子移動度μ6は活性層に
用いている多結晶Si 15の結晶性で決まシ、non
−dopeの多結晶Slを用いた場合、最大でも10 
Crn%・see前後の値である。
The electron mobility μ6 in the above transistor is determined by the crystallinity of the polycrystalline Si 15 used in the active layer.
-dope polycrystalline Sl is used, at most 10
The value is around Crn%·see.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような低いμ。を有するトランジスタで
TFT i構成しようとすると、1セル当りのトランジ
スタのW/L(チャネル幅/チャ* ル長)を大きくし
て、必要とするスイッチングスピードを得ることになる
。従って、従来例では1つのセル内でのトランジスタ部
の占有面積が増大するので、液晶等の表示セルの開口率
が低下し、コントラストが悪化することになっている。
By the way, such a low μ. In order to construct a TFT i using transistors having the following characteristics, the W/L (channel width/channel length) of the transistor per cell must be increased to obtain the required switching speed. Therefore, in the conventional example, the area occupied by the transistor portion within one cell increases, resulting in a decrease in the aperture ratio of the display cell such as a liquid crystal, and deterioration in contrast.

特に、EL駆動用のTPTでは、トランジスタを2個構
成する必要があるので、開口率の低下は著しくなる。
In particular, in a TPT for driving EL, since it is necessary to configure two transistors, the aperture ratio decreases significantly.

また、上述のトランジスタを用いてドライバ全構成する
場合には、gmが小さいので高速駆動が困難という問題
がある。高速駆動を行なわせるためにw/L、’を大き
くするか、μ。を向上する方法が考えられる6 w/L
’x大きくすればトランジスタを構成する領域の面積が
増大し、多結晶si活性層にグレインパンダリー(gr
ainboundary )や欠陥の入る面積が大きく
なるため、ICの歩留シが低下する。また、他方のμ。
Furthermore, when the entire driver is configured using the above-mentioned transistors, there is a problem that high-speed driving is difficult because gm is small. In order to perform high-speed driving, w/L,' should be increased or μ. There are ways to improve 6 w/L.
If 'x is increased, the area of the region constituting the transistor increases.
Since the area where defects and defects can occur increases, the yield of ICs decreases. Also, the other μ.

を向上するのは、ガラス状基板上にトランジスタを作成
する限)においては、低温の熱処理工程を行ってつくら
ざるを得す、これは現状では容易でない。
In order to improve the quality of transistors (as long as transistors are fabricated on glass-like substrates), it is necessary to perform a low-temperature heat treatment process, which is currently not easy.

本発明の目的は、かかる従来の欠点を解消し、高、9m
化による表示ディバイスの大容量化全可能ならしめた薄
膜トランジスタを提供することにある。
The purpose of the present invention is to eliminate such conventional drawbacks and to
An object of the present invention is to provide a thin film transistor that can increase the capacity of a display device by increasing the capacity of the display device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ガラス状基板上に構成される薄膜トランジス
タであって、ガラス状基板上に絶縁膜を介して第1の導
電性電極を設け、その上に第1の絶縁薄膜を介して部分
的にソース、ドレインの不純物層を形成してなる多結晶
Si性層を設け、更にその上に前記第1の絶縁薄膜と同
程度の膜厚からなる第2の絶縁薄膜と、この第2の絶縁
薄膜を介して第2の導電性電極とを設け、前記第1、第
2の導電性電極全共通ff−)とし、前記不純物層を除
く多結晶si活性層内にチャネル全形成してなることを
特徴とする薄膜トランジスタである。
The present invention provides a thin film transistor configured on a glass-like substrate, in which a first conductive electrode is provided on the glass-like substrate with an insulating film interposed therebetween, and a first conductive electrode is provided on the glass-like substrate through a first insulating thin film. A polycrystalline Si layer formed of source and drain impurity layers is provided, and a second insulating thin film having a thickness similar to that of the first insulating thin film is provided thereon; A second conductive electrode is provided through the first conductive electrode, the first and second conductive electrodes are all common (ff-), and a channel is entirely formed in the polycrystalline Si active layer except for the impurity layer. This is a thin film transistor with characteristics.

〔発明の原理と作用〕[Principle and operation of the invention]

ゲート電極となる導電性電極を多結晶Si性屑の上、下
に薄い絶縁膜(−例として、8102)’に介して設け
、共通のf−)とする。また、ソース・ドレインとなる
べき不純物層を活性層の一部にイオン注入、アニール等
の技術を用いて低抵抗領域として形成する。このように
構成したトランジスタでは、多結晶si活性層の表側と
裏側との界面近傍を同時にチャネルとして活用すること
ができ、同−面積内にトランジスタを作成した場合、従
来の2#rのgmを得ることができる。、また、チャネ
ルを界面近傍から活性層内部に設けた埋込みチャネル(
表面付近をnを、内部’fcp型にする)の構造によっ
ても同じ効果が得られる。
Conductive electrodes serving as gate electrodes are provided above and below the polycrystalline Si scraps via thin insulating films (for example, 8102)', forming a common f-). In addition, an impurity layer to become a source/drain is formed as a low resistance region in a part of the active layer using techniques such as ion implantation and annealing. In a transistor configured in this way, the vicinity of the interface between the front side and the back side of the polycrystalline Si active layer can be used simultaneously as a channel, and when a transistor is created within the same area, the gm of the conventional 2#r is reduced. Obtainable. , and a buried channel (
The same effect can be obtained by a structure in which n is near the surface and fcp type inside.

〔実施例〕〔Example〕

以下、本発明の実施例について図面上参照し乍ら詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の第1の実施例となる薄膜トランジス
タの構造断面図を示したものである。同図において、第
2図と同一番号あるいは同一記号は同一構成要素を表わ
す、尚、本発明では便宜上のチャネルトランジスタ七個
にとって説明するが、Pチャネルトランジスタを構成す
る場合も同じである。本実施例では、ガラス状基板11
(ガラス、石英等)上に絶縁膜12を介して多結晶si
4電層15′ヲ設ける。絶縁膜12としては、膜厚は特
に問わず、減圧CVD製造装置等によシ適当な厚みに形
成される。また、この絶縁膜12は、多結晶Stを沈積
する時にガラス内に含まれているNa系の物質が多結晶
S1内に拡散してゆかないようにするために設けるが、
必ずしも本発明の構成音とる上では必要ない。
FIG. 1 shows a cross-sectional view of the structure of a thin film transistor according to a first embodiment of the present invention. In the figure, the same numbers or symbols as those in FIG. 2 represent the same components. Although the present invention will be explained using seven channel transistors for convenience, the same applies to the case of constructing a P-channel transistor. In this embodiment, the glass substrate 11
(glass, quartz, etc.) through an insulating film 12.
A four-conductor layer 15' is provided. The thickness of the insulating film 12 is not particularly limited, and is formed to an appropriate thickness using a low pressure CVD manufacturing apparatus or the like. Further, this insulating film 12 is provided to prevent Na-based substances contained in the glass from diffusing into the polycrystalline S1 when depositing the polycrystalline St.
This is not necessarily necessary for obtaining the constituent sounds of the present invention.

