JPS61220369A - Thin-film field-effect element - Google Patents

Thin-film field-effect element

Info

Publication number
JPS61220369A
JPS61220369A JP6124585A JP6124585A JPS61220369A JP S61220369 A JPS61220369 A JP S61220369A JP 6124585 A JP6124585 A JP 6124585A JP 6124585 A JP6124585 A JP 6124585A JP S61220369 A JPS61220369 A JP S61220369A
Authority
JP
Japan
Prior art keywords
semiconductor layer
thin film
thin
amorphous
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6124585A
Other languages
Japanese (ja)
Other versions
JPH0564862B2 (en
Inventor
Isao Sakata
功 坂田
Yutaka Hayashi
豊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6124585A priority Critical patent/JPS61220369A/en
Publication of JPS61220369A publication Critical patent/JPS61220369A/en
Publication of JPH0564862B2 publication Critical patent/JPH0564862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce leakage currents by inserting a first semiconductor layer forming a barrier to a second semiconductor layer operating as a channel sec tion for a field-effect element between a conductive gate and a thin-film layer having wide forbidden band width. CONSTITUTION:A first amorphous or crystallite semiconductor layer 1 is formed brought into contact with a conductive gate electrode 2, and approximately 100Angstrom is sufficient as the thickness of the semiconductor layer 1. A thin-film layer 3 having wide forbidden band width is further shaped brought into contact with the first semiconductor layer 1. A second amorphous or crystallite semiconductor thin-film layer 4, a second semiconductor layer, is formed brought into contact with the thin-film layer 3. Conductive source region 5 and drain region 6 are shaped onto or into the second semiconductor layer 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜電界効果素子に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin film field effect device.

、〔従来の技術〕 アモルファスまたは微結晶半導体薄膜を用いた薄膜電界
効果素子は大面積液晶ディスプレイのマトリクスや周辺
駆動回路への応用に供せられている。従来のこの素子の
基本構造は金属−絶縁物一半導体(Metal −In
sulator−8emiconductor以下MI
Sと称する)接合を有する電界効果トランジスタであっ
た。しかし、アモルファスまたは微結晶半導体のMIS
接合は導電性ゲートの上に絶縁膜を作るため、ピンホー
ルが多く、結晶半導体のMIS接合に比べ一般にリーク
電流が大きかった。このため、 1 液晶ディスプレイのマトリックスに応用した時の信
号電荷の保持特性が低下する。
, [Prior Art] Thin film field effect devices using amorphous or microcrystalline semiconductor thin films are used for applications in matrices and peripheral drive circuits of large area liquid crystal displays. The basic structure of this conventional element is metal-insulator-semiconductor (Metal-Insulator).
sulator-8emiconductor MI
It was a field effect transistor with a junction (referred to as S). However, MIS of amorphous or microcrystalline semiconductor
Since the junction creates an insulating film on top of the conductive gate, there are many pinholes, and the leakage current is generally larger than that of MIS junctions made of crystalline semiconductors. For this reason, (1) the signal charge retention characteristics deteriorate when applied to the matrix of a liquid crystal display.

2 キャリアリークが原因となって広い禁制帯幅を有す
る薄膜層の絶縁破壊や特性劣化が生ずる。
2. Carrier leakage causes dielectric breakdown and characteristic deterioration of a thin film layer with a wide forbidden band width.

3 絶縁膜を薄くすることができないためにトランスコ
ンダクタンスが小さい。
3. Transconductance is small because the insulating film cannot be made thin.

等の問題があった。There were other problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の薄膜電界効果素子は新構造の採用によシ、上記
のリーク電流の低減とゲート絶縁膜の薄膜化によるトラ
ンスコンダクタンスの改良を目的とするものである。以
下、本発明について図面に基づき説明する。
The thin film field effect device of the present invention aims to reduce the above-mentioned leakage current and improve transconductance by making the gate insulating film thinner by adopting a new structure. Hereinafter, the present invention will be explained based on the drawings.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は、本発明の薄膜電界効果素子の構成概略図であ
る。第1のアモルファスまたは微結晶半導体層1(以下
第1の半導体層という)を広い禁制帯幅を有する薄膜層
3を第1の半導体層1に接して設ける。この薄膜層3に
接しそ第2のアモルファスまたは微結晶半導体薄膜層4
(以下第2の半導体層という)を設ける。この第2の半
導体層4上または中に導電性のソース領域5、ドレイン
領域6を設ける。
FIG. 1 is a schematic diagram of the structure of a thin film field effect device of the present invention. A first amorphous or microcrystalline semiconductor layer 1 (hereinafter referred to as a first semiconductor layer) is provided in contact with a thin film layer 3 having a wide forbidden band width. A second amorphous or microcrystalline semiconductor thin film layer 4 is in contact with this thin film layer 3.
(hereinafter referred to as a second semiconductor layer) is provided. A conductive source region 5 and a conductive drain region 6 are provided on or in this second semiconductor layer 4 .

