JPH01128573A - Thin film transistor - Google Patents

Thin film transistor

Info

Publication number
JPH01128573A
JPH01128573A JP28706087A JP28706087A JPH01128573A JP H01128573 A JPH01128573 A JP H01128573A JP 28706087 A JP28706087 A JP 28706087A JP 28706087 A JP28706087 A JP 28706087A JP H01128573 A JPH01128573 A JP H01128573A
Authority
JP
Japan
Prior art keywords
silicon film
polycrystalline silicon
drain
electrode
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28706087A
Other languages
Japanese (ja)
Other versions
JPH0828513B2 (en
Inventor
Keiji Tanaka
敬二 田中
Hitoshi Arai
均 新井
Shigeto Koda
幸田 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28706087A priority Critical patent/JPH0828513B2/en
Publication of JPH01128573A publication Critical patent/JPH01128573A/en
Publication of JPH0828513B2 publication Critical patent/JPH0828513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Abstract

PURPOSE:To implement the large area of an active matrix type planar display panel and to implement high definition, by providing a minute crystal silicon film, a polycrystalline silicon film or amorphous silicon film, whose impurity concentration is lower than that of a source electrode or a drain electrode, between a polycrystalline silicon film and at least the drain electrode. CONSTITUTION:Regions 105 having low impurity concentration are provided between a silicon film 102 and a source electrode 106 and a drain electrode 107 immediately beneath a gate. In this structure, when an off state is provided, i.e., when a negative gate voltage is applied in an N-channel transistor and a positive gate voltage is applied in a P-type transistor, an electric field formed by the applied gate voltage and drain voltage is dispersed in the low impurity concentration regions 105. Therefore, the intensity in the electric field at the drain junction part is weakened. Carriers, which move through a trap in the crystal grain boundary in the vicinity of the drain junction are decreased. Therefore, leaking current, which depends on the gate voltage and the drain voltage can be suppressed.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、薄膜トランジスタに関するものであυ、特に
アクティブマトリックス形平面デイスプレィ表示パネル
における各画素の選択スイッチング素子に用いられる多
結晶シリコン薄膜トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to thin film transistors, and more particularly to polycrystalline silicon thin film transistors used as selective switching elements for each pixel in an active matrix flat display panel.

〔従来の技術〕[Conventional technology]

近年大面積、高精細、高機能なアクティブマトリックス
形平面デイスプレィの実現を狙いに多結晶シリコン薄膜
トランジスタの開発が進められている。このような平面
デイスプレィ表示パネルにおける各画素の選択スイッチ
ング用薄膜トランジスタに対しては、フリッカやクロス
トークがなくコントラスト比が大きい良好な表示品質を
得るたメiCOFF電流が小さく、電流O0N10FF
比が10’以上であることが要求されている。
In recent years, polycrystalline silicon thin film transistors have been developed with the aim of realizing large-area, high-definition, and highly functional active matrix flat displays. In order to obtain good display quality with no flicker or crosstalk and a high contrast ratio, the thin film transistor for selective switching of each pixel in such a flat display panel has a small current of 0N10FF.
It is required that the ratio is 10' or more.

第2図Ksp形または・n形不純物を導入することによ
ル低抵抗化された微結晶シリコン膜、多結晶シリコン膜
あるいはアモルファスシリコン膜を前記多結晶シリコン
膜上に積層し形成されたソース電極及びドレイン電極を
有する多結晶シリコン薄膜トランジスタの断面図を示す
。201は基板、ZO2は多結晶シリコン膜、203は
ゲート絶縁膜、204はゲート電極、205はソース電
極、206はドレイン電極、207は眉間絶縁膜、20
8は配線である。
Figure 2: A source electrode formed by laminating a microcrystalline silicon film, a polycrystalline silicon film, or an amorphous silicon film whose resistance has been reduced by introducing Ksp-type or n-type impurities on the polycrystalline silicon film. 1 shows a cross-sectional view of a polycrystalline silicon thin film transistor having a drain electrode and a drain electrode. 201 is a substrate, ZO2 is a polycrystalline silicon film, 203 is a gate insulating film, 204 is a gate electrode, 205 is a source electrode, 206 is a drain electrode, 207 is an insulating film between the eyebrows, 20
8 is wiring.