また、多結晶St導電層15′は、減圧CVD法等によ
りノンドープの多結晶Slを蒸着した後、イオン注入等
によF) P 、 As等の不純物をドープすることに
よって低抵抗の膜として得られる。このようにして得た
前記導′f!&層15′の上に、薄い絶縁膜(例えば、
5102)12′を数百〜数千X程度着ける。そして、
更にその上には多結晶SIを減圧CVD法等によ)蒸着
し、閾値電圧が適当な値になるようにゲロン等の不純物
をドープした後適当なアニールを行って、多結晶S1活
性層13を形成する。この活性層13には、H2,F2
等がドープされてもよい。この層の一部には、高濃度の
不純物(PまたはAa)をドープすることにより低抵抗
のソース・ドレインとなるn”不純物層14 、14’
を形成する。そして、その上に5IO2等の薄い絶縁膜
12′を薄い絶縁膜12と同程度の膜厚に設ける。絶縁
膜12と12′との膜厚は必ずしも同じで々くともよい
。次に、多結晶Siの導電層15を前述したような手段
で、この絶縁膜12′の上に形成する。この後、・母ツ
シペーション膜(SIO2等)を全面に着け、ソース・
ドレイン部のみを開孔した後、Al (W 、 Cr等
でもよいンを蒸着(電子ビーム蒸着等により)して電極
16を取シ出す。この時、フィールド領域(多結晶Si
性層13を設けてない・領域)上で多結晶S1導電層1
5 、15’と電極16のAt(、W 、 Cr等も可
)を相互にオーミックコンタクトさせ、共通のゲート電
極として外部へ取り出す。
The polycrystalline St conductive layer 15' can be obtained as a low-resistance film by depositing undoped polycrystalline Sl by low-pressure CVD or the like, and then doping with impurities such as F) P or As by ion implantation or the like. It will be done. The above-mentioned lead 'f!' obtained in this way! & layer 15', a thin insulating film (e.g.
5102) Wear 12' by several hundred to several thousand X. and,
Further, polycrystalline SI is deposited thereon (by low pressure CVD method, etc.), doped with an impurity such as gelon so that the threshold voltage becomes an appropriate value, and then appropriately annealed to form a polycrystalline S1 active layer 13. form. This active layer 13 contains H2, F2
etc. may be doped. A part of this layer is doped with a high concentration of impurity (P or Aa) to form n'' impurity layers 14, 14' which become low resistance sources and drains.
form. Then, a thin insulating film 12' made of 5IO2 or the like is provided thereon to have the same thickness as the thin insulating film 12. The thicknesses of the insulating films 12 and 12' may not necessarily be the same or thick. Next, a conductive layer 15 of polycrystalline Si is formed on this insulating film 12' by the method described above. After this, ・A mother tsusipation film (SIO2, etc.) is applied to the entire surface, and the source ・
After opening only the drain portion, Al (which may also be W, Cr, etc.) is evaporated (by electron beam evaporation, etc.) to take out the electrode 16. At this time, the field region (polycrystalline Si
Polycrystalline S1 conductive layer 1 on (region where no conductive layer 13 is provided)
5 and 15' and the At (, W, Cr, etc.) of the electrode 16 are brought into ohmic contact with each other and taken out to the outside as a common gate electrode.

尚、本実施例ではケ゛−ト電極15.15’を多結晶S
tの導電層で形成した例をと逆上げたが、他の導電性電
極で構成しても差し支えない。例えば、W、Wシリサイ
 ド、Mo 、 Moシリサイド、At、AZSI 、
C0812、Cr、Au等が構成要素としてあげられる
In this embodiment, the gate electrodes 15 and 15' are made of polycrystalline S.
Although an example in which the conductive layer is formed using a conductive layer of t is given above, it may be constructed using other conductive electrodes. For example, W, W silicide, Mo, Mo silicide, At, AZSI,
Components include C0812, Cr, Au, etc.

このようにして構成したトランジスタでは、ゲート電極
15 、15’が活性層13の上下に設けられるため、
活性層13の内の上下界面近傍に1つずつチャネルを形
成できる。しかも、これらのチャネルに流れる電子の流
れは、ゲート電極15.15’に印加されるバイアス電
圧により、それぞれ上側のチャネル、下側のチャネルの
反転層内電荷を制御することによってコントロールされ
る。即ち、r−ト電圧がQVの時には、2つのチャネル
共にカットオフ状態になり、閾値電圧77以上のバイア
ス電圧をゲートに印加した時には共にオン状態になり、
ドレイン・ソース間に電流を流す。この場合、チャネル
が2つ形成されているので、同じ蹴のトランジスタでは
、従来の場合に比して2倍の、9m(即ち、ドレイン電
流)を得ることができる。また、絶縁膜との界面付近に
n型の不純物を導入し、活性層内部kp型とすると、埋
込みチャネルが形成され、μeが高くなるため、より高
いgmが得られるようになる。この場合にも、従来値(
′JjIi込みチャネルトランジスタにおける値)の2
倍の9mが得られるのはいうまでもない。
In the transistor configured in this manner, the gate electrodes 15 and 15' are provided above and below the active layer 13;
One channel can be formed in the vicinity of the upper and lower interfaces of the active layer 13. Furthermore, the flow of electrons through these channels is controlled by controlling the charges in the inversion layers of the upper channel and the lower channel, respectively, using bias voltages applied to the gate electrodes 15 and 15'. That is, when the r-to voltage is QV, both channels are in a cut-off state, and when a bias voltage higher than the threshold voltage of 77 is applied to the gate, both channels are in an on-state.
A current flows between the drain and source. In this case, since two channels are formed, a transistor with the same width can obtain 9 m (ie, drain current), which is twice as much as in the conventional case. Furthermore, if an n-type impurity is introduced near the interface with the insulating film to make the inside of the active layer kp type, a buried channel is formed and μe becomes higher, so that a higher gm can be obtained. In this case as well, the conventional value (
'JjIi channel transistor value)
Needless to say, you can get twice the distance of 9m.

以上はp型の活性層にnチャネルを形成したトランジス
タであるが、これとは別の領域(ガラス状基板11上の
異なる領域〕に同じような構成で(不純物の型はnチャ
ネルの場合と逆になる)pチャネルのトランジスタを構
成することによって、完全に絶縁分離された従来の2倍
の電流供給能力を有するCMOSインバータを構成する
ことが可能になる。
The above is a transistor in which an n-channel is formed in a p-type active layer, but in a different region (a different region on the glass substrate 11) with a similar structure (the type of impurity is By configuring a p-channel transistor (which is the opposite), it becomes possible to configure a CMOS inverter that is completely insulated and has twice the current supply capacity of the conventional one.

本発明の薄膜トランジスタでは、gm e従来の2倍に
向上できるので、IC化してドライ・々を構成すれば高
速駆動が可能に々る。しかも、チャネル幅を従来のトラ
ンジスタと同サイズに設計できるので、多結晶Si活性
層の面積は増大せず、ドライバ等を構成した場合にもダ
レインパウンダリーや欠陥が増えることがないことから
、歩留りの低下を引き起こさない。さらに、TPTに採
用すれば高いgmを得られることから、トランジスタの
W/ L 、t、小さくすることができ、表示セル当シ
の開口率を高められることばなる。Wを小さくできれば
、占有面積の減少に伴い多結晶si活性層内にトラップ
準位や欠陥の入る領域が少ぐな〃、歩留りの向上も期待
できる。特に、EL等の駆動装置では2つのトランジス
タでTI”Tを構成するため、得られる効果は著しい。
With the thin film transistor of the present invention, the GME can be improved twice as much as the conventional one, so if it is integrated into an IC and configured as a dry transistor, high-speed driving becomes possible. Moreover, since the channel width can be designed to be the same size as a conventional transistor, the area of the polycrystalline Si active layer does not increase, and when forming a driver etc., there will be no increase in dale particles or defects. Does not cause yield loss. Furthermore, since a high gm can be obtained by employing the TPT, W/L and t of the transistor can be reduced, and the aperture ratio of the display cell can be increased. If W can be made smaller, the area where trap levels and defects can occur in the polycrystalline Si active layer will be reduced due to the reduction in the occupied area, and an improvement in yield can be expected. In particular, in a drive device such as an EL, the TI''T is configured with two transistors, so the effect obtained is remarkable.

さらに、本発明の構成では、基板がフロートにならない
ため、SOI構造によくみられるキンク現象も抑止され
る。
Furthermore, in the configuration of the present invention, since the substrate does not float, the kink phenomenon often seen in SOI structures is also suppressed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、Imある込はドレ
イン電流IDを同じ蹴で比較すると従来の2倍にも向上
できるので、ドライバの高速動作によシアクチイブマト
リックスTPTで駆動される表示デ・ゞイスの大容量化
が可能になる。また、TPT自身の/Lを小さくできる
ので、表示セルの開口率を高められる。この結果、LC
等の表示装置のコントラストを向上できる。また、TP
TのWを小さくできるため、多結晶Si性層の面積が減
少し、歩留シの向上を期待できる。
As explained above, according to the present invention, if the drain current ID is compared with the same value, the Im input can be improved to twice that of the conventional one. It becomes possible to increase the capacity of the device. Furthermore, since /L of the TPT itself can be reduced, the aperture ratio of the display cell can be increased. As a result, L.C.
It is possible to improve the contrast of display devices such as Also, T.P.
Since the W of T can be made small, the area of the polycrystalline Si layer is reduced, and an improvement in yield can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による薄膜トランジスタの第1の実施例
を示す構造断面図、第2図は従来の薄膜トランジスタの
構造断面図である。 11・・・ガラス状基板、12.12’・・・絶縁膜、
13・・・多結晶si活性層、14.14’・・層不純
物層、15・・多結晶si導電層、16・・・At。 第2図
FIG. 1 is a structural sectional view showing a first embodiment of a thin film transistor according to the present invention, and FIG. 2 is a structural sectional view of a conventional thin film transistor. 11... Glass-like substrate, 12.12'... Insulating film,
13... Polycrystalline Si active layer, 14.14'... Layer impurity layer, 15... Polycrystalline Si conductive layer, 16... At. Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス状基板上に絶縁膜を介して第1の導電性電
極を設け、その上に第1の絶縁薄膜を介して部分的にソ
ース・ドレインの不純物層を形成してなる多結晶Si活
性層を設け、更にその上に前記第1の絶縁薄膜と同程度
の膜厚からなる第2の絶縁薄膜と、この第2の絶縁薄膜
を介して第2の導電性電極とを設け、前記第1、第2の
導電性電極を共通ゲートとし、前記不純物層を除く多結
晶Si活性層内にチャネルを形成してなることを特徴と
する薄膜トランジスタ。
(1) Polycrystalline Si formed by providing a first conductive electrode on a glass substrate with an insulating film interposed therebetween, and partially forming a source/drain impurity layer thereon with a first insulating thin film thereon. An active layer is provided, and a second insulating thin film having a thickness similar to that of the first insulating thin film is provided thereon, and a second conductive electrode is provided via the second insulating thin film, A thin film transistor characterized in that the first and second conductive electrodes are used as a common gate, and a channel is formed in a polycrystalline Si active layer excluding the impurity layer.
JP14504485A 1985-07-01 1985-07-01 Thin film transistor Pending JPS625661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14504485A JPS625661A (en) 1985-07-01 1985-07-01 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14504485A JPS625661A (en) 1985-07-01 1985-07-01 Thin film transistor

Publications (1)

Publication Number Publication Date
JPS625661A true JPS625661A (en) 1987-01-12

Family

ID=15376087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14504485A Pending JPS625661A (en) 1985-07-01 1985-07-01 Thin film transistor

Country Status (1)

Country Link
JP (1) JPS625661A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5233211A (en) * 1990-10-16 1993-08-03 Agency Of Industrial Science And Technology Semiconductor device for driving a light valve
US5347154A (en) * 1990-11-15 1994-09-13 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5618739A (en) * 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5644147A (en) * 1994-07-07 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device incorporating pixel transistors with plural gate electrodes
US5982002A (en) * 1993-01-27 1999-11-09 Seiko Instruments Inc. Light valve having a semiconductor film and a fabrication process thereof
US6340830B1 (en) 1992-06-09 2002-01-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6486495B2 (en) 1990-07-24 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6835586B2 (en) 1998-12-25 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6914302B2 (en) 1998-12-18 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7276730B2 (en) 1998-12-28 2007-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
US8158980B2 (en) 2001-04-19 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486495B2 (en) 1990-07-24 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7026200B2 (en) 1990-07-24 2006-04-11 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing a semiconductor device
US5759878A (en) * 1990-10-16 1998-06-02 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having epitaxially grown semiconductor single crystal film
USRE36836E (en) * 1990-10-16 2000-08-29 Agency Of Industrial Science And Technology Semiconductor device for driving a light valve
US5233211A (en) * 1990-10-16 1993-08-03 Agency Of Industrial Science And Technology Semiconductor device for driving a light valve
US5926699A (en) * 1990-10-16 1999-07-20 Agency Of Industrial Science And Technology Method of fabricating semiconductor device having stacked layer substrate
US5572045A (en) * 1990-11-15 1996-11-05 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5728591A (en) * 1990-11-15 1998-03-17 Seiko Instruments Inc. Process for manufacturing light valve device using semiconductive composite substrate
US5618739A (en) * 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5486708A (en) * 1990-11-15 1996-01-23 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5347154A (en) * 1990-11-15 1994-09-13 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US6815772B2 (en) 1992-06-09 2004-11-09 Semiconductor Energy Laboratory Co., Ltd. Dual gate MOSFET
US6528852B2 (en) 1992-06-09 2003-03-04 Semiconductor Energy Laboratory Co., Ltd. Double gated electronic device and method of forming the same
US6340830B1 (en) 1992-06-09 2002-01-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US5982002A (en) * 1993-01-27 1999-11-09 Seiko Instruments Inc. Light valve having a semiconductor film and a fabrication process thereof
US5818070A (en) * 1994-07-07 1998-10-06 Semiconductor Energy Laboratory Company, Ltd. Electro-optical device incorporating a peripheral dual gate electrode TFT driver circuit
US5644147A (en) * 1994-07-07 1997-07-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device incorporating pixel transistors with plural gate electrodes
US6914302B2 (en) 1998-12-18 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6835586B2 (en) 1998-12-25 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7276730B2 (en) 1998-12-28 2007-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
US8643015B2 (en) 1998-12-28 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
US8158980B2 (en) 2001-04-19 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor

Similar Documents

Publication Publication Date Title
JP2734962B2 (en) Thin film transistor and method of manufacturing the same
US6713825B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
JP4963140B2 (en) Semiconductor device
JPS625661A (en) Thin film transistor
JPH07263705A (en) Thin film transistor
JPH0722627A (en) Thin film semiconductor device and active matrix liquid crystal display device
JPH0595117A (en) Thin film transistor and its manufacture
JPH0864830A (en) Active matrix substrate and method of fabrication thereof
JPH05275701A (en) Thin-film transistor
JP2635542B2 (en) Thin film transistor
JPS6047467A (en) Complementary thin film transistor
JPH0472769A (en) Thin film transistor
JP2761496B2 (en) Thin film insulated gate semiconductor device and method of manufacturing the same
JPS6017964A (en) Semiconductor device
JPH01128573A (en) Thin film transistor
JPH09107107A (en) Thin film transistor, this film transistor array and liquid crystal display device
JPH0864838A (en) Thin film transistor
JPS63104479A (en) Thin film transistor
JPS60224278A (en) N type transistor
JPH0786609A (en) Multi-gate semiconductor element
JP3494673B2 (en) Thin-film semiconductor device
JPH0669507A (en) Power mosfet
JP2001177104A (en) Thin film transistor, method of manufacturing the same, and liquid crystal display device equipped therewith
JP5417475B2 (en) Semiconductor device and electronic equipment
JP2001042354A (en) Tft type liquid crystal display device and its production