この素子の基本的な動作は従来型のMISW薄膜電界効
果素子と同様で、ソース領域5とドレイン領域6の間に
ソース・ドレイン電圧を印加し、この時ソース・ドレイ
ン間に流れる電流を導電性ゲート電極2に印加するゲー
ト電圧で制御する。第1の半導体層1は第2の半導体層
4との間にバリアを形成する特性を有するものとする。
The basic operation of this device is similar to a conventional MISW thin film field effect device, in which a source-drain voltage is applied between the source region 5 and the drain region 6, and the current flowing between the source and drain is made conductive. It is controlled by the gate voltage applied to the gate electrode 2. It is assumed that the first semiconductor layer 1 has a characteristic of forming a barrier between the first semiconductor layer 1 and the second semiconductor layer 4.

このため、第2の半導体層4と広い禁制帯幅を有する薄
膜層3で形成される接合のリーク電流が大きくても、第
2の半導体層4から広い禁制帯幅を有する層3に流入し
たキャリアはこのバリアのためゲート電極2には到達せ
ず、ゲート電極/第1の半導体層/広い禁制帯幅を有す
る薄膜層/第2の半導体層で構成される多層接合全体と
してのリーク電流は大幅に低減される。また、アモルフ
ァスシリコン系薄膜上に形成した絶縁膜は、一般にピン
ホールが少なくリーク電流が小さいため、第1の半導体
層1としてアモルファスシリコンを用い、その上に広い
禁制帯幅を有する層3としてシリコンオキサイド、シリ
コンナイトライド、シリコンオキシナイトライド等の絶
縁物薄膜層を形成して、第1図の素子構造を実現した場
合には第2の半導体層4と広い禁制帯幅を有する薄膜層
3(この場合、上記絶縁膜層)との接合のリーク電流も
低減される。
Therefore, even if the leakage current of the junction formed between the second semiconductor layer 4 and the thin film layer 3 having a wide forbidden band width is large, the leakage current flows from the second semiconductor layer 4 to the layer 3 having a wide forbidden band width. Because of this barrier, carriers do not reach the gate electrode 2, and the leakage current of the entire multilayer junction composed of the gate electrode/first semiconductor layer/thin film layer with a wide forbidden band width/second semiconductor layer is significantly reduced. In addition, since an insulating film formed on an amorphous silicon thin film generally has few pinholes and low leakage current, amorphous silicon is used as the first semiconductor layer 1, and silicon is used as the layer 3 having a wide forbidden band on top of the amorphous silicon. When the device structure shown in FIG. 1 is realized by forming an insulating thin film layer of oxide, silicon nitride, silicon oxynitride, etc., the second semiconductor layer 4 and the thin film layer 3 (having a wide forbidden band width) are formed. In this case, leakage current at the junction with the above-mentioned insulating film layer is also reduced.

導電性ゲート電極2には、ニッケル、アルミニウム等の
金属材料または5n(h、ITO等の透明導電性酸化物
を使用する。第1の半導体層1の伝導型は 第2の半導
体層4の伝導型と逆にするか、原子組成または組成比を
変えてヘテロ接合を構成するようにし、第1の半導体層
1が第2の半導体層4に対しバリアを形成する様にする
。即ち、第2の半導体層4が3型の伝導型を有する時は
第1の半導体層1はp型の伝導型を有し、第2の半導体
層4がP型の伝導型を有する時は第1の半導体層1は旙
型の伝導型を有するものとする。また、同一伝導型でも
バリアが形成されるようなヘテロ接合とする。第1およ
び第2のアモルファスまたは微結晶半導体層はシラン、
ジシラン、四弗化シリコン、ゲルマン等の原料ガスのプ
ラズマCVD、光CVD、熱CVD等で成長させる。広
い禁制帯幅を有する薄膜層3には光CVD法またはプラ
ズマCVD法等で作成したシリコンオキサイド、シリコ
ンナイトライド、シリコンオキシナイトライド、ボロン
ナイトライド等の絶縁膜や、同様に光C−VD法、プラ
ズマCVD法で作成したアモルファスシリコンカーバイ
ド、ダイハイドライド結合の水素を多量に含んだ水素化
アモルファスシリコン等の禁制帯幅の広いアモルファス
半導体を用いる。第2の半導体層4上または中に設ける
導電性のソース領域5、ドレイン領域6にはニッケル、
アルミニウム等の金属材料を使用する。また、必要に応
じてソース電極と第2の半導体層4の間およびドレイン
電極と第2の半導体層40間にそれぞれ、不純物濃度の
高いドープ層を挿入し、オーミック性の向上をはかる。
For the conductive gate electrode 2, a metal material such as nickel or aluminum or a transparent conductive oxide such as 5N(h, ITO, etc.) is used.The conductivity type of the first semiconductor layer 1 is the conductivity type of the second semiconductor layer 4. The first semiconductor layer 1 forms a barrier to the second semiconductor layer 4 by reversing the type or by changing the atomic composition or composition ratio to form a heterojunction. When the semiconductor layer 4 has a 3-type conductivity type, the first semiconductor layer 1 has a p-type conductivity type, and when the second semiconductor layer 4 has a p-type conductivity type, the first semiconductor layer 1 has a p-type conductivity type. Layer 1 has a conductivity type of Akebono type.Also, it is a heterojunction in which a barrier is formed even if the conductivity type is the same.The first and second amorphous or microcrystalline semiconductor layers are made of silane,
Growth is performed by plasma CVD, optical CVD, thermal CVD, etc. using a raw material gas such as disilane, silicon tetrafluoride, or germane. The thin film layer 3 having a wide forbidden band width is an insulating film made of silicon oxide, silicon nitride, silicon oxynitride, boron nitride, etc., made by a photo-CVD method or a plasma CVD method, or an insulating film made by a photo-CVD method. , amorphous silicon carbide prepared by plasma CVD method, hydrogenated amorphous silicon containing a large amount of dihydride bonded hydrogen, and other amorphous semiconductors with a wide forbidden band width are used. The conductive source region 5 and drain region 6 provided on or in the second semiconductor layer 4 include nickel,
Use metal materials such as aluminum. Further, if necessary, doped layers with high impurity concentrations are inserted between the source electrode and the second semiconductor layer 4 and between the drain electrode and the second semiconductor layer 40, respectively, to improve ohmic properties.

次に、本発明の薄膜電界効果素子の製造工程例を第2図
に基づき説明する。
Next, an example of the manufacturing process of the thin film field effect device of the present invention will be explained based on FIG. 2.

工程(6)  ガラス等の基板100上に導電性ゲート
2をニッケル、アルミニウム等の金 属の真空蒸着、電子ビーム蒸着で形成 するの金属の代シにSnowを導電性ゲート2に用いる
時は、5nC14,5bC1z 、HzOの混合ガスの
熱CVDまたは5nC14・5H!Oと5bC1nのH
CI溶液のスプレー法等でSnO意を基板上に耐着させ
る。導電性ゲート 2の平面寸法は所定の形状にホトエツ チング技術、マスク蒸着技術等によシ 整形する。
Step (6) Form the conductive gate 2 on the substrate 100 made of glass or the like by vacuum evaporation or electron beam evaporation of metal such as nickel or aluminum. When using Snow as the conductive gate 2 instead of the metal, 5nC14 is used. , 5bC1z, HzO mixed gas thermal CVD or 5nC14・5H! O and H of 5bC1n
The SnO film is made to adhere to the substrate by spraying a CI solution or the like. The planar dimensions of the conductive gate 2 are shaped into a predetermined shape by photoetching technology, mask vapor deposition technology, or the like.

工程(b)  モノシランまたはジシランとジボランガ
スのプラズマCVD、光CVD、 熱CVD等によシ第1図の第1の半導 体層1に相当するp型アモルファスシ リコンを少なくとも導電性ゲート2の 上に成長させる。
Step (b) Grow p-type amorphous silicon corresponding to the first semiconductor layer 1 in FIG. 1 on at least the conductive gate 2 by plasma CVD, optical CVD, thermal CVD, etc. using monosilane or disilane and diborane gas. .

工程(c)  第1の半導体層(この例ではP型アモル
ファスシリコン)の上に広い禁制 帯幅を有する薄膜層3として、N13とシランの混合ガ
スのプラズマCVD、 光CVDでシリコンオキシナイトライ ドを形成する。
Step (c) Silicon oxynitride is formed on the first semiconductor layer (P-type amorphous silicon in this example) by plasma CVD and photoCVD using a mixed gas of N13 and silane as a thin film layer 3 having a wide forbidden band width. Form.

工程(d)  広い禁制帯幅を有する薄jI3 (この
場合シリコンオキシナイトライド)上 に第2の半導体層4を所定の寸法に形 成する。所定の寸法にする手法は工程 (a)に述べたものと同様である。シランまたはジシラ
ンのプラズマCVD、光 CVD、熱CVDでノンドープ水素化 アモルファスシリコンヲ得る。ノンド ープ水素化アモルファスシリコンは、 一般に弱い5型の伝導型を有するので、工程(b)で形
成したp型アモルファスシリコンはこのノンドープアモ
ルファス シリコンに対しバリアを形成する。
Step (d) A second semiconductor layer 4 is formed to a predetermined size on a thin film (silicon oxynitride in this case) having a wide forbidden band width. The method for achieving the predetermined dimensions is the same as that described in step (a). Non-doped hydrogenated amorphous silicon is obtained by plasma CVD, photo CVD, or thermal CVD of silane or disilane. Since undoped hydrogenated amorphous silicon generally has a weak type 5 conductivity, the p-type amorphous silicon formed in step (b) forms a barrier to this undoped amorphous silicon.

工程(e)  第2の半導体層4である上記ノンドープ
アモルファスシリコン上に導電性 のソース領域5、ドレイン領域6とな るニッケル、アルミニウム等の金属薄 膜を工程(a)に述べた方法で所定の形状に形成し、第
1図に示した実施例と等 価な素子を得る。
Step (e) A metal thin film such as nickel or aluminum that will become the conductive source region 5 and drain region 6 is formed into a predetermined shape on the non-doped amorphous silicon that is the second semiconductor layer 4 by the method described in step (a). A device equivalent to the embodiment shown in FIG. 1 is obtained.

さらに、素子の安定度を増すために 半導体薄膜4に接して熱CVD、光C VD、プラズマCVD等によりシリコ ンナイトライド、シリコンオキシナイ トライド等からなる保護膜7を設ける こともできる。また、ソース、ドレイ ン電極5.6に接している半導体薄膜 4部分にチャネル型に応じてpまたは ル形不純物をイオン注入またはプラズ マドーピング等で選択的に導入するか、゛   これら
の不純物を含む半導体薄膜を第2の半導体層4と電極5
.6の間に挿 入することによシ、電極5.6とチャ ネルのオーム性接触を良好にすること ができる。
Furthermore, in order to increase the stability of the device, a protective film 7 made of silicon nitride, silicon oxynitride, etc. can be provided in contact with the semiconductor thin film 4 by thermal CVD, optical CVD, plasma CVD, or the like. In addition, depending on the channel type, p- or le-type impurities are selectively introduced into the portion of the semiconductor thin film 4 that is in contact with the source and drain electrodes 5.6 by ion implantation or plasma doping, or a semiconductor containing these impurities is added. The thin film is formed into a second semiconductor layer 4 and an electrode 5.
.. By inserting the channel between the electrodes 5 and 6, good ohmic contact between the electrode 5 and the channel can be achieved.

工程(b)の後に半導体薄膜1がP形アモルファスシリ
コンの場合はその表面 を100℃で10分酸化して数10Aの酸化膜3を形成
しただけでも、その後水素 プラズマ処理をしてノンドープのアモ ルファスシリコン薄膜4を堆積した場 合、ゲートとアモルファスシリコン膜 4との間に1vで1OA/l1m”以下の電流しか流れ
ないことが確認された。
If the semiconductor thin film 1 is made of P-type amorphous silicon after step (b), even if the surface is oxidized at 100° C. for 10 minutes to form an oxide film 3 of several tens of amperes, it is then treated with hydrogen plasma to form a non-doped amorphous silicon. It has been confirmed that when the silicon thin film 4 is deposited, only a current of less than 1OA/l1m" flows between the gate and the amorphous silicon film 4 at 1V.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の薄膜電界効果素子
は導電性ゲート2と広い禁制帯幅を有する薄膜層3の間
に、電界効果素子のチャネル部として動作する第2の半
導体層4に対し、バリアを形成する様な第1の半導体層
1を挿入するもので、これによシ、導電性ゲート2と第
2の半導体層40間のリーク電流が低減され、この結果
、本発明の薄膜電界効果素子を液晶ディスプレイのマト
リクスに応用した時の信号電荷の保持特性が向上し、ま
た、リーク電流が原因となって生ずる広い禁制帯幅を有
する薄膜層3の特性劣化や絶縁破壊が抑制されるという
効果がある。
As described above in detail, the thin film field effect device of the present invention has a second semiconductor layer 4 between the conductive gate 2 and the thin film layer 3 having a wide forbidden band width, which acts as a channel portion of the field effect device. On the other hand, the first semiconductor layer 1 that forms a barrier is inserted, thereby reducing the leakage current between the conductive gate 2 and the second semiconductor layer 40, and as a result, the present invention When thin film field effect elements are applied to the matrix of liquid crystal displays, the signal charge retention characteristics are improved, and the characteristic deterioration and dielectric breakdown of the thin film layer 3, which has a wide forbidden band width, caused by leakage current are suppressed. It has the effect of being

さらに、ゲート絶縁膜を従来より薄くすることができる
ので、電界効果素子のトランスコンダクタンスが大幅に
改善され、液晶表示パネル等の動作速度が大幅に改善さ
れると共に動作電圧の低電圧化が可能となシ、全体の信
頼性、電力消費が改善される。
Furthermore, since the gate insulating film can be made thinner than before, the transconductance of field effect elements is greatly improved, which greatly improves the operating speed of liquid crystal display panels, etc., and enables lower operating voltages. This improves overall reliability and power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜電界効果素子の構成概略図、第2
図は本発明の薄膜電界効果素子の製造工程例を説明する
ための図である。 図中、1.4はそれぞれ第1、第2のアモルファスまた
は微結晶半導体層、2は導電性ゲート電極、3は広い禁
制帯幅を有する薄膜層、5は導電性ソース領域、6は導
電性ドレイン領域、7は保護膜、100は基板である。 ;:′−− j 、!、。 指定代理人 電子技術総合研究所長 佐 藤 孝 干t
 +ヶ□〜、番 第1図 第2図 第2図 s  2 手続ネ市正書(自発) 昭和61年 4月10日
FIG. 1 is a schematic diagram of the structure of the thin film field effect device of the present invention, and FIG.
The figure is a diagram for explaining an example of the manufacturing process of the thin film field effect device of the present invention. In the figure, 1.4 are the first and second amorphous or microcrystalline semiconductor layers, 2 is a conductive gate electrode, 3 is a thin film layer with a wide forbidden band width, 5 is a conductive source region, and 6 is a conductive layer. A drain region, 7 a protective film, and 100 a substrate. ;:′−− j,! ,. Designated Agent: Takashi Sato, Director, Electronics Technology Research Institute
+ Month □ ~, Number 1 Figure 2 Figure 2 Figure s 2 Procedural City Official Book (Voluntary) April 10, 1986

Claims (1)

【特許請求の範囲】[Claims] 導電性ゲート電極と、該導電性ゲート電極に接して設け
られた第1のアモルファスまたは微結晶半導体薄膜と、
該第1のアモルファスまたは微結晶半導体薄膜に接して
設けられた広い禁制帯幅を有する薄膜と、該広い禁制帯
幅を有する薄膜に接して設けられた第2のアモルファス
または微結晶半導体薄膜と、該第2のアモルファスまた
は微結晶半導体薄膜上または中に設けられた導電性ソー
ス、ドレイン領域とから成る薄膜電界効果素子。
a conductive gate electrode; a first amorphous or microcrystalline semiconductor thin film provided in contact with the conductive gate electrode;
a thin film having a wide forbidden band width provided in contact with the first amorphous or microcrystalline semiconductor thin film; a second amorphous or microcrystalline semiconductor thin film provided in contact with the thin film having a wide forbidden band width; A thin film field effect device comprising conductive source and drain regions provided on or in the second amorphous or microcrystalline semiconductor thin film.
JP6124585A 1985-03-26 1985-03-26 Thin-film field-effect element Granted JPS61220369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6124585A JPS61220369A (en) 1985-03-26 1985-03-26 Thin-film field-effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6124585A JPS61220369A (en) 1985-03-26 1985-03-26 Thin-film field-effect element

Publications (2)

Publication Number Publication Date
JPS61220369A true JPS61220369A (en) 1986-09-30
JPH0564862B2 JPH0564862B2 (en) 1993-09-16

Family

ID=13165652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6124585A Granted JPS61220369A (en) 1985-03-26 1985-03-26 Thin-film field-effect element

Country Status (1)

Country Link
JP (1) JPS61220369A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055899A (en) * 1987-09-09 1991-10-08 Casio Computer Co., Ltd. Thin film transistor
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5101242A (en) * 1989-02-17 1992-03-31 International Business Machines Corporation Thin film transistor
US5166085A (en) * 1987-09-09 1992-11-24 Casio Computer Co., Ltd. Method of manufacturing a thin film transistor
US5221631A (en) * 1989-02-17 1993-06-22 International Business Machines Corporation Method of fabricating a thin film transistor having a silicon carbide buffer layer
US5229644A (en) * 1987-09-09 1993-07-20 Casio Computer Co., Ltd. Thin film transistor having a transparent electrode and substrate
US5327001A (en) * 1987-09-09 1994-07-05 Casio Computer Co., Ltd. Thin film transistor array having single light shield layer over transistors and gate and drain lines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055899A (en) * 1987-09-09 1991-10-08 Casio Computer Co., Ltd. Thin film transistor
US5166085A (en) * 1987-09-09 1992-11-24 Casio Computer Co., Ltd. Method of manufacturing a thin film transistor
US5229644A (en) * 1987-09-09 1993-07-20 Casio Computer Co., Ltd. Thin film transistor having a transparent electrode and substrate
US5327001A (en) * 1987-09-09 1994-07-05 Casio Computer Co., Ltd. Thin film transistor array having single light shield layer over transistors and gate and drain lines
US5065202A (en) * 1988-02-26 1991-11-12 Seikosha Co., Ltd. Amorphous silicon thin film transistor array substrate and method for producing the same
US5101242A (en) * 1989-02-17 1992-03-31 International Business Machines Corporation Thin film transistor
US5221631A (en) * 1989-02-17 1993-06-22 International Business Machines Corporation Method of fabricating a thin film transistor having a silicon carbide buffer layer

Also Published As

Publication number Publication date
JPH0564862B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
US4673957A (en) Integrated circuit compatible thin film field effect transistor and method of making same
US4668968A (en) Integrated circuit compatible thin film field effect transistor and method of making same
CA1230948A (en) Thin film field effect transistor and method of making same
US4769338A (en) Thin film field effect transistor and method of making same
KR0128724B1 (en) Thin film insulated gate semiconductor device and manufacturing thereof
US4843443A (en) Thin film field effect transistor and method of making same
KR840001605B1 (en) Thin film transistor
JPS60160170A (en) Thin film transistor
JPS61220369A (en) Thin-film field-effect element
JP2572379B2 (en) Method for manufacturing thin film transistor
JP2698182B2 (en) Thin film transistor
KR20030025611A (en) Method of fabricating CMOS Poly Silicon TFT having LDD structure
JPS60260155A (en) Thin film transistor
JP3325664B2 (en) Thin film transistor and method of manufacturing the same
JP3141456B2 (en) Thin film transistor and method of manufacturing the same
JPS61150278A (en) Thin film transistor
JP3079566B2 (en) Thin film transistor and method of manufacturing the same
JPH06120499A (en) Thin film transistor, liquid crystal display device and manufacture of same transistor
JPH01248668A (en) Thin-film transistor
JPH01128573A (en) Thin film transistor
JPS6334978A (en) Thin film junction field-effect element
JPS58212178A (en) Thin film field effect transistor and manufacture thereof
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
JP2837473B2 (en) Silicon thin film transistor
JPH03169081A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term