〔発明が解決しよりとする問題点〕[Problems that the invention helps solve]

前記構造を有する多結晶シリコン薄膜トランジスタでは
、オフ(OFF)になった時、すなわち、nチャネルト
ランジスタにおいて負のゲート電圧が印加され、nチャ
ネルトランジスタにおいて正のゲート電圧が印加された
時、印加されたゲート電圧、ドレイン電圧による電界が
ドレイン接合部209に集中する。このように電界が強
くなると、ドレイン接合付近の結晶粒界中のトラップを
介してキャリアが移動するため、ゲートを圧、ドレイン
電圧に依存して大きなリーク電流が流れる。従ってOF
F電流が犬きくなシ、かつ電流の0N10FF比が小さ
くなるという問題があった。
In the polycrystalline silicon thin film transistor having the above structure, when turned off (OFF), that is, when a negative gate voltage is applied to the n-channel transistor, and when a positive gate voltage is applied to the n-channel transistor, the applied An electric field due to the gate voltage and drain voltage is concentrated at the drain junction 209. When the electric field becomes stronger in this way, carriers move through traps in the crystal grain boundaries near the drain junction, so a large leakage current flows through the gate depending on the voltage and drain voltage. Therefore OF
There was a problem that the F current was too weak and the 0N10FF ratio of the current was small.

この発明の目的は、多結晶シリコン薄膜トランジスタの
OFF ’IE流を低減し0N10FF比を増加せしめ
た多結晶シリコン薄膜トランジスタを提供することにあ
る。
An object of the present invention is to provide a polycrystalline silicon thin film transistor that reduces the OFF'IE current of the polycrystalline silicon thin film transistor and increases the 0N10FF ratio.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多結晶シリコン薄膜トランジスタは、多結晶シ
リコン膜上にたとえばプラズマCVD法によって300
℃程度の温度で堆積された低抵抗な微結晶シリコン膜、
多結晶シリコン膜またはアそル7アスシリコン膜をソー
ス電極、ドレイン電極に用い、さらに、多結晶シリコン
膜と少なくともドレイン電極との間に、たとえばプラズ
マCVD法にとって300℃程度の温度で堆積された前
記ソース電極、ドレイン電極よりも不純物濃度が低い微
結晶シリコン膜、多結晶シリコン膜、あるいはアモルフ
ァスシリコン膜を有することを特徴とする。
The polycrystalline silicon thin film transistor of the present invention can be manufactured by depositing 300% on a polycrystalline silicon film by, for example, a plasma CVD method.
A low-resistance microcrystalline silicon film deposited at a temperature of around °C.
A polycrystalline silicon film or an athosilicon film is used as a source electrode and a drain electrode, and the film is deposited between the polycrystalline silicon film and at least the drain electrode at a temperature of about 300° C. for plasma CVD, for example. It is characterized by having a microcrystalline silicon film, a polycrystalline silicon film, or an amorphous silicon film that has a lower impurity concentration than the source electrode and drain electrode.

具体的には、該微結晶シリコン膜、多結晶シリコン膜、
あるいはアモルファスシリコン膜のキャリア濃度が1×
10cW1  以下で該微結晶シリコン膜、多結晶シリ
コン膜、あるいはアモルファスシリコン膜の膜厚が70
0Å以上であることを特徴とする。
Specifically, the microcrystalline silicon film, the polycrystalline silicon film,
Or, if the carrier concentration of the amorphous silicon film is 1×
When the thickness of the microcrystalline silicon film, polycrystalline silicon film, or amorphous silicon film is 70 cm or less at 10 cW1 or less,
It is characterized by having a thickness of 0 Å or more.

従来技術とはゲート電極の直下の多結晶シリコン膜と少
なくともドレイン電極との間に前記ソース電極、ドレイ
ン電極よりも不純物濃度が低い領域を有することが異な
る。
The difference from the conventional technology is that there is a region between the polycrystalline silicon film immediately below the gate electrode and at least the drain electrode, the impurity concentration of which is lower than that of the source and drain electrodes.

〔実施例〕〔Example〕

第1図は、本発明の薄膜トランジスタの実施例の断面図
である。101は基板、102は多結晶シリコン膜、1
03はゲート絶縁膜、104はゲート電極、105は不
純物濃度が低い領域、106はソース電極、407はド
レイン電極、1osは眉間絶縁膜、109は前記構造を
有する多結晶シリコン薄膜トランジスタでは、従来構造
の多結晶シリコン薄膜トランジスタとは異なシ、ゲート
の直下のシリコン膜とソース電極及びドレイン電極との
間に不純物濃度が低い領域を有する。この構造によると
OFF’ Kなった時、すなわち、nチャネルトランジ
スタにおいて負のゲート電圧が印加され、nチャネルト
ランジスタにおいて正のゲート電圧が印加された時、印
加されるゲート電圧、ドレイン電圧による電界が前記不
純物濃度が低い領域内で分散される。このため、ドレイ
ン接合部の電界強度が弱まり、ドレイン接合付近の結晶
粒界中のトラップを介して移動するキャリアが少なくな
る。従って、ゲート電圧、ドレイン電圧に依存するリー
ク電流を抑制できる。
FIG. 1 is a cross-sectional view of an embodiment of a thin film transistor of the present invention. 101 is a substrate, 102 is a polycrystalline silicon film, 1
03 is a gate insulating film, 104 is a gate electrode, 105 is a region with low impurity concentration, 106 is a source electrode, 407 is a drain electrode, 1os is an eyebrow insulating film, and 109 is a polycrystalline silicon thin film transistor having the above structure. Unlike a polycrystalline silicon thin film transistor, it has a region with a low impurity concentration between the silicon film directly under the gate and the source and drain electrodes. According to this structure, when OFF' K is applied, that is, when a negative gate voltage is applied to the n-channel transistor and a positive gate voltage is applied to the n-channel transistor, the electric field due to the applied gate voltage and drain voltage is The impurity concentration is dispersed within the low concentration region. Therefore, the electric field strength at the drain junction is weakened, and fewer carriers move through traps in the grain boundaries near the drain junction. Therefore, leakage current depending on the gate voltage and drain voltage can be suppressed.

第3図に、従来構造の薄膜トランジスタと本発明による
薄膜トランジスタのゲート電圧に対するドレイン電流の
変化を示す。本発明による薄膜トランジスタでは、ゲー
ト電圧−20VでのOFF を流1/1000であシ、
従来構造の薄膜トランジスタの0N10FF比よ92桁
以上大きい0N10FF比が得られる。このため、容易
に105以上の0N10FF比を得ることができる。
FIG. 3 shows changes in drain current with respect to gate voltage of a thin film transistor with a conventional structure and a thin film transistor according to the present invention. In the thin film transistor according to the present invention, the OFF current at a gate voltage of -20V is 1/1000;
An 0N10FF ratio that is 92 orders of magnitude higher than the 0N10FF ratio of a thin film transistor with a conventional structure can be obtained. Therefore, an 0N10FF ratio of 105 or more can be easily obtained.

しかし、第4図に示すようにドレイン接合部の電界強度
とリーク電流の関係を調べた結果ドレイン接合部電界強
度が3Mv/cm以上で急激にリーク電流が増加するこ
とがわかった。このため、ドレイン接合部の電界強度f
 3MV/Crn以下にするには不純物濃度が低い領域
の膜厚i 700 A以上、キャリア濃度i1X10m
  以下に設定すればよく、この菌性の下でOFF s
流の低減効果を得ることができる。
However, as shown in FIG. 4, as a result of examining the relationship between the electric field strength at the drain junction and the leakage current, it was found that the leakage current increases rapidly when the electric field strength at the drain junction exceeds 3 Mv/cm. Therefore, the electric field strength f at the drain junction is
To make it 3MV/Crn or less, the film thickness in the region with low impurity concentration must be 700 A or more, and the carrier concentration must be i1×10m.
All you have to do is set it as below, and it will turn OFF under this fungal condition.
The effect of reducing flow can be obtained.

また、前記薄膜トランジスタの製造工程の実施例では、
プラズマCVD法によって形成されたシリコン膜を用い
たが、この方法に限ることはなく光CVD法、スパッタ
法等でもよい。またシリコン膜を低抵抗化するために不
純物源としてPH8’i用いたが、これに限ることはな
く、ボロン水素化物、ヒ素水素化物でもよい。
Further, in the embodiment of the manufacturing process of the thin film transistor,
Although a silicon film formed by a plasma CVD method is used, the method is not limited to this method, and a photo-CVD method, a sputtering method, or the like may be used. Further, although PH8'i is used as an impurity source to lower the resistance of the silicon film, the impurity source is not limited to this, and boron hydride or arsenic hydride may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、多結晶シリコン
薄膜トランジスタのOFF を流を低減でき、かつ十分
な0N10FF比を有する多結晶シリコン薄膜トランジ
スタを実現できる。これによシ、アクティブマトリック
ス形平面デイスプレィ表示ノ(ネルの大面積化、高精細
化が可能となる。
As described above, according to the present invention, it is possible to reduce the OFF current of a polycrystalline silicon thin film transistor and to realize a polycrystalline silicon thin film transistor having a sufficient 0N10FF ratio. This makes it possible to display an active matrix type flat display (larger area and higher resolution).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の多結晶シリコン薄膜トランジスタの
構造である。 第2図は、従来の多結晶シリコン薄膜トランジスタの構
造である。 第3図は、従来の多結晶シリコン薄膜トランジスタと本
発明の多結晶シリコン薄膜トランジスタのゲート電圧に
よるドレイン電流の変化の測定結果である。 第4図は、ドレイン接合部の電界強度とリーク電流の関
係である。 101・・・絶縁基板 102・・・多結晶シリコン膜 103・・・ゲート絶縁膜 104・・・ゲート電極 105・・・不純物濃度が低い微結晶シリコン膜、多結
晶シリコン膜あるいはアモルファスシリコン膜 106・・・低抵抗な微結晶シリコン膜、多結晶シリコ
ン膜あるいはアモルファスシリコン膜によるソース電極 107・・・低抵抗な微結晶シリコン膜、多結晶シリコ
ン膜あるいはアモルファスシリコン膜によるドレイン電
極 108・・・層間絶縁膜 109・・・配線 201・・・絶縁基板 202・・・多結晶シリコン膜 203・・・ゲート絶縁膜 204・・・ゲート電極 205・・・ソース電極 206・・・ドレイン電極 207・・・層間絶縁膜 208・・・配線 209・・・ドレイン接合部 特許出願人 日本電信電話株式会社 代 理 人 弁理士玉蟲久五部(外2名)本発明の多結
晶シリコン薄膜トランジスタの構造第  1  図 従来の多結晶シリうン薄腹トランジスタの構造第  2
8ia ドレイン接合部の電圧 (V/c m )ドレイン接合
部の電界殖とリーク電流の関係第  4  図
FIG. 1 shows the structure of a polycrystalline silicon thin film transistor of the present invention. FIG. 2 shows the structure of a conventional polycrystalline silicon thin film transistor. FIG. 3 shows measurement results of changes in drain current depending on gate voltage of a conventional polycrystalline silicon thin film transistor and a polycrystalline silicon thin film transistor of the present invention. FIG. 4 shows the relationship between electric field strength and leakage current at the drain junction. 101... Insulating substrate 102... Polycrystalline silicon film 103... Gate insulating film 104... Gate electrode 105... Microcrystalline silicon film, polycrystalline silicon film, or amorphous silicon film with low impurity concentration 106... ...Source electrode 107 made of low resistance microcrystalline silicon film, polycrystalline silicon film or amorphous silicon film...Drain electrode 108 made of low resistance microcrystalline silicon film, polycrystalline silicon film or amorphous silicon film...Interlayer insulation Film 109...Wiring 201...Insulating substrate 202...Polycrystalline silicon film 203...Gate insulating film 204...Gate electrode 205...Source electrode 206...Drain electrode 207...Interlayer Insulating film 208...Wiring 209...Drain junction Patent applicant: Nippon Telegraph and Telephone Corporation Agent: Patent attorney Gobe Tamamushi (two others) Structure of polycrystalline silicon thin film transistor of the present invention Fig. 1 Conventional Structure of polycrystalline silicon thin belly transistor Part 2
8ia Drain junction voltage (V/cm) Relationship between electric field multiplication and leakage current at drain junction Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に形成された多結晶シリコン膜と、p形ま
たはn形不純物を導入した微結晶シリコン膜、多結晶シ
リコン膜あるいはアモルファスシリコン膜を前記多結晶
シリコン膜上に積層し形成されたソース電極及びドレイ
ン電極と、前記多結晶シリコン膜に積層されたゲート絶
縁膜を介して設けられたゲート電極とを具備した薄膜ト
ランジスタにおいて、前記多結晶シリコン膜と少なくと
もドレイン電極との間に、前記ソース電極、ドレイン電
極よりも不純物濃度が低い微結晶シリコン膜、多結晶シ
リコン膜、あるいはアモルファスシリコン膜を有するこ
とを特徴とする薄膜トランジスタ。
(1) A polycrystalline silicon film formed on a substrate and a microcrystalline silicon film doped with p-type or n-type impurities, a polycrystalline silicon film, or an amorphous silicon film are stacked on the polycrystalline silicon film. In a thin film transistor comprising a source electrode, a drain electrode, and a gate electrode provided through a gate insulating film laminated on the polycrystalline silicon film, the source electrode is provided between the polycrystalline silicon film and at least the drain electrode. A thin film transistor characterized by having a microcrystalline silicon film, a polycrystalline silicon film, or an amorphous silicon film that has a lower impurity concentration than an electrode or a drain electrode.
(2)前記ソース電極、ドレイン電極よりも不純物濃度
が低い微結晶シリコン膜、多結晶シリコン膜、あるいは
アモルファスシリコン膜の膜厚が700Å以上であり、
かつそのキャリア濃度が1×10^1^7cm^−^3
以下であることを特徴とする特許請求の範囲第1項記載
の薄膜トランジスタ。
(2) The thickness of the microcrystalline silicon film, polycrystalline silicon film, or amorphous silicon film having a lower impurity concentration than the source electrode and drain electrode is 700 Å or more,
And its carrier concentration is 1×10^1^7cm^-^3
The thin film transistor according to claim 1, characterized in that:
JP28706087A 1987-11-13 1987-11-13 Thin film transistor Expired - Fee Related JPH0828513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28706087A JPH0828513B2 (en) 1987-11-13 1987-11-13 Thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28706087A JPH0828513B2 (en) 1987-11-13 1987-11-13 Thin film transistor

