JP2572379B2 - Method for manufacturing thin film transistor - Google Patents

Method for manufacturing thin film transistor

Info

Publication number
JP2572379B2
JP2572379B2 JP61178888A JP17888886A JP2572379B2 JP 2572379 B2 JP2572379 B2 JP 2572379B2 JP 61178888 A JP61178888 A JP 61178888A JP 17888886 A JP17888886 A JP 17888886A JP 2572379 B2 JP2572379 B2 JP 2572379B2
Authority
JP
Japan
Prior art keywords
silicon layer
layer
polycrystalline silicon
tft
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61178888A
Other languages
Japanese (ja)
Other versions
JPS6336574A (en
Inventor
信武 小西
義和 細川
秋男 三村
誉也 鈴木
健治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61178888A priority Critical patent/JP2572379B2/en
Publication of JPS6336574A publication Critical patent/JPS6336574A/en
Application granted granted Critical
Publication of JP2572379B2 publication Critical patent/JP2572379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MOS型薄膜トランジスタに係り、特に液晶
平面デイスプレイ用アクテイブマトリツクスに用いて好
適な薄膜トランジスタの製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS thin film transistor, and more particularly to a method for manufacturing a thin film transistor suitable for use in an active matrix for a liquid crystal flat display.

〔従来の技術〕[Conventional technology]

液晶平面デイスプレイ用アクテイブマトリツクスに用
いつ薄膜トランジスタ(以下単にTFTという)に関する
従来技術として、「日経エレクトロニクス(1984年9月
10日号)」における小口、村田氏等による「商品化され
た液晶ポケツト・カラー・テレビ」と題する文献に開示
された技術がある。この従来技術によるTFTは、チヤネ
ル領域およびソース・ドレイン領域の全てが、多結晶シ
リコンにより形成されており、さらに、そのソース・ド
レイン層は、イオン打込み法によるドーピングによつて
形成している。
As a conventional technology related to a thin film transistor (hereinafter simply referred to as a TFT) used in an active matrix for a liquid crystal flat display, Nikkei Electronics (September 1984
10th issue)), a technique disclosed in a document entitled "Commercialized liquid crystal pocket color television" by Oguchi and Murata et al. In this conventional TFT, all of the channel region and the source / drain region are formed of polycrystalline silicon, and the source / drain layers are formed by doping by ion implantation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来技術によるTFTは、半導体層を全て多結晶シ
リコンで形成しているため、その製造時におけるプロセ
ス温度を非晶質シリコンの場合に比較して高くする必要
がある。このため、多結晶シリコン中には、水素がほと
んど含まれず、ソース・ドレイン領域とチヤネル領域間
のpn接合が不完全となり、このTFTは、TFTTがオフとな
つた時のリーク電流が増加するという問題点を有してい
る。また、TFTの製造時において、pn接合形成後に新た
に水素を含ませる手段を導入することもできるが、プロ
セス数が増加するという点で、このような製造方法を取
ることは好ましくない。さらに、前記従来技術は、ソー
ス・ドレイン層の不純物ドーピング法として、イオン打
込み法を採用しているため、TFTによる液晶平面デイス
プレイ用アクテイブマトリツクス基板の大画面化、高ス
ループツト化が困難であるという問題点を有する。
In the TFT according to the prior art, since the semiconductor layers are all formed of polycrystalline silicon, it is necessary to increase the process temperature at the time of its manufacture as compared with the case of amorphous silicon. For this reason, polycrystalline silicon hardly contains hydrogen, and the pn junction between the source / drain region and the channel region becomes incomplete, and this TFT increases leakage current when the TFTT is turned off. Has problems. In the manufacture of the TFT, a means for newly adding hydrogen after the formation of the pn junction can be introduced, but it is not preferable to adopt such a manufacturing method in view of an increase in the number of processes. Furthermore, since the prior art employs an ion implantation method as an impurity doping method for the source / drain layers, it is difficult to increase the screen size and the throughput of the active matrix substrate for liquid crystal flat display by TFT. Has problems.

本発明の目的は、チヤネル領域の電解効果移動度が高
く、しかも、逆方向ゲート電圧印加時のリーク電流が少
ないTFTの製造方法を提供することにある。さらに、本
発明の他の目的は、大面積のTFTによる液晶平面デイス
プレイ用アクテイブマトリツクス基板をも量産性よく、
低コストで容易に製造可能とするTFTの製造方法を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a TFT having a high field effect mobility in a channel region and a small leak current when a reverse gate voltage is applied. Another object of the present invention is to provide an active matrix substrate for a liquid crystal flat display using a large area TFT with good mass productivity.
An object of the present invention is to provide a TFT manufacturing method which can be easily manufactured at low cost.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明によれば、前記目的は、チヤネル領域を結晶性
の良い多結晶シリコン層で形成し、次に、ソース・ドレ
イン領域を、水素を含んだ非晶質シリコンまたは微結晶
シリコンをドーピングガスを導入しながらデポジシヨン
し積層して形成することにより達成される。
According to the present invention, the object is to form a channel region with a polycrystalline silicon layer having good crystallinity, and then form a source / drain region with amorphous silicon or microcrystalline silicon containing hydrogen by doping gas. This is achieved by depositing and laminating while introducing.

〔作 用〕(Operation)

チヤネル領域を形成する結晶性の良い多結晶シリコン
層は、非晶質シリコンに比べて電界効果移動度を高める
作用が大きい。さらに、この多結晶シリコン層の上に形
成され、ソース・ドレイン層を形成する非晶質シリコン
層または微結晶シリコン層は、多量の水素を含んでいる
ので、この水素が多結晶シリコン層の結晶粒界の未結合
手と結合して、多結晶シリコン層との間に良好なpn接合
を形成する。このため、ゲート電圧が逆方向に印加され
たとき、このpn接合の良否によつて決まるリーク電流
は、きわめて小さなものとなる。
A polycrystalline silicon layer having good crystallinity that forms a channel region has a greater effect of increasing field-effect mobility than amorphous silicon. Further, the amorphous silicon layer or the microcrystalline silicon layer which is formed on the polycrystalline silicon layer and forms the source / drain layers contains a large amount of hydrogen. It combines with the dangling bonds at the grain boundaries to form a good pn junction with the polycrystalline silicon layer. For this reason, when the gate voltage is applied in the reverse direction, the leakage current determined by the quality of the pn junction becomes extremely small.

〔実施例〕〔Example〕

以下、本発明による薄膜トランジスタの製造方法の一
実施例を図面について詳細に説明する。
Hereinafter, an embodiment of a method of manufacturing a thin film transistor according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1実施例により製造されたTFTの
縦断面図、第2図はその製造プロセス毎の縦断面図であ
り、両図において、1は透明絶縁基板、2は多結晶シリ
コン層、3は非晶質シリコン層、4はゲート絶縁膜、5
はゲート電極、6は層間絶縁膜、20はチヤネル領域、30
はソース層、31はドレイン層、70はソース電極、71はド
レイン電極である。
FIG. 1 is a longitudinal sectional view of a TFT manufactured according to a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of each manufacturing process. In both figures, 1 is a transparent insulating substrate, and 2 is a polycrystalline. A silicon layer, 3 an amorphous silicon layer, 4 a gate insulating film, 5
Is a gate electrode, 6 is an interlayer insulating film, 20 is a channel region, 30
Is a source layer, 31 is a drain layer, 70 is a source electrode, and 71 is a drain electrode.

本発明により製造されたTFTは、第1図に示すよう
に、ガラス,石英等の透明絶縁基板1上に設けた、チヤ
ネル領域20を形成する結晶性のよい多結晶シリコン層2
と、該多結晶シリコン層2の上部に設けた、ソース層30
およびドレイン層31を形成する水素を含む非晶質シリコ
ン層または微結晶シリコン層3と、ソース層30とドレイ
ン層31の間に多結晶シリコン層2と接して設けたゲート
絶縁膜4と、該ゲート絶縁膜の上に設けたゲート電極5
と、ソース層30およびドレイン層31の上に設けられ、こ
れらの層30,31にのみ接触しているソース電極70および
ドレイン電極71とにより構成される。
As shown in FIG. 1, a TFT manufactured according to the present invention comprises a polycrystalline silicon layer 2 having good crystallinity and forming a channel region 20 provided on a transparent insulating substrate 1 such as glass or quartz.
And a source layer 30 provided on the polycrystalline silicon layer 2.
An amorphous silicon layer or a microcrystalline silicon layer 3 containing hydrogen forming the drain layer 31 and a gate insulating film 4 provided between the source layer 30 and the drain layer 31 in contact with the polycrystalline silicon layer 2; Gate electrode 5 provided on gate insulating film
And a source electrode 70 and a drain electrode 71 provided on the source layer 30 and the drain layer 31 and in contact with only these layers 30 and 31.

次に、このTFTの製造プロセスについて、各プロセス
毎の縦断面図を示す第2図により説明する。
Next, the TFT manufacturing process will be described with reference to FIG. 2 showing a longitudinal sectional view of each process.

ガラスまたは石英等の透明絶縁基板1に不純物をドー
ピングしないで、多結晶シリコン層2を減圧CVD方(基
板温度600℃)で成長させた後、フオトレジスタ膜を用
いて該シリコン層2を島状にエツチングし、その後、将
来n+層のソース・ドレインとなる非晶質シリコン層3を
プラズマCVD方(基板温度300℃)でn形不純物をドープ
して形成する〔第2図(a)〕。
A polycrystalline silicon layer 2 is grown by a low pressure CVD method (substrate temperature 600 ° C.) without doping impurities into a transparent insulating substrate 1 such as glass or quartz, and then the silicon layer 2 is formed into an island shape using a photo resister film. Then, an amorphous silicon layer 3 which will be the source / drain of the n + layer in the future is formed by doping an n-type impurity by a plasma CVD method (substrate temperature 300 ° C.) (FIG. 2 (a)). .

次に、チヤネル領域20となる箇所の非晶質シリコン層
3をドライエツチング法で除去し、同時にソース層30,
ドレイン層31をパターンニングする〔第2図(b)〕。
Next, the portion of the amorphous silicon layer 3 that will become the channel region 20 is removed by dry etching, and at the same time, the source layer 30 and the source layer 30 are removed.
The drain layer 31 is patterned [FIG. 2 (b)].

次いで、将来ゲート絶縁膜4となるSiO2膜を減圧CVD
法,プラズマCVD法あるいは高CVD法等の低温酸化膜形成
法で形成した後、ゲート電極となる多結晶シリコン層5
を高不純物濃度に堆積し、フオトレジスト膜をマスクと
してドライエツチング法により、ゲート領域以外を除去
する〔第2図(c)〕。
Then, reduced pressure CVD and S i O 2 film serving as the future gate insulating film 4
Polycrystalline silicon layer 5 to be a gate electrode after being formed by a low temperature oxide film forming method such as a plasma CVD method or a high CVD method.
Is deposited at a high impurity concentration, and the portions other than the gate region are removed by dry etching using the photoresist film as a mask [FIG. 2 (c)].

次に、層間絶縁膜6として、PSG膜あるいはSiO2膜6
を全面にデポジシヨンした後、配線のためのスルーホー
ルを開ける〔第2図(d)〕。
Next, as an interlayer insulating film 6, PSG film or S i O 2 film 6
Is deposited on the entire surface, and through holes for wiring are opened (FIG. 2 (d)).

配線用金属として、例えばAl−2%Siをスパツタリン
グ法で形成した後、ソース電極70およびドレイン電極71
のパターンを形成する〔第2図(e)〕。
As the wiring metal, for example, after the Al-2% S i is formed by Supatsutaringu method, the source electrode 70 and drain electrode 71
[FIG. 2 (e)].

前述した本発明の第1実施例によるTFTは、チヤネル
領域を形成する層に結晶性のよい多結晶シリコンを用い
ているので、電界効果移動度が大きく、また、水素を含
んだ非晶質シリコンを用いて、ソース・ドレイン層を形
成するため、この層を積層する工程中に、水素が前記多
結晶シリコン層の結晶粒界に入り込み、多結晶シリコン
内の未結合手を減少させ、結果的に、ソース層30および
ドレイン層31と、ノンドープの多結晶シリコン層2との
接合特性が向上したものとなる。この接合特性の向上
は、TFTのゲード電圧が逆方向に印加されたときのリー
ク電流を少なくできるという効果を生じさせる。さら
に、この実施例のTFTの製造時のソース層およびドレイ
ン層の形成は、ドーピングガスを用いて積層して行く方
法であるため、イオン打込み法と比較して、その下にあ
る多結晶シリコン層に与える損傷が少なく、イオン打込
み法のときに損傷を除去する目的で行われるアニーリン
グ工程を省略でき、プロセスの簡略化を図ることができ
るという効果を生じる。
The above-described TFT according to the first embodiment of the present invention uses polycrystalline silicon having high crystallinity for a layer forming a channel region, and thus has a large field-effect mobility and an amorphous silicon containing hydrogen. In order to form a source / drain layer using, during the step of laminating this layer, hydrogen enters the crystal grain boundaries of the polycrystalline silicon layer and reduces dangling bonds in the polycrystalline silicon, resulting in In addition, the junction characteristics between the source layer 30 and the drain layer 31 and the non-doped polycrystalline silicon layer 2 are improved. This improvement in the junction characteristics produces an effect that the leakage current when the gate voltage of the TFT is applied in the reverse direction can be reduced. Further, since the source layer and the drain layer are formed by using a doping gas to form the source layer and the drain layer at the time of manufacturing the TFT of this embodiment, the underlying polycrystalline silicon layer is compared with the ion implantation method. And the annealing step performed for the purpose of removing the damage in the ion implantation method can be omitted, and the process can be simplified.

なお、前述の実施例において、チヤネル領域20を形成
するためのn+非晶質シリコン層3を除去する工程は、多
結晶シリコン層2が薄い場合に、精度よくこの非晶質シ
リコン層3を除去する制御が難しいと予想されるが、ド
ライエツチング法を用いた場合、そのエツチング速度
は、非晶質シリコンが多結晶シリコンに比較して約2倍
〜4倍速く行われ、この工程は、極めて高い精度で行う
ことが可能である。
In the above-described embodiment, the step of removing the n + amorphous silicon layer 3 for forming the channel region 20 is performed when the polycrystalline silicon layer 2 is thin. Although it is expected that the removal is difficult to control, when a dry etching method is used, the etching speed of amorphous silicon is about two to four times faster than that of polycrystalline silicon. It can be performed with extremely high precision.

前述した本発明の実施例は、本発明をコプレナー型の
TFTに適用したものであるが、本発明は、TFTのもう一つ
の典型的構造である逆スタガ型のTFTに適用することも
可能である。
The above-described embodiment of the present invention relates to a coplanar type of the present invention.
Although applied to a TFT, the present invention can also be applied to an inverted stagger type TFT which is another typical structure of the TFT.

第3図は、本発明を逆スタガ型のTFTに適用した第2
実施例を示す製造プロセス毎の縦断面図であり、以下こ
れについて説明する。第3図における各符号は、第1図
および第2図の場合と同じである。
FIG. 3 shows a second embodiment in which the present invention is applied to an inverted stagger type TFT.
It is a longitudinal section for every manufacturing process showing an example, and this is explained below. The reference numerals in FIG. 3 are the same as those in FIGS. 1 and 2.

第3図に示す逆スタガ型のTFTは、そのゲート電極5
の位置が透明絶縁基板上にある点で、コプレナー型のTF
Tと相異する。その製造プロセスは以下の通りである。
The inverted staggered TFT shown in FIG.
Is located on the transparent insulating substrate.
Different from T. The manufacturing process is as follows.

透明絶縁基板1上にCr等から成るゲート電極5をスパ
ツタリング法で堆積させた後パターンニングし、全面に
SiO2あるいはSiN膜等ゲート絶縁膜4を形成する〔第3
図(a)〕。
The gate electrode 5 made of C r, etc. on a transparent insulating substrate 1 is patterned after depositing at Supatsutaringu method, on the entire surface
Forming an S i O 2 or S i N film such as a gate insulating film 4 Third
Figure (a)].

次に、減圧CVD法等で多結晶シリコン層2を堆積さ
せ、所定の形にパターンニングする〔第3図(b)〕。
Next, a polycrystalline silicon layer 2 is deposited by a low pressure CVD method or the like and patterned into a predetermined shape (FIG. 3B).

次いで、全面に将来n+層のソース30、ドレイン層31と
なる非晶質シリコン層または微結晶シリコン層をホスフ
イン(PH3)等をドーパントしながらプラズマCVD法で形
成し、パターンニングする〔第3図(c)〕。
Next, an amorphous silicon layer or a microcrystalline silicon layer that will become the source 30 and drain layer 31 of the n + layer in the future is formed by plasma CVD using phosphine (PH 3 ) as a dopant and patterned. FIG. 3 (c)].

その後、層間絶縁膜6としてPSG膜あるいはSiN膜を全
面にデポジシヨンした後、配線のためのスルーホールを
開ける〔第3図(d)〕。
Then, after Depojishiyon a PSG film or S i N film on the entire surface as an interlayer insulating film 6 is opened through holes for wiring Third diagram (d)].

最後に配線用金属として例えばAl−2%Siをスパツタ
リング法で形成後、ソース電極70およびドレイン電極71
をパターンニングして形成する〔第3図(e)〕。
After formation in the last Supatsutaringu method, for example Al-2% S i as a wiring metal, the source electrode 70 and drain electrode 71
Is formed by patterning [FIG. 3 (e)].

この本発明の第2実施例によれば、前述した第1実施
例と同等の効果がある他、逆スタガ型特有の効果を有す
る。この点に関して、以下第4図により説明する。
According to the second embodiment of the present invention, in addition to the same effects as those of the above-described first embodiment, there are also effects peculiar to the inverted stagger type. This will be described below with reference to FIG.

第4図は、ゲート電圧印加時の本発明による第1およ
び第2の実施例のTFTの模式的な縦断面を示す図であ
り、図において、Sはソース端子、Dはドレイン端子、
Gはゲート端子、100はチヤネル層、710はドレイン接合
である。
FIG. 4 is a diagram showing a schematic vertical cross section of a TFT of the first and second embodiments according to the present invention when a gate voltage is applied, where S is a source terminal, D is a drain terminal,
G is a gate terminal, 100 is a channel layer, and 710 is a drain junction.

第4図(a),(b)は、夫々、コプレーナー型およ
び逆スタガ型のTFTにおいて、ゲート端子Gを電池−VG
により逆バイアスした場合について、チヤネル領域の状
態に着目して示している。
FIGS. 4 (a) and 4 (b) show a gate terminal G and a battery-V G in a coplanar type and an inverted stagger type TFT, respectively.
, The case where the reverse bias is applied is shown focusing on the state of the channel region.

ゲートが逆バイアスされている状態では、チヤネル層
のi層(多結晶シリコン層)には正孔が誘起され、見か
け上p形のチヤネル層100が形成される。このとき、ド
レイン側の接合710は逆バイアスされるが、(a)のコ
プレナー型ではこの接合710がn+p接合となり、(b)の
逆スタガ型ではこの接合710がn+ip接合となる。従つ
て、(b)の逆スタガ型のTFTは、この接合710にpチヤ
ネル層とn+層との間に、低不純物濃度のi層が介在さて
いる分だけ、このドレイン接合710の電界が緩和され、
この接合を流れるリーク電流が(a)のコプレナー型TF
Tの場合より少ないという特徴を有する。
When the gate is reverse-biased, holes are induced in the i-layer (polycrystalline silicon layer) of the channel layer, and an apparent p-type channel layer 100 is formed. At this time, the junction 710 on the drain side is reverse-biased. However, in the coplanar type shown in (a), this junction 710 becomes an n + p junction, and in the inverted staggered type shown in (b), this junction 710 becomes an n + ip junction. . Accordingly, the inverted staggered TFT of FIG. 3B has an electric field of the drain junction 710 corresponding to the low impurity concentration of the i-layer between the p-channel layer and the n + layer. Relaxed,
The leak current flowing through this junction is the coplanar type TF of (a).
It has the feature that it is less than the case of T.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、ドレイン接合
を、水素によつて未結合手の少ない構造とすることがで
き、逆方向ゲート電圧印加時のリーク電流を低減した薄
膜トランジスタを製造することができる。このリーク電
流は、従来技術によるTFTに比較して約10%程度に低減
することができる。また、TFTの製造プロセス数を最小
限にすることが可能となり、TFTの製造コストの低減お
よび信頼性の向上を図ることができる。さらに、本発明
によれば、大面積のTFTによる液晶平面デイスプレイ用
アクテイブマトリツクス基板をも低コストで容易に製造
可能である。
As described above, according to the present invention, it is possible to manufacture a thin film transistor in which a drain junction can have a structure with a small number of dangling bonds by hydrogen and a leakage current when a reverse gate voltage is applied is reduced. it can. This leakage current can be reduced to about 10% as compared with the conventional TFT. Further, the number of TFT manufacturing processes can be minimized, so that TFT manufacturing cost can be reduced and reliability can be improved. Further, according to the present invention, an active matrix substrate for a liquid crystal flat display using a large area TFT can be easily manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例により製造されたTFTの縦
断面図、第2図(a)〜(e)はその製造プロセス毎の
縦断面図、第3図(a)〜(e)は本発明の第2実施例
のTFTの製造プロセス毎の縦断面図、第4図(a),
(b)はゲート電圧印加時の本発明の第1および第2の
実施例のTFTの模式的な縦断面図である。 1……透明絶縁基板、2……多結晶シリコン層、3……
非晶質シリコン層、4……ゲート絶縁膜、5……ゲート
電極、6……層間絶縁膜、20……チヤネル領域、30……
ソース層、31……ドレイン層、70……ソース電極、71…
…ドレイン電極。
FIG. 1 is a longitudinal sectional view of a TFT manufactured according to the first embodiment of the present invention, FIGS. 2 (a) to 2 (e) are longitudinal sectional views for respective manufacturing processes, and FIGS. 3 (a) to 3 (e). 4) is a longitudinal sectional view of each TFT manufacturing process according to the second embodiment of the present invention.
(B) is a schematic longitudinal sectional view of the TFT of the first and second embodiments of the present invention when a gate voltage is applied. 1 ... transparent insulating substrate, 2 ... polycrystalline silicon layer, 3 ...
Amorphous silicon layer, 4 ... gate insulating film, 5 ... gate electrode, 6 ... interlayer insulating film, 20 ... channel region, 30 ...
Source layer, 31 drain layer, 70 source electrode, 71
... Drain electrode.

フロントページの続き (72)発明者 三村 秋男 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 鈴木 誉也 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 宮田 健治 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (56)参考文献 特開 昭58−93276(JP,A) 特開 昭60−260155(JP,A) 特開 昭58−219767(JP,A)Continued on the front page (72) Inventor Akio Mimura 4026 Kuji-cho, Hitachi, Japan Inside Hitachi, Ltd.Hitachi, Ltd. (72) Inventor Takaya Suzuki 4026, Kuji-cho, Hitachi, Japan Inside Hitachi, Ltd.Hitachi, Ltd. 72) Inventor Kenji Miyata 4026 Kuji-cho, Hitachi City Inside Hitachi Research Laboratory, Hitachi Ltd. (56) References JP-A-58-93276 (JP, A) JP-A-60-260155 (JP, A) 58-219767 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板または半導体基体上に設けた絶縁
膜上に多結晶シリコン層を形成する工程と、前記多結晶
シリコン層を島状にエッチングする工程と、前記島状に
エッチングした多結晶シリコン層を覆うように水素を含
んだ非晶質シリコン層または微結晶シリコン層を形成す
ると共に前記多結晶シリコン層内に水素を導入する工程
と、チャネル領域となる前記多結晶シリコン層上の箇所
の前記非晶質シリコン層または微結晶シリコン層を除去
すると共にソース領域およびドレイン領域をパターンニ
ングする工程とを含むことを特徴とする薄膜トランジス
タの製造方法。
A step of forming a polycrystalline silicon layer on an insulating film provided on an insulating substrate or a semiconductor substrate; a step of etching the polycrystalline silicon layer into islands; and a step of etching the polycrystalline silicon layer into islands. Forming an amorphous silicon layer or a microcrystalline silicon layer containing hydrogen so as to cover the silicon layer, and introducing hydrogen into the polycrystalline silicon layer; and forming a channel region on the polycrystalline silicon layer. Removing said amorphous silicon layer or microcrystalline silicon layer and patterning a source region and a drain region.
【請求項2】前記チャネル領域となる多結晶シリコン層
上の箇所の非晶質シリコン層または微結晶シリコン層を
除去する工程の後、ゲート絶縁膜およびゲート電極を形
成することを特徴とする特許請求の範囲第1項記載の薄
膜トランジスタの製造方法。
2. A gate insulating film and a gate electrode are formed after a step of removing an amorphous silicon layer or a microcrystalline silicon layer at a position on a polycrystalline silicon layer to be a channel region. A method for manufacturing a thin film transistor according to claim 1.
JP61178888A 1986-07-31 1986-07-31 Method for manufacturing thin film transistor Expired - Fee Related JP2572379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178888A JP2572379B2 (en) 1986-07-31 1986-07-31 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178888A JP2572379B2 (en) 1986-07-31 1986-07-31 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPS6336574A JPS6336574A (en) 1988-02-17
JP2572379B2 true JP2572379B2 (en) 1997-01-16

Family

ID=16056452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178888A Expired - Fee Related JP2572379B2 (en) 1986-07-31 1986-07-31 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP2572379B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3685623T2 (en) * 1985-10-04 1992-12-24 Hosiden Corp THIN FILM TRANSISTOR AND METHOD FOR THE PRODUCTION THEREOF.
US4994401A (en) * 1987-01-16 1991-02-19 Hosiden Electronics Co., Ltd. Method of making a thin film transistor
JPH01217421A (en) * 1988-02-26 1989-08-31 Seikosha Co Ltd Amorphous silicon thin film transistor array substrate and its production
DE69125886T2 (en) 1990-05-29 1997-11-20 Semiconductor Energy Lab Thin film transistors
US5610737A (en) * 1994-03-07 1997-03-11 Kabushiki Kaisha Toshiba Thin film transistor with source and drain regions having two semiconductor layers, one being fine crystalline silicon
KR100223591B1 (en) * 1996-11-20 1999-10-15 윤종용 Thin film transistors and the manufacturing method thereof
US20060118869A1 (en) * 2004-12-03 2006-06-08 Je-Hsiung Lan Thin-film transistors and processes for forming the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893276A (en) * 1981-11-30 1983-06-02 Toshiba Corp Thin film semiconductor device
JPS58219767A (en) * 1982-06-14 1983-12-21 Matsushita Electric Ind Co Ltd Manufacture of mis type transistor
JPS60260155A (en) * 1984-06-06 1985-12-23 Seiko Instr & Electronics Ltd Thin film transistor

Also Published As

Publication number Publication date
JPS6336574A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
JP2564725B2 (en) Method of manufacturing MOS transistor
KR100191091B1 (en) Thin film transistor and its fabrication method
JP2650543B2 (en) Matrix circuit drive
JPH07335903A (en) Active matrix circuit
JPH0577303B2 (en)
JPH0744278B2 (en) Method of manufacturing thin film transistor
KR960010931B1 (en) Semiconductor device and method for forming the same
JPH06349853A (en) Mos transistor and its manufacture
JP2572379B2 (en) Method for manufacturing thin film transistor
JP3401036B2 (en) Semiconductor device structure
JPH06204247A (en) Manufacture of thin film transistor
JP2776820B2 (en) Method for manufacturing semiconductor device
JPH0637314A (en) Thin-film transistor and manufacture thereof
JPH11274505A (en) Thin film transistor structure and its manufacture
JPH10173195A (en) Thin film transistor and its manufacturing method
JP2917925B2 (en) Method of manufacturing thin film transistor and active matrix array for liquid crystal display device
JPH07263704A (en) Thin film transistor and manufacture thereof
JP2504630B2 (en) Active matrix substrate
JPH05175230A (en) Manufacture of thin film transistor
JP2777101B2 (en) Transistor and manufacturing method thereof
JP3530749B2 (en) Active matrix device
JPH07321106A (en) Modifying method for silicon oxide thin film and manufacture of thin film transistor
JP2699401B2 (en) Complementary semiconductor device and method of manufacturing the same
JP2754184B2 (en) Thin film transistor and method of manufacturing the same
JPH0330296B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees