JPS63151083A - Thin film semiconductor device - Google Patents

Thin film semiconductor device

Info

Publication number
JPS63151083A
JPS63151083A JP61297712A JP29771286A JPS63151083A JP S63151083 A JPS63151083 A JP S63151083A JP 61297712 A JP61297712 A JP 61297712A JP 29771286 A JP29771286 A JP 29771286A JP S63151083 A JPS63151083 A JP S63151083A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor device
film semiconductor
gate wiring
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61297712A
Other languages
Japanese (ja)
Inventor
Akio Mimura
三村 秋男
Yoshikazu Hosokawa
細川 義和
Nobutake Konishi
信武 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61297712A priority Critical patent/JPS63151083A/en
Publication of JPS63151083A publication Critical patent/JPS63151083A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To increase the ON/OFF current ratio of a thin film semiconductor device without reducing the effective area of a pixel by disposing a polycrystalline silicon region which constructs a thin film field effect element in a zigzag shape under a gate wiring, and further disposing part of it under a signal wiring. CONSTITUTION:A polycrystalline silicon layer 2 is formed on a transparent insulating substrate, such as a quartz substrate 1, formed in a U shape, and a gate oxide film 3 is then formed. A gate wiring 4 is formed on the film 3. Then, phosphorus ions are implanted to the layer 2 to form a protective film 5, contact holes are then opened to form a source 8 and a drain D, and a trans parent electrode 6 and a signal wiring 7 are formed. A MOSFET of a thin film field effect element of such a structure is composed in the lower layer of the gate wiring to utilize the lower layer of the gate wiring as an element forming region. Thus, the occupying area of the element can be reduced. Since the layer 2 which forms a thin film semiconductor device is disposed in a shape of a zigzag for two to be connected in series to form a MOSFET, the MOSFET has high ON/OFF current ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,液晶ディスプレイ装置駆動用に用いて好適な
薄膜半導体装置に係り,特に、オフ特性を改善した薄膜
半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film semiconductor device suitable for use in driving a liquid crystal display device, and more particularly to a thin film semiconductor device with improved off-characteristics.

〔従来の技術〕[Conventional technology]

透明絶縁基板上に形成されたMC)S型薄膜トランジス
タは,液晶ディスプレイ装置駆動用として重要である。
MC) S-type thin film transistors formed on transparent insulating substrates are important for driving liquid crystal display devices.

この種技術に関する従来技術として、例えば、特開昭5
8−171860号公報等に記載された技術が知られて
おり,また、応用例として,日本学術振興会,アモルフ
ァス材料147委員会、第7回研究会資料,第24頁〜
第29頁(昭和60年3月19日)に記載された技術が
知られている。
As a prior art related to this type of technology, for example, Japanese Patent Application Laid-open No. 5
The technology described in Publication No. 8-171860 is known, and as an application example, the Japan Society for the Promotion of Science, Amorphous Materials 147 Committee, 7th Research Group Materials, pp. 24-
The technique described on page 29 (March 19, 1985) is known.

このような従来技術による薄膜半導体装置の構成を図面
により説明する。
The structure of such a thin film semiconductor device according to the prior art will be explained with reference to the drawings.

第5図1alは従来技術による薄膜半導体装置の平面図
,第5図1alはそのH−}1’断面図である。第5図
1al, (blにおいて、1は石英基板,2は多結晶
7リコン、3はゲート酸化膜、4はゲート配線、5は保
護膜、6は透明電極、7は信号配線である。
FIG. 5 1al is a plan view of a thin film semiconductor device according to the prior art, and FIG. 5 1al is a sectional view taken along line H-}1'. In FIGS. 5A and 5B, 1 is a quartz substrate, 2 is a polycrystalline silicon, 3 is a gate oxide film, 4 is a gate wiring, 5 is a protective film, 6 is a transparent electrode, and 7 is a signal wiring.

従来技術による薄膜半導体装置は、石英基板1上に直交
するように交叉して配置されるそれぞれ複数本の信号配
線7とゲート電極を兼ねるゲート配線4の交叉部分に複
数個直列接続したMOSFET等の薄膜半導体素子を設
けて構成されろ。また。
A thin film semiconductor device according to the prior art includes a plurality of MOSFETs and the like connected in series at the intersections of a plurality of signal lines 7 and a gate line 4 which also serves as a gate electrode, which are arranged orthogonally on a quartz substrate 1. It is configured by providing a thin film semiconductor element. Also.

信号配線7とゲート配線4に囲まれた部分には、前記M
O8FETのソースS(またはドレインD)に接続され
た液晶ディスプレイ装置の画素となる透明電極6が構成
される。そして、この薄膜半導体装置は、次のようにし
て製造される。
In the part surrounded by the signal wiring 7 and the gate wiring 4, the M
A transparent electrode 6, which becomes a pixel of a liquid crystal display device, is connected to the source S (or drain D) of the O8FET. This thin film semiconductor device is manufactured as follows.

(11石英基板l上に薄膜半導体素子を構成する多結晶
シリコン2を形成し、島状に加工した後、ゲート酸化@
3を形成する。
(11 After forming polycrystalline silicon 2 constituting a thin film semiconductor element on a quartz substrate l and processing it into an island shape, gate oxidation@
form 3.

(2)  このゲート酸化膜3の上にゲート電極を兼ね
るゲート配線4を形成する。このゲート配線4によるゲ
ート電極は、第5図(al、 (blに示す例では。
(2) A gate wiring 4 which also serves as a gate electrode is formed on this gate oxide film 3. The gate electrode formed by this gate wiring 4 is as shown in FIGS.

2分割して形成される。It is formed by dividing into two parts.

(3)  島状に加工した多結晶シリコン2に、リンの
イオン注入を行い、ゲート配線4により形成されるゲー
ト電極の下部以外の部分にn+領領域形成する。
(3) Phosphorus ions are implanted into the polycrystalline silicon 2 processed into an island shape to form an n+ region in a portion other than the lower part of the gate electrode formed by the gate wiring 4.

(4)次に、この上に保護膜5を形成後、コンタクトホ
ールな開け、ソースSとドレインDを形成し、ソースS
IC画素用の透明電極6を、ドレインDに接続した信号
配線7を形成する。
(4) Next, after forming a protective film 5 on this, a contact hole is opened, a source S and a drain D are formed, and a source S
A signal wiring 7 in which a transparent electrode 6 for an IC pixel is connected to a drain D is formed.

前述のように形成された薄膜半導体装置は、等制約に2
個のMO3FETが直列に接続された構造を有すること
になり、ソースSとドレインDとの間に所定の電圧を印
加した場合、この電圧は2個のMO8FETK分担され
て印加されることとなる。このため、2個の素子サイズ
が同じ場合個別のMO8Ff!、Tに印加される電圧は
、第5図のソースSとドレインDとの間に印加される電
圧の1/2となり、ゲート電極の電圧が負となって、M
OSFETがオフ状態となった場合における接合のリー
ク電流が低減されることになる。これにより、MO8F
ET素子のオン、オフ電流比が増大し、特性の優れたも
のとなる。この効果は、ゲート電極の分割数が多くなる
ほど、大きくなるが。
The thin film semiconductor device formed as described above is
It has a structure in which two MO3FETs are connected in series, and when a predetermined voltage is applied between the source S and the drain D, this voltage is divided and applied to the two MO8FETK. Therefore, if two elements have the same size, individual MO8Ff! , T becomes 1/2 of the voltage applied between the source S and drain D in FIG.
The leakage current of the junction when the OSFET is in the off state is reduced. As a result, MO8F
The on/off current ratio of the ET element increases, resulting in excellent characteristics. This effect becomes larger as the number of divisions of the gate electrode increases.

こうすると、素子自体の専有面積が大きくなり。This increases the area occupied by the element itself.

液晶ディスプレイ装置の画素として働く透明電極6の有
効面積が小さくなる。
The effective area of the transparent electrode 6 serving as a pixel of the liquid crystal display device becomes smaller.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来技術は1M08FETのオン、オフ電流比
を大きくして高性能化しようとすると、MO8FHT自
体が大きくなってしまい1画素となる透明電極6の有効
面積を低減させてしまうという問題点があった。
The above-mentioned conventional technology has a problem in that when attempting to improve the performance by increasing the on/off current ratio of the 1M08FET, the MO8FHT itself becomes large and the effective area of the transparent electrode 6 that forms one pixel is reduced. Ta.

本発明の目的は、画素の有効面積を低減させることなく
、オン、オフ電流比を大きくした高性能なMOSFET
を構成でき、液晶ディスプレイ装置の駆動用に用いて好
適な薄膜半導体装置を提供することにある。
An object of the present invention is to provide a high-performance MOSFET that increases the on/off current ratio without reducing the effective area of the pixel.
It is an object of the present invention to provide a thin film semiconductor device which can be configured and is suitable for use in driving a liquid crystal display device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、前記目的は、MOSFET等の薄膜電
界効果素子を構成する多結晶7リコン領域を蛇行させて
ゲート配線の下に配置し、さらにその一部を信号配線の
下に配置することにより達成することができる。
According to the present invention, the object is to meander a polycrystalline 7-recon region constituting a thin film field effect device such as a MOSFET and arrange it under a gate wiring, and further to arrange a part of it under a signal wiring. This can be achieved by

〔作  用゛〕[For production]

MOSFET等の薄膜電界効果素子をゲート配線および
信号配線の下に配置することにより、画素となる領域に
占める素子の占有面積を小さくすることができ、これに
より1画素の有効面積を減少させなくて済み、また、素
子を構成する多結晶シリコン層を蛇行させることにより
、容易に素子数を増加させることができ、オン、オフ比
の大きい高性能な薄膜半導体装置を構成することができ
る。
By placing a thin film field effect element such as a MOSFET under the gate wiring and signal wiring, it is possible to reduce the area occupied by the element in the area that becomes the pixel, and thereby the effective area of one pixel is not reduced. Moreover, by meandering the polycrystalline silicon layer constituting the device, the number of devices can be easily increased, and a high-performance thin film semiconductor device with a high on/off ratio can be constructed.

〔実施例〕〔Example〕

以下1本発明による薄膜半導体装置の実施例を図面によ
り詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a thin film semiconductor device according to the present invention will be described below in detail with reference to the drawings.

第1図は本発明の第1の実施例を示すもので、第1図(
a)はその平面図、第1図(b)はA −A/断面図。
FIG. 1 shows a first embodiment of the present invention.
a) is a plan view thereof, and FIG. 1(b) is an A-A/sectional view.

第1図1alはH−B/断面図であり、図の符号は第5
図に示す従来技術の場合と同一である。
Figure 1 1al is a cross-sectional view taken along line H-B, and the reference numerals in the figure are number 5.
This is the same as the case of the prior art shown in the figure.

第1図1al 、 Ibl 、 Iclに示す本発明の
第1の実施例は、多結晶クリコン層2がぼぼコ字状に蛇
行して。
In the first embodiment of the present invention shown in FIG. 1, 1al, Ibl, and Icl, the polycrystalline crystal layer 2 is meandering in a U-shape.

直線状のゲート配線4の下層に配置されて構成されてお
り1次のような製造工程により作成される。
It is arranged under the linear gate wiring 4 and is created by a first-order manufacturing process.

(1)石英基板1等の透明絶縁基板上に多結晶シリコン
層2を形成し、これを第1図1alに示すようにほぼコ
字型に加工した後、ゲート酸化膜3を形成する。
(1) A polycrystalline silicon layer 2 is formed on a transparent insulating substrate such as a quartz substrate 1, and after processing this into a substantially U-shape as shown in FIG. 1, la, a gate oxide film 3 is formed.

(2)  このゲート酸化膜3の上に直線状のゲート電
極であるゲート配線4を形成する。この場合、ゲート配
線4と多結晶シリコン層2とがゲート酸化膜3を介して
重なる部分のゲート配線4が2個のゲート電極となる。
(2) On this gate oxide film 3, a gate wiring 4, which is a linear gate electrode, is formed. In this case, the portion of the gate wiring 4 where the gate wiring 4 and the polycrystalline silicon layer 2 overlap with the gate oxide film 3 interposed therebetween becomes two gate electrodes.

(3)以後、従来技術と同様に、多結晶シリコン層2に
リンのイオン注入を行い、保護膜5を形成した後、コン
タクトホールを開け、ソースSとドレインDを形成し、
透明電極6と信号配線7を形成する。
(3) Thereafter, as in the conventional technique, phosphorus ions are implanted into the polycrystalline silicon layer 2, a protective film 5 is formed, a contact hole is opened, a source S and a drain D are formed,
A transparent electrode 6 and signal wiring 7 are formed.

第1図1al −1b) v lc)に示された構造の
薄膜電界効果素子であるMO8F’ETは、ゲート配線
の下層に構成され、ゲート配線の下層を素子形成領域と
して活用している。このため、この素子が占める占有面
積を低減することができる。また、この実施例は、薄膜
半導体装置を構成している多結晶シリコン層2をコ字状
に蛇行させて、2個の直列接続されたMOSFETを形
成しているので、形成されたMOSFETは、オン/オ
フ電流比の高い高性能なものとなる。
The MO8F'ET, which is a thin film field effect element having the structure shown in FIG. 1 (al-1b) v lc), is constructed below the gate wiring, and utilizes the lower layer of the gate wiring as an element formation region. Therefore, the area occupied by this element can be reduced. In addition, in this embodiment, the polycrystalline silicon layer 2 constituting the thin film semiconductor device is meandered in a U-shape to form two MOSFETs connected in series. This results in high performance with a high on/off current ratio.

第2図は本発明の第2の実施例を示すもので。FIG. 2 shows a second embodiment of the invention.

第2図1alはその平面図、第2図1blはC−C/断
面図。
FIG. 2 1al is a plan view thereof, and FIG. 2 1bl is a CC/sectional view thereof.

第2図1cIはL)−D’断面図であり、図の符号は、
第5図、第1図で説明した場合と同一である。
FIG. 2 1cI is a cross-sectional view along line L)-D', and the symbols in the figure are as follows:
This is the same as the case explained in FIGS. 5 and 1.

第2図に示す本発明の第2の実施例は、第1図により説
明した第1の実施例と同様に、多結晶7リコン層2がコ
字状に形成され、同様なプロセスに従って形成される。
In the second embodiment of the present invention shown in FIG. 2, the polycrystalline silicon layer 2 is formed in a U-shape, similar to the first embodiment described in FIG. 1, and is formed according to a similar process. Ru.

この実施例の場合、多結晶シリコン層2の一部が信号配
線7の下層に配置されるように構成される。このため、
この実施例におけるMOSFETは、そのほとんどが信
号配線7とゲート配線4の下層に配置されることになり
、液晶ディスプレイ装置の画素となる透明電極60面積
は最大となる。
In this embodiment, a portion of the polycrystalline silicon layer 2 is arranged under the signal wiring 7. For this reason,
Most of the MOSFETs in this embodiment are arranged below the signal line 7 and gate line 4, and the area of the transparent electrode 60, which becomes the pixel of the liquid crystal display device, is maximized.

第3図は本発明の第3の実施例を示すもので。FIG. 3 shows a third embodiment of the present invention.

第3図(alはその平面図、第3図1blはB −E/
断面図、第3図1etはF −F/断面図であり1図の
符号は、第1、第2の実施例で説明した場合と同一であ
る。
Figure 3 (al is the plan view, Figure 3 1bl is B-E/
The sectional view, FIG. 3, et is a FF/sectional view, and the reference numerals in FIG. 1 are the same as those described in the first and second embodiments.

第3図に示す本発明の第3の実施例は、第1図により説
明した第1の実施例とほとんど同様にして形成される。
A third embodiment of the invention, shown in FIG. 3, is formed in much the same way as the first embodiment described in FIG.

この第3の実施例が第1の実施例と相違する点は、ゲー
ト配線4のゲート電極となる部分が、ソース、ドレイン
方向に2分割されている点である。これにより第3図に
示す第3の実施例は、短チャンネル化した4個のMOS
FETが直列接続された構成を実現しており、薄膜半導
体装置を、オン/オフ電流比流比のさらに高い高性能な
ものとしている。
The third embodiment differs from the first embodiment in that the portion of the gate wiring 4 that becomes the gate electrode is divided into two parts in the source and drain directions. As a result, the third embodiment shown in FIG. 3 consists of four short-channel MOS
A configuration in which FETs are connected in series is realized, and the thin film semiconductor device has a higher performance with an even higher on/off current ratio.

第4図は本発明の第4の実施例を示すもので。FIG. 4 shows a fourth embodiment of the present invention.

第1図1alはその平面図、第2図1blはG−G’断
面図であり、図の符号は、他の実施例の場合と同一であ
る。
FIG. 1 1al is a plan view thereof, and FIG. 2 1bl is a sectional view taken along line GG', and the reference numerals in the figures are the same as in the other embodiments.

第4図に示す本発明の実施例は、MOSFETを構成す
る多結晶シリコン層2を複数のコ字状のパターンを組合
わせて蛇行を繰返すように、ゲート配線4の下層に形成
して、3個のMOSFETの直列回路を構成したもので
あり、他の実施例と同様な効果を奏するものである。
In the embodiment of the present invention shown in FIG. 4, a polycrystalline silicon layer 2 constituting a MOSFET is formed under a gate wiring 4 so as to repeatedly meander by combining a plurality of U-shaped patterns. This is a series circuit of two MOSFETs, and has the same effects as the other embodiments.

前述した本発明の実施例において、石英基板の代りに、
ガラス基板、半導体上に絶縁膜を設けた基板等を利用す
ることができ、また、MO8F’ET’k !4成する
多結晶クリコン層の代りとして、単結晶シリコン層、非
晶質シリコン層、シリコン以外のedge等の化合物半
導体層等を用いることができる。さらに、ゲート配線、
信号配線の材料として、多結晶シリコン、アルミ等の金
属を利用することが可能である。
In the embodiment of the present invention described above, instead of the quartz substrate,
A glass substrate, a substrate with an insulating film provided on a semiconductor, etc. can be used, and MO8F'ET'k! Instead of the four-layer polycrystalline silicon layer, a single crystal silicon layer, an amorphous silicon layer, a compound semiconductor layer other than silicon such as an edge layer, etc. can be used. Furthermore, gate wiring,
Polycrystalline silicon, metals such as aluminum can be used as materials for the signal wiring.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ゲート配線、信
号配線等の下層に複数個を直列接続したMOSFETに
よる薄膜半導体装置を構成することができ、これらの配
線外における薄膜半導体装置が占める占有面積を低減し
た、しかも装置のオン/オフ電流比の高い高性能な、液
晶ディスプレィ装置の駆動用として用いて好適な薄膜半
導体装置を提供することができる。
As explained above, according to the present invention, it is possible to configure a thin film semiconductor device using MOSFETs in which a plurality of MOSFETs are connected in series in a lower layer such as a gate wiring, a signal wiring, etc., and occupy space occupied by the thin film semiconductor device outside these wirings. It is possible to provide a thin film semiconductor device suitable for use in driving a liquid crystal display device, which has a reduced area and has a high performance with a high on/off current ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第3図1alは本発明の第1の実施例の平面図、第1図
1b) 、 lclはその断面図、第2図1a)は本発
明の第2の実施例の平面図、第2図1bl、 Ic)は
その断面図。 第3図1alは本発明の第3の実施例の平面図、第2図
1bl +C)はその断面図、第4図13)は本発明の
第4の実施例の平面図、第4図1blはその断面図、第
5図1alは従来技術の一例の平面図、第2図1blは
その断面図である。 l・・・・・・石英基板、2・・・・・・多結晶シリコ
ン層、3・・・・・・ゲート酸化膜、4・・・・・・ゲ
ート配線、5・・・・・・保藤膜、6・・・・・・透明
電極、7・・・・・・信号配線。 第4図 (G) (b)
FIG. 3 1al is a plan view of the first embodiment of the present invention, FIG. 1 1b), lcl is a sectional view thereof, and FIG. 2 1a) is a plan view of the second embodiment of the present invention, FIG. 1bl, Ic) is its cross-sectional view. FIG. 3 1al is a plan view of the third embodiment of the present invention, FIG. 2 1bl +C) is a sectional view thereof, and FIG. 4 13) is a plan view of the fourth embodiment of the present invention. 5 is a sectional view thereof, FIG. 5 1al is a plan view of an example of the prior art, and FIG. 2 1bl is a sectional view thereof. l...Quartz substrate, 2...Polycrystalline silicon layer, 3...Gate oxide film, 4...Gate wiring, 5... Hoto film, 6...Transparent electrode, 7...Signal wiring. Figure 4 (G) (b)

Claims (1)

【特許請求の範囲】 1、絶縁基板上に形成された薄膜電界効果素子を複数個
直列に接続してなる薄膜半導体装置において、前記直列
に接続された薄膜電界効果素子の一部または全部が、薄
膜半導体装置間を接続するゲート配線またはソース(ま
たはドレイン)に接続された信号配線の下層に配置され
ていることを特徴とする薄膜半導体装置。 2、前記絶縁基板が石英、ガラス等の透明基板であり、
前記薄膜半導体装置を構成する半導体材料が多結晶シリ
コン、非晶質シリコンまたは単結晶シリコンであること
を特徴とする前記特許請求の範囲第1項記載の薄膜半導
体装置。 3、前記直列に接続された電界効果素子がゲート配線の
下層に、蛇行して配置されていることを特徴とする前記
特許請求の範囲第1項または第2項記載の薄膜半導体装
置。
[Scope of Claims] 1. In a thin film semiconductor device formed by connecting a plurality of thin film field effect elements formed on an insulating substrate in series, some or all of the thin film field effect elements connected in series: A thin film semiconductor device characterized in that it is disposed below a gate wiring that connects thin film semiconductor devices or a signal wiring connected to a source (or drain). 2. The insulating substrate is a transparent substrate such as quartz or glass;
2. The thin film semiconductor device according to claim 1, wherein the semiconductor material constituting the thin film semiconductor device is polycrystalline silicon, amorphous silicon, or single crystal silicon. 3. The thin film semiconductor device according to claim 1 or 2, wherein the field effect elements connected in series are arranged in a meandering manner under a gate wiring.
JP61297712A 1986-12-16 1986-12-16 Thin film semiconductor device Pending JPS63151083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61297712A JPS63151083A (en) 1986-12-16 1986-12-16 Thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61297712A JPS63151083A (en) 1986-12-16 1986-12-16 Thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS63151083A true JPS63151083A (en) 1988-06-23

Family

ID=17850188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61297712A Pending JPS63151083A (en) 1986-12-16 1986-12-16 Thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS63151083A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189522A (en) * 1989-01-18 1990-07-25 Sharp Corp Display electrode substrate
US5097297A (en) * 1988-03-18 1992-03-17 Seiko Epson Corporation Thin film transistor
US5105246A (en) * 1990-08-10 1992-04-14 Xerox Corporation Leaky low voltage thin film transistor
JPH0627484A (en) * 1991-03-15 1994-02-04 Semiconductor Energy Lab Co Ltd Liquid crystal electro-optical device
US5289027A (en) * 1988-12-09 1994-02-22 Hughes Aircraft Company Ultrathin submicron MOSFET with intrinsic channel
JP2001102595A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Thin film transistor and display
US6259117B1 (en) 1994-06-02 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Active matrix display having storage capacitor associated with each pixel transistor
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
US6914642B2 (en) 1995-02-15 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
KR100520244B1 (en) * 1996-05-08 2006-01-12 샤프 가부시키가이샤 Thin-film transistor and liquid crystal display device having said thin-film transistors
JP2006173600A (en) * 1995-01-03 2006-06-29 Xerox Corp Product
JP2021005554A (en) * 2001-11-09 2021-01-14 株式会社半導体エネルギー研究所 Light-emitting device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5097297A (en) * 1988-03-18 1992-03-17 Seiko Epson Corporation Thin film transistor
US5289027A (en) * 1988-12-09 1994-02-22 Hughes Aircraft Company Ultrathin submicron MOSFET with intrinsic channel
JPH02189522A (en) * 1989-01-18 1990-07-25 Sharp Corp Display electrode substrate
US5105246A (en) * 1990-08-10 1992-04-14 Xerox Corporation Leaky low voltage thin film transistor
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
JPH0627484A (en) * 1991-03-15 1994-02-04 Semiconductor Energy Lab Co Ltd Liquid crystal electro-optical device
US6236064B1 (en) 1991-03-15 2001-05-22 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7148506B2 (en) 1994-06-02 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US6297518B1 (en) 1994-06-02 2001-10-02 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US6495858B1 (en) * 1994-06-02 2002-12-17 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having thin film transistors
US6259117B1 (en) 1994-06-02 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Active matrix display having storage capacitor associated with each pixel transistor
US6885027B2 (en) 1994-06-02 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
US7459724B2 (en) 1994-06-02 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Active matrix display and electrooptical device
JP2006173600A (en) * 1995-01-03 2006-06-29 Xerox Corp Product
JP2010153912A (en) * 1995-01-03 2010-07-08 Xerox Corp Array and product
JP4648829B2 (en) * 1995-01-03 2011-03-09 ゼロックス コーポレイション Product
US6914642B2 (en) 1995-02-15 2005-07-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
KR100520244B1 (en) * 1996-05-08 2006-01-12 샤프 가부시키가이샤 Thin-film transistor and liquid crystal display device having said thin-film transistors
JP2001102595A (en) * 1999-09-30 2001-04-13 Sanyo Electric Co Ltd Thin film transistor and display
JP2021005554A (en) * 2001-11-09 2021-01-14 株式会社半導体エネルギー研究所 Light-emitting device

Similar Documents

Publication Publication Date Title
US8890156B2 (en) Active device and active device array substrate
JP3410829B2 (en) MOS gate type semiconductor device
JPS63151083A (en) Thin film semiconductor device
KR970016722A (en) Semiconductor device and liquid crystal display device using same
JPS6292370A (en) Thin-film transistor
JPH02177457A (en) Semiconductor device
KR950002046A (en) Semiconductor integrated circuit device
JPH06104438A (en) Film transistor
US5247194A (en) Thin film transistor with an increased switching rate
JPH06318702A (en) Semiconductor device and light valve device
JPH02211429A (en) Thin film transistor for liquid crystal display device, crossover structural body and manufacture thereof
JPH04164371A (en) Semiconductor integrated circuit
JPS61158185A (en) Thin film transistor
CN1316632C (en) Thin film transistor assembly with substrate contact
JPS5861645A (en) Master slice ic device
JP2001185725A (en) Field effect transistor
JPH07307463A (en) Mos field-effect transistor for electric power
JPS61170068A (en) Mos transistor
JP2000114536A5 (en)
JPH1187666A (en) Macro cell
KR940000506B1 (en) Thin film transistor
JPS6080251A (en) Gate array lsi device
KR960019778A (en) Thin film transistor for liquid crystal display device and manufacturing method thereof
JPS6036110B2 (en) semiconductor equipment
JPH04192529A (en) Thin film transistor