Publications (2)

Publication Number Publication Date
JPH01128573A true JPH01128573A (en) 1989-05-22
JPH0828513B2 JPH0828513B2 (en) 1996-03-21

Family

ID=17712532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28706087A Expired - Fee Related JPH0828513B2 (en) 1987-11-13 1987-11-13 Thin film transistor

Country Status (1)

Country Link
JP (1) JPH0828513B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155735A (en) * 1990-10-18 1992-05-28 Nec Corp Fluorescent display device
JPH04163837A (en) * 1990-10-26 1992-06-09 Nec Kagoshima Ltd Fluorescent display device
US6153893A (en) * 1993-11-05 2000-11-28 Sony Corporation Thin film semiconductor device for display
JP2010022377A (en) * 2009-10-30 2010-02-04 Akamatsu Kasei Kogyo Kk Packaged filled bean curd

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155735A (en) * 1990-10-18 1992-05-28 Nec Corp Fluorescent display device
JPH04163837A (en) * 1990-10-26 1992-06-09 Nec Kagoshima Ltd Fluorescent display device
US6153893A (en) * 1993-11-05 2000-11-28 Sony Corporation Thin film semiconductor device for display
JP2010022377A (en) * 2009-10-30 2010-02-04 Akamatsu Kasei Kogyo Kk Packaged filled bean curd

Also Published As

Publication number Publication date
JPH0828513B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US5567959A (en) Laminated complementary thin film transistor device with improved threshold adaptability
US4924279A (en) Thin film transistor
US5552615A (en) Active matrix assembly with double layer metallization over drain contact region
US5707882A (en) Semiconductor device for display device using thin film transistors and process of manufacturing the same
JPH06148685A (en) Liquid crystal display device
JPS60254661A (en) Improved thin film field effect transistor compatible with integrated circuit and method of producing same
KR100384672B1 (en) Liquid crystal display device
US6713825B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
JPS60160170A (en) Thin film transistor
WO2021073253A1 (en) Thin film transistor and manufacturing method therefor, array substrate, and display apparatus
JP3896624B2 (en) Thin film semiconductor device and display device using the same
JPH04360583A (en) Thin film transistor
JPH01128573A (en) Thin film transistor
US20030169381A1 (en) Liquid crystal display device having gate electrode with two conducting layers, one used for self-aligned formation of the TFT semiconductor regions
JP2776820B2 (en) Method for manufacturing semiconductor device
JP2675587B2 (en) Matrix type liquid crystal display panel
JPH0677252A (en) Thin film-shaped semiconductor device and manufacture thereof
JPS61220369A (en) Thin-film field-effect element
JPH01302768A (en) Inverse stagger type si-thin film transistor
JP3141456B2 (en) Thin film transistor and method of manufacturing the same
JPS61150278A (en) Thin film transistor
JPS6257252A (en) Thin film transistor
JPH0279027A (en) Polycrystalline silicon thin film transistor
JPH04162477A (en) Thin film transistor
JPH09153621A (en) Thin film transistor, manufacture thereof, and liquid-crystal display device using thin film transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees