JPS63156024A - Production of glass ceramic article - Google Patents

Production of glass ceramic article

Info

Publication number
JPS63156024A
JPS63156024A JP29120386A JP29120386A JPS63156024A JP S63156024 A JPS63156024 A JP S63156024A JP 29120386 A JP29120386 A JP 29120386A JP 29120386 A JP29120386 A JP 29120386A JP S63156024 A JPS63156024 A JP S63156024A
Authority
JP
Japan
Prior art keywords
powder
raw material
softening
binder
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29120386A
Other languages
Japanese (ja)
Other versions
JPH0444622B2 (en
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Publication of JPS63156024A publication Critical patent/JPS63156024A/en
Publication of JPH0444622B2 publication Critical patent/JPH0444622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To produce the title article by a simple process without causing intrusion of impurities nor impairing the characteristics of the product, by press- molding vitreous raw material powder comprising materials having different softening points at a temp. within the softening range of the powder, softening at lower temp. without using a binder, then executing heat treatment. CONSTITUTION:A powder mixture consisting of vitreous raw material powder having lower softening point (A) and that having higher softening point (B) is molded under compression at a temp. higher than (A) and lower than (B) where the powder (A) is softened but the powder (B) is unsoftened. Both powder (A) and (B) are bonded by softening to compact the mixture, and at the same time crystals are caused to deposit. Then, the molded form is heat-treated. By performing the molding as described above without using a binder, several problems caused by the addition of binder encountered in the conventional process, such as intrusion of impurities, deterioration of the characteristics of the product, obligation of requiring binder, kneading apparatus, drying stage, and stage for removing binder, etc. are eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラスセラミックス製品の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing glass-ceramic products.

(従来の技術) 従来の一般的なガラスセラミックス製品の製法は、核形
成剤を含むガラス原料を溶融し、各種の成形手段によっ
て成形して後、結晶化熱処理を行って結晶を析出させ、
ガラスセラミックス製品としていた。
(Prior Art) The conventional general manufacturing method for glass-ceramic products involves melting a glass raw material containing a nucleating agent, shaping it by various shaping means, and then performing a crystallization heat treatment to precipitate crystals.
It was a glass ceramic product.

又核形成剤を含まないでガラスセラミックスを得る方法
として、溶融状態のガラスを水冷等で破砕して得たガラ
ス小体を、型枠に集積して熱処理することにより、各ガ
ラス小体を融着する一方結晶化する方法(集積法と称す
)が「特公昭55−29018号公報」に開示されてい
る。
In addition, as a method for obtaining glass ceramics without using a nucleating agent, glass particles obtained by crushing molten glass by water cooling or the like are collected in a mold and heat-treated to melt each glass particle. A method of depositing and crystallizing (referred to as an accumulation method) is disclosed in Japanese Patent Publication No. 55-29018.

更に本発明者等が「特願昭60−284150号」にお
いて開示したところの、特定組成(主としてウオラスト
ナイト晶生成組成)のガラス状原料を微粉化し、該微粉
の圧粉成形体を熱処理することにより、粉末粒子を相互
に軟化融着させて一体化及び緻密化する一方、結晶化を
図って主としてうオラストナイト結晶を析出させる方法
がある。
Further, as disclosed by the present inventors in "Japanese Patent Application No. 60-284150," a glassy raw material having a specific composition (mainly a composition for forming wollastonite crystals) is pulverized, and a green compact of the pulverized powder is heat-treated. Accordingly, there is a method in which the powder particles are softened and fused to each other to be integrated and densified, while crystallization is attempted to precipitate mainly elastotonite crystals.

(発明が解決しようとする問題点) 上記従来方法のうち核形成剤を含み、ガラス製品として
成形して後熱処理して結晶化を図る方法は、核形成剤が
原料に比し高価なことが多いという点が問題であり、集
積法はガラス小体の軟化融着の時期に、析出の結晶核の
成長速度が速く既に結晶としての成長時期に入っている
ような組成の場合、結晶化に伴う粘性の増大によって前
記小体の融着一体化が困難になる。つまり使用のガラス
小体の成分組成に制限があり、核形成剤や核形成作用を
有する着色剤を含有する場合も通さないのである。
(Problems to be Solved by the Invention) Among the conventional methods described above, the method in which a nucleating agent is included and the glass product is formed and then heat-treated to achieve crystallization is that the nucleating agent is more expensive than the raw material. The problem with this method is that during the period of softening and fusion of the glass bodies, if the growth rate of precipitated crystal nuclei is fast and the composition has already entered the period of crystal growth, crystallization may occur. The accompanying increase in viscosity makes it difficult to fuse and integrate the bodies. In other words, there are restrictions on the composition of the glass bodies used, and even if they contain a nucleating agent or a coloring agent that has a nucleating effect, they will not pass.

次の本発明者等による先願発明のガラス状原料の微粉化
と該微粉を圧粉成形体として熱処理する方法は、微粉同
士の接触による接触面積の拡大と、緻密接触によって軟
化点をや\上回る程度の低温でガラス粒子間の軟化融着
及び緻密化ができるのである。すなわち集積法における
ガラス小体の軟化融着が、粗粒かつ単なる集積状態であ
るために軟化温度を相当上回る温度でなければ実現しな
いのに対して、上記先願発明では上述のように軟化点を
や\上回る程度の低温で行われ、従って軟化融着及び緻
密化の後に更に昇温して結晶化が行える。このことは核
形成剤又は核形成作用を有する着色剤を含む場合も同様
である。
The following method of pulverizing a glassy raw material and heat-treating the vitreous raw material as a green compact according to the prior invention by the present inventors is to increase the contact area through contact between the fine powders and to lower the softening point through close contact. Softening, fusion, and densification between glass particles can be achieved at temperatures exceeding that of the glass particles. In other words, the softening and fusing of the glass bodies in the accumulation method cannot be achieved unless the temperature is considerably higher than the softening temperature because the glass bodies are coarse particles and in a mere accumulation state, whereas in the prior invention, as described above, the softening point is Therefore, after softening, melting, and densification, the temperature can be further raised to effect crystallization. This also applies when a nucleating agent or a coloring agent having a nucleating effect is included.

上記圧粉成形体の成形には粘結剤を添加すると成形の容
易及び成形体(しら地)の強度を向上して、運搬時や焼
結時の損傷防止に有効である。
Addition of a binder to the molding of the compacted product facilitates molding and improves the strength of the compact (white base), which is effective in preventing damage during transportation and sintering.

特に取扱い時に損傷しやすい大形品の製造にはその添加
は必要であるが、これらの粘結剤は完成時の製品の特性
とは殆んど関係な(、むしろ残留粘結剤が製品特性を低
下させるようなことがあり、このような場合は焼結に際
して脱バインダ一工程を組込み、積極的に除去する必要
がある。しかし脱バインダ一手段は困難な場合が多く種
々の考案がなされているがこれによるコスト上昇は問題
である。
Their addition is necessary, especially in the production of large products that are easily damaged during handling, but these binders have little to do with the properties of the finished product (in fact, the residual binder has little to do with the product properties). In such cases, it is necessary to incorporate a binder removal step during sintering to actively remove the binder.However, it is often difficult to find a way to remove the binder, and various ideas have been devised. However, the cost increase caused by this is a problem.

又粘結剤そのものによるコスト高、粘結剤を均一に混練
する装面によるコスト高等も問題である。
Another problem is the high cost due to the binder itself and the high cost due to the mounting surface for uniformly kneading the binder.

粘結剤にはPVA (ポリビニルアルコール)が多用さ
れ、他にモンモリロナイト系、アルミナセメント系等も
使用されるが、以上のような問題点に鑑み、粘結剤を使
用せずかつしら地の強度を向上させる手段の開発が強(
希求されてきたのであり、本発明はその希求に応えてな
されたものである。
PVA (polyvinyl alcohol) is often used as a binder, and other types such as montmorillonite and alumina cement are also used. It is important to develop means to improve
This invention has been made in response to this desire.

(問題点を解決するための手段) 前記希求に応えてなされた本発明の特徴とする手段は、
軟化点の異なるガラス状原料粉末の混合物を、低軟化点
ガラス状原料粉末の軟化点以上でかつ高軟化点ガラス状
原料粉末の軟化点以下の成形温度に加熱して、前者の原
料粉末が軟化し、後者の粉末が未軟化の状態において該
混合物を加圧成形して成形体を得、次いで該成形体を熱
処理することにより成形体構成のガラス状原料粉末相互
を軟化融着させ緻密化する一方、結晶を析出させるよう
にした点である。
(Means for solving the problems) The features of the present invention, which have been made in response to the above-mentioned desire, are as follows:
A mixture of glassy raw material powders with different softening points is heated to a molding temperature that is above the softening point of the low softening point glassy raw material powder and below the softening point of the high softening point glassy raw material powder, so that the former raw material powder is softened. Then, while the latter powder is still unsoftened, the mixture is pressure-molded to obtain a molded body, and then the molded body is heat-treated to soften and fuse the glassy raw material powders constituting the molded body to make it densified. On the other hand, the point is that crystals are precipitated.

(作  用) 低高軟化点の異なるガラス状原料粉末の混合物を、低軟
化点原料粉末の軟化点以上、高軟化点原料粉末の軟化点
以下の成形温度に加熱して、前者が軟化、後者が未軟化
の状態で加圧成形するのであるから、軟化粉末が粘結剤
として作用し粉末相互を一体化する。従って従来の非成
分系粘結剤使用に起因する前記諸種の問題点を解消して
いるのである。
(Function) A mixture of glassy raw material powders with different softening points is heated to a molding temperature that is above the softening point of the low softening point raw material powder and below the softening point of the high softening point raw material powder, so that the former softens and the latter softens. Since the powder is press-molded in an unsoftened state, the softened powder acts as a binder and integrates the powders. Therefore, the various problems mentioned above caused by the use of conventional non-component binders are solved.

それに軟化粉末は成形体構成粒子そのものであるから、
添加量の制限される粘結剤と異なって多量であり、従っ
て加圧力が比較的小さくとも強度の大きい成形体(しら
地)が得られるのである。
In addition, since the softened powder is the particle itself that constitutes the compact,
Unlike a binder, which has a limited amount of addition, it can be added in a large amount, and therefore a molded article (white ground) with high strength can be obtained even with a relatively small pressing force.

加えて軟化、未軟化の混合粉末の加圧成形のために、粉
末間に滞留の空気が逃げ易く健全なしら地ができるので
ある。すなわち軟化粉末が変形して空気を追出しつ5粒
子間空間を埋めると共に未軟化粒子間の細隙が空気通路
として作用するのである。
In addition, due to the pressure molding of the softened and unsoftened mixed powder, air trapped between the powders can easily escape, creating a healthy sloping surface. That is, the softened powder deforms to expel air and fill the spaces between the five particles, and the slits between the unsoftened particles act as air passages.

若し、全粉末が軟化状態で加圧成形される場合は、粉末
間に滞留の空気は閉じ込められやすく、後の結晶化のた
めの昇温時に閉じ込められた空気が膨張し、しら地の膨
張あるいは割れなどを発生しやすいのである。
If all the powder is pressed and molded in a softened state, the air stagnant between the powders is likely to be trapped, and when the temperature is raised later for crystallization, the trapped air expands and causes the expansion of the white ground. Otherwise, cracks are likely to occur.

(実施例) 以下実施例と共に本発明を詳述する。(Example) The present invention will be described in detail below along with Examples.

先ず原料粉末から述べると、熔融ガラスの水砕等、ガラ
スを適宜の方法で小体とし、これを更に粉末として用い
るのであり、既にガラスとなっているものを原料とする
意味でガラス状原料と称しているのである。
First, starting with the raw material powder, glass is made into small particles by an appropriate method such as pulverization of molten glass, and this is further used as a powder, and it is called a glassy raw material in the sense that the raw material is made from something that has already become glass. It is called.

ところで低軟化点原料としては軟化点400〜800℃
のガラス状原料が望ましく、高軟化点原料としては、低
軟化点原料より少なくとも100℃高い軟化点を有する
ものが望ましいのである。
By the way, low softening point raw materials have a softening point of 400 to 800°C.
A glassy raw material having a softening point at least 100°C higher than a low softening point raw material is desirable as a high softening point raw material.

すなわち400℃以下で軟化のガラス(ガラス状原料)
は一般に低融点ガラスと呼ばれ、ガラスセラミックス建
材の原料としては通さず、又800℃以上で軟化のガラ
ス状原料は、加圧成形に際し加圧成形枠(金型等)の強
度の面で問題を残すのであり、より好ましくは軟化点5
00〜700℃のガラス状原料である。
In other words, glass that softens below 400℃ (glass-like raw material)
Generally called low-melting glass, it cannot be used as a raw material for glass-ceramic building materials, and glassy raw materials that soften at temperatures above 800°C pose problems in terms of the strength of pressure forming frames (molds, etc.) during pressure forming. more preferably a softening point of 5.
It is a glassy raw material with a temperature of 00 to 700°C.

一方高軟化点ガラス状原料が低軟化点ガラス状原料より
少なくとも100℃高い軟化点を有することが望ましい
としているのは、加熱炉内の温度分布に若干のむらがあ
ってもなお両粉末が軟化、未軟化の差を保持できるよう
にするためである。
On the other hand, the reason why it is desirable that the high softening point glassy raw material has a softening point that is at least 100°C higher than the low softening point glassy raw material is that even if the temperature distribution in the heating furnace is slightly uneven, both powders will still soften. This is to make it possible to maintain the unsoftened difference.

上記ガラス状原料の混合粉末の加熱は通常該粉末が酸化
されるものでないため、不活性雰囲気とする必要はなく
、加熱方式としてはバッヂ式、連続式等種々の方法によ
ることが可能であるが、加熱攪拌中に原料粉末の粒度及
び種類分布が不均一にならないように注意する必要があ
る。
Heating the mixed powder of the above-mentioned glassy raw materials usually does not oxidize the powder, so there is no need to use an inert atmosphere, and various heating methods such as a badge method or a continuous method can be used. During heating and stirring, care must be taken to ensure that the particle size and type distribution of the raw material powder does not become non-uniform.

かくて成形温度に加熱した混合粉末は成形枠に投入して
加圧成形するのであり、成形温度、加圧力等から好まし
い成形枠として金型がある。
The mixed powder thus heated to the molding temperature is charged into a molding frame and pressure-molded, and from the viewpoint of molding temperature, pressure, etc., a preferred molding frame is a mold.

第1図は本発明実施例の金型成形例の説明断面図であり
、■が金型の上型、2は同横型、3が同下型であり、4
が加熱したガラス状原料粉末の混合物であり、該混合物
4を金型中に投入後、上型1により加圧成形する。
FIG. 1 is an explanatory cross-sectional view of an example of mold molding according to an embodiment of the present invention, where ■ is the upper mold of the mold, 2 is the horizontal mold, 3 is the lower mold, and 4 is the upper mold of the mold.
is a mixture of heated glassy raw material powders, and after the mixture 4 is put into a mold, it is press-molded using an upper mold 1.

金型には、軟化のガラス状原料粉末が粘着する場合があ
り、この防止に、塗型(ジルコンサンド、黒鉛等)の塗
布、セラミックスシートの貼付、セラミックスコーティ
ング等を行うことが望ましい。
The softened glassy raw material powder may stick to the mold, and to prevent this, it is desirable to apply a coating mold (zircon sand, graphite, etc.), attach a ceramic sheet, ceramic coating, etc.

なお金型は常温使用、予熱使用のいずれによることもで
きる。常温使用では投入の加熱原料粉末の熱が熱伝導に
より奪われるが、投入から加圧成形までの時間が短かけ
れば問題はない。調査例を示すと、原料粉末の加熱温度
600℃、雰囲気温度30’Cの場合、30秒経過後の
原料粉末の平均低下温度は30℃であった。しかし成形
温度近くへの予熱は好ましいことである。
The mold can be used either at room temperature or preheated. When used at room temperature, the heat of the input heated raw material powder is taken away by thermal conduction, but there is no problem as long as the time from input to pressure molding is short. As an example of investigation, when the heating temperature of the raw material powder was 600°C and the ambient temperature was 30'C, the average temperature drop of the raw material powder after 30 seconds was 30°C. However, preheating to near the molding temperature is preferred.

金型の予熱にはガスバーナ等による外部加熱の他に、金
型内部に電熱線を設置するなどによって加熱する内部加
熱がある。
Preheating of the mold includes external heating using a gas burner or the like, as well as internal heating using heating wires installed inside the mold.

このようにして原料粉末の混合物の一方が軟化、他方が
未軟化の状態で加圧成形すると、既述のように軟化粉末
が粘結剤として作用し、緻密な加圧成形体を得ることが
できる。しかして該成形体密度は真密度の50%以上、
曲げ強さはlQkgf/crA以上とすることが適当で
ある。これは成形体構成の両原料粉末相互の軟化融着、
緻密化を可及的低温で行わせるためと、緻密化、結晶化
に当っての体積変化を少なくするための密度であり、成
形体の運搬、熱処理に際して損傷防止を可能とした強さ
である。
In this way, when one side of the raw powder mixture is softened and the other is unsoftened, the softened powder acts as a binder, making it possible to obtain a dense press-molded product. can. However, the density of the compact is 50% or more of the true density,
It is appropriate that the bending strength is 1Qkgf/crA or more. This is due to the mutual softening and fusion of both raw material powders in the molded body.
It is a density that allows densification to occur at the lowest possible temperature and reduces volume changes during densification and crystallization, and a strength that allows the molded product to be prevented from being damaged during transportation and heat treatment. .

次に本発明に好適なガラス状原料を例示する。Next, examples of glassy raw materials suitable for the present invention are illustrated.

■ 第1ガラス状原料組成(軟化温度400℃〜800
℃の原料) Siot : 55〜75%、AムCh : 15%以
下、CaO:5〜15%、 Na2O+に20:10〜
20%、以上を必須成分とし、かつ5i02+ JR2
zO* + CaO+Na20 +に20 > 90%
(M量百分率、以下同じ) ■ 第2ガラス状原料組成(高軟化点原料)SiOz 
: 40〜60%、  八ρt01:5〜20%、Ca
O: 25〜45%、 以上を必須成分とし、かつ5i02十八ρ、0.+Ca
O〉85%。
■ First glassy raw material composition (softening temperature 400℃~800℃
°C raw materials) Siot: 55-75%, AmCh: 15% or less, CaO: 5-15%, Na2O+ 20:10-
20% or more as essential ingredients, and 5i02+ JR2
zO* + CaO + Na20 + 20 > 90%
(M content percentage, same below) ■ Second glassy raw material composition (high softening point raw material) SiOz
: 40~60%, 8ρt01:5~20%, Ca
O: 25-45%, the above are essential ingredients, and 5i0218ρ, 0. +Ca
O〉85%.

なお上記第2ガラス状原料組成に、15%以下のガラス
着色剤を含有させることによって、ガラスセラミックス
製品を色付若しくは色模様付製品とすることが可能であ
る。
Note that by including 15% or less of a glass colorant in the second glassy raw material composition, it is possible to make the glass ceramic product colored or colored or patterned.

上記第1、第2ガラス状原料組成の顕著な差は、第1ガ
ラス状原料に含まれるNa2O+に10が、第2ガラス
状原料には含有されず、替ってCaO量が大きいことで
ある。勿論他の成分含有量のバランスも軟化点の差に関
係するが、主として上記組成の差によって第2ガラス状
原料の軟化点が第1ガラス状原料の軟化点より高いので
あり、両者の組成を選択調整することによって好ましい
軟化温度差100℃〜400℃を得ることができる。
The remarkable difference between the compositions of the first and second glassy raw materials is that the first glassy raw material contains 10 in Na2O+, but the second glassy raw material does not, and instead has a large amount of CaO. . Of course, the balance of other component contents is also related to the difference in softening point, but the softening point of the second glassy raw material is higher than that of the first glassy raw material mainly due to the difference in composition, and the composition of both is By selective adjustment, a preferable softening temperature difference of 100°C to 400°C can be obtained.

なお上記第1、第2ガラス状原料組成は、各単独よりも
両者が融着一体化した場合の方が結晶化の容易な組成と
なるように配慮された組成であり、今両者が1:1で混
合一体化された場合の粒子の融界面組成は5if2: 
47〜68%、A九01: 2〜18%、CaO:15
〜30%、Na20 + K2O:  5〜10%の範
囲となり、主としてウオラストナイト晶、他にアノルサ
イト晶が生成する組成範囲である。
The above-mentioned compositions of the first and second glassy raw materials were designed so that crystallization would be easier when they were fused and integrated than when each was used alone, and now both were 1: The melting surface composition of the particles when mixed and integrated at 1 is 5if2:
47-68%, A901: 2-18%, CaO: 15
-30%, Na20 + K2O: 5 to 10%, which is a composition range in which wollastonite crystals are mainly formed, and anorsite crystals are also formed.

以上は析出結晶がウオラストナイト、アノルサイト晶の
場合を述べたが、勿論他の結晶、たとえばデビトライト
結晶を析出せしめるようなガラス状原料を用いることも
可能である。
The case where the precipitated crystals are wollastonite or anorthite crystals has been described above, but it is of course possible to use a glassy raw material that precipitates other crystals, such as debitrite crystals.

ガラス状原料の製造はそれぞれ所定の化学組成を有する
ように調整した原料を溶融して後、これを水砕などの方
法で急冷破砕してガラス状小体とする。勿論所定化学組
成を有して既にガラス状になっているものを適宜の手段
で小体としてもよい。
Glassy raw materials are manufactured by melting raw materials adjusted to have predetermined chemical compositions, and then rapidly cooling and crushing them by a method such as water pulverization to form glassy bodies. Of course, a substance having a predetermined chemical composition and already in the form of glass may be made into a small body by an appropriate means.

このようにして得られたガラス状小体を、たとえばボー
ルミルなどにより更に粉砕するのであり、このときの粒
度は微細な程粉末の融着一体化、緻密化が軟化点をや\
上回る程度の低温で行われるのであり、混合粉末中20
0メツシユ以下の微粒子が少な(とも50%は含まれて
いることが望ましい。
The glassy particles obtained in this way are further pulverized using, for example, a ball mill, and the finer the particle size, the more the powder is fused and densified, and the softening point is lowered.
It is carried out at a low temperature that exceeds 20% in the mixed powder.
It is desirable that there be a small number of fine particles (50% or less) of 0 mesh or less.

一方10メツシュ以上の粗粒の存在は製品内部に気泡を
含有しやすく避けるべきである。
On the other hand, the presence of coarse particles of 10 mesh or more tends to contain air bubbles inside the product and should be avoided.

なお高軟化点のガラス状原料が着色剤を含む有色原料の
場合、同原料粉末を10〜200メツシエの粒子とし、
低軟化点の無色ガラス状原料粉末を200メツシユ以下
の微粉として混合すると、完成品を色模様(斑模様)付
製品とすることができる。
In addition, when the glassy raw material with a high softening point is a colored raw material containing a coloring agent, the raw material powder is made into particles of 10 to 200 meshier,
When colorless glassy raw material powder with a low softening point is mixed as a fine powder of 200 mesh or less, the finished product can be made into a product with a colored pattern (mottled pattern).

又両者共200メフシェ以下の微粉とすれば一様な地色
を呈して単なる色付製品となる。
If both are made into fine powders of 200 meshes or less, a uniform ground color will be exhibited and the product will simply be a colored product.

以上のようにして得られたガラス状原料粉末を混合し、
該混合物を加熱し加圧成形体とすることについては既に
述べたとおりであり、この場合の加圧力は5kgf/a
J以下では必要な強さ、つまり次の熱処理まで形状を維
持し得る強さが得られない。又300 kg r / 
cj以上は金型の強度及び経済的な面から問題であるし
、それを超える必要もない。
The glassy raw material powder obtained as above is mixed,
As described above, the mixture is heated to form a press-molded product, and the pressurizing force in this case is 5 kgf/a.
If it is less than J, the necessary strength, that is, the strength capable of maintaining the shape until the next heat treatment, cannot be obtained. Also 300 kg r/
Cj or more is a problem from the viewpoint of mold strength and economy, and there is no need to exceed it.

次に該加圧成形体の熱処理について述べる。Next, the heat treatment of the press-molded body will be described.

加圧成形体の熱処理のための加熱は、成形温度まで急速
昇温しで差支えなく、次いで結晶化温度に昇温しで同温
度を保つ。勿論加圧成形後引続き成形体を加熱してもよ
い。
Heating for heat treatment of the press-molded product may be done by rapidly raising the temperature to the molding temperature, then raising the temperature to the crystallization temperature and maintaining the same temperature. Of course, the molded body may be heated subsequently after pressure molding.

加圧成形温度は既述のように2種のガラス状原料粉末の
うち1種が軟化し、他が未軟化状態を保つ温度、すなわ
ち低温軟化粉末の軟化点をや\上回る温度であり、結晶
化温度は上記の高温軟化粉末の軟化点を上回りかつ結晶
の成長速度の大きい温度域である。
As mentioned above, the pressure molding temperature is the temperature at which one of the two types of glassy raw material powder softens while the other remains unsoftened, that is, a temperature slightly higher than the softening point of the low-temperature softening powder. The softening temperature is a temperature range that exceeds the softening point of the above-mentioned high-temperature softening powder and where the crystal growth rate is high.

成形体を成形温度に加熱した時点では低温軟化粉末は軟
化(再軟化)しており、結晶化温度に保持した状態では
、高温軟化粉末も軟化して粉末粒子相互の軟化融着、緻
密化、すなわち焼結と結晶化が進むのである。結晶化処
理の後は徐冷する。
When the compact is heated to the molding temperature, the low-temperature softened powder is softened (re-softened), and when maintained at the crystallization temperature, the high-temperature softened powder also softens, resulting in softening and fusion of the powder particles, densification, and In other words, sintering and crystallization progress. After the crystallization treatment, it is slowly cooled.

前記例示の第1及び第2ガラス状原料の粉末による場合
は成形温度は400℃〜800℃であり、結晶化温度は
800℃〜1000℃である。
In the case of using powders of the first and second glassy raw materials as exemplified above, the molding temperature is 400°C to 800°C, and the crystallization temperature is 800°C to 1000°C.

第2図は、上記第1及び第2ガラス伏原料の粉末による
加圧成形体の成形を、従来の手法すなわち粘結剤(PV
A熔液を用いた)と共に混練して後、圧縮成形枠を用い
る常温の加圧成形で行い、同成形体を熱処理した熱処理
曲線(実線)と前記本発明の熱処理の熱処理曲線(破線
)を比較して示すものである。
FIG. 2 shows the molding of a press-molded body using the powders of the first and second glass powder raw materials using a conventional method, that is, a binder (PV
The heat treatment curve (solid line) obtained by heat-treating the molded product after kneading it with A melt (using Molten A) and then performing pressure molding at room temperature using a compression molding frame and the heat treatment curve (broken line) of the heat treatment of the present invention. This is a comparison.

同図において(a1区間は従来手法による圧縮成形体の
乾燥を含む昇温区間、(b1区間は脱バインダー処理区
間(300℃〜400℃)、0点は本発明に係る加圧成
形温度(400℃〜800℃) 、(di区間は焼結・
結晶化区間(800℃〜1000℃) 、fe)区間は
徐冷区間である。
In the same figure, (section a1 is a temperature increase section including drying of the compression molded body by the conventional method, section b1 is a debinding section (300℃ to 400℃), and 0 points are the pressure molding temperature according to the present invention (400℃). ℃~800℃), (di section is sintered/
The crystallization section (800° C. to 1000° C.), fe) section is the slow cooling section.

(a1区間の脱水、(b)区間の脱バインダーの2工程
は急速に処理するとしら地に悪影響を及ぼし、ひいては
熱処理後の製品の物性を劣化させるもので短縮すること
ができず、fa)〜telの全区間では100時間以上
を要していた。
(The two steps of dehydration in section a1 and debinding in section (b) cannot be shortened because rapid processing will have a negative impact on the plain fabric and will eventually deteriorate the physical properties of the product after heat treatment, fa) ~ The entire tel section took over 100 hours.

しかるに本発明の製造方法ではfa)、(b1区間の工
程が不要であり、熱処理時間も約30時間と上記の1/
3以下に短縮されている。
However, the manufacturing method of the present invention does not require the steps in sections fa) and (b1, and the heat treatment time is about 30 hours, which is 1/1 of the above.
It has been shortened to 3 or less.

次に本発明の具体的実施例について説明する。Next, specific examples of the present invention will be described.

実施例1゜ ガラス状原料は下記第1表に示す組成を有するものであ
り、それぞれの成分を含有するように配合した配合原料
を融解し、次いでこれを水砕してガラス状小体としたも
のを更にボールミルで粉砕した。
Example 1゜The glassy raw material had the composition shown in Table 1 below, and the raw materials blended to contain each component were melted, and then this was pulverized to form glassy corpuscles. The material was further ground in a ball mill.

第  1  表 上記粉砕したガラス状原料粉末(200メツシユ以下)
を1:1で混合し、第2表のようにsoo”c〜600
℃の間で、加圧力30kg f /ctA、 100 
kg f /−で金型を用い加圧成形した。加圧成形体
の膨軟は、150 x150 X30 (wm)である
Table 1: The above crushed glassy raw material powder (200 mesh or less)
Mix at a ratio of 1:1 and make soo”c ~ 600 as shown in Table 2.
℃, pressurizing force 30 kgf/ctA, 100
kgf/- by pressure molding using a mold. The swelling and softness of the press-molded body is 150 x 150 x 30 (wm).

但し、金型は予熱せず。塗型は黒鉛系で0.2u+厚で
ある。
However, the mold is not preheated. The coating mold is graphite based and has a thickness of 0.2u+.

第2表 上記しら地は900℃X4hrで焼結・結晶化処理を行
った結果、アノルサイト結晶、ウオラストナイト結晶を
析出した。製品の曲げ強さはいずれも630kg f 
/−であった。
Table 2 The above-mentioned white ground was sintered and crystallized at 900° C. for 4 hours, and as a result, anorsite crystals and wollastonite crystals were precipitated. The bending strength of all products is 630kgf
It was /-.

なお上記実施例におけるしら地の昇温及び、結晶・結晶
化熱処理、徐冷終了に到る全熱処理時間は28時間で、
従来手法によるしら地の処理時間(乾燥時間を含む)が
101時間を要したのに比し、1/3.6に短縮するこ
とができた。
In the above example, the total heat treatment time for heating up the plain ground, crystallization/crystalization heat treatment, and completion of slow cooling was 28 hours.
Compared to the conventional method, which required 101 hours to process white ground (including drying time), this time could be reduced to 1/3.6.

実施例2゜ 第  3  表 賀t0%、 FeO番謹胡I 上記のような組成の無色及び有色のガラス状原料を、有
色原料は200メツシユ以下が50〜60%、20〜5
0メツシユが30〜40%の粉末に粉砕し、無色原料は
200メツシユ以下が98%以上の粉末として、両者を
1=1で混合、これを下記条件で加圧成形体とし次いで
緻密化及び結晶化熱処理して製品とした。
Example 2゜3 Omotega t0%, FeO No. Shingo I Colorless and colored glassy raw materials having the above compositions were used.The colored raw materials had 50 to 60% of 200 mesh or less, and 20 to 5
The colorless raw material is ground into a powder containing 30-40% of 0 meshes, and the colorless raw material is powdered with 98% or more of 200 meshes or less.The two are mixed in a ratio of 1=1, and this is made into a compact under the following conditions, followed by densification and crystallization. It was made into a product by chemical heat treatment.

■ ガラス状原料粉末の加熱温度・・・570℃■ 成
形体寸法・・・300 X300 X25 (mm)■
 金型予熱温度・・・400〜500℃■ 加 圧 力
・・45ksr f /cal■ 金型塗型・・・黒鉛
系塗型、0.2龍厚■ 成形体(しら地)密度・・・1
.68 g/cm同曲げ強さ   ・・・13.8kg
 f / cj(この調査は成形後室温まで徐冷して行
った)■ 上記しら地を900℃X4hrで焼結・結晶
化処理を行った結果上としてウオラストナイト結晶を析
出したガラスセラミックス製品となった。
■ Heating temperature of glassy raw material powder...570℃■ Molded object dimensions...300 x 300 x 25 (mm)■
Mold preheating temperature: 400-500℃ Pressure: 45ksr f/cal Mold coating: Graphite coating, 0.2mm thickness Molded object (white ground) density... 1
.. 68 g/cm Same bending strength...13.8kg
f / cj (This investigation was carried out by slowly cooling to room temperature after molding) ■ The glass-ceramic product in which wollastonite crystals were precipitated as a result of sintering and crystallizing the above-mentioned plain ground at 900°C for 4 hours. became.

■ 製品物性 密  度・・・2.34 g/c11曲
げ強さ・・・525 kg f /aJ吸水率 ・・・
0.28% これらの値は建材品として十分満足される値である。
■Product properties Density...2.34 g/c11 Bending strength...525 kg f/aJ Water absorption rate...
0.28% These values are sufficiently satisfactory as a building material.

(発明の効果) 本発明は以上のとおりであり、加圧成形体(しら地)の
成形を粘結剤を用いることなく、成形体構成用の軟化温
度の異なるガラス状原料粉末のうち、低温度軟化粉末の
軟化域で加圧による型枠成形を行うようにしたことによ
り、従来の粘結剤添加に起因する種々の問題点、すなわ
ち不純物の混入、製品物性の低下、粘結剤費の必要、混
練装置の必要、乾燥工程、脱バインダ一工程の必要等の
問題点を解決し、しかもしら地底形過程において加熱温
度の調整により自由にしら地強度を選ぶことができ、又
加圧力も従来の常温加圧に比し低(することができ、更
にはしら地密度も容易に高め得る等の利点を有して、高
強度の建築外内装材、装飾品等に適するガラスセラミッ
クス製品を提供し得るようにしたものであって、本発明
の工業的価値は著大である。
(Effects of the Invention) The present invention is as described above, and it is possible to mold a press-molded body (shiraji) without using a binder, using a low By performing form molding by pressure in the softening region of temperature-softened powder, various problems caused by conventional addition of binders can be solved, such as contamination of impurities, deterioration of product properties, and reduction of binder costs. This solves problems such as the need for a kneading device, a drying process, and a single process for removing binders.Moreover, the strength of the soil can be freely selected by adjusting the heating temperature in the soil forming process, and the pressing force can also be adjusted. We provide glass-ceramic products that are suitable for high-strength building exterior and interior materials, decorative items, etc., and have the advantage of being able to pressurize at a lower temperature than conventional pressurization at room temperature, and can also easily increase the silt density. Therefore, the industrial value of the present invention is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の金型成形例の説明断面図であり
、第2図は本発明に係る加圧成形体及び従来手法による
加圧成形体の熱処理曲線である。 1・・・金型の上型、2・・・同横型、3・・・同下型
、4・・・加熱したガラス状原料粉末の混合物。 特 許 出 願 人  久保田鉄工株式会社第1図 第2図
FIG. 1 is an explanatory sectional view of an example of molding according to an embodiment of the present invention, and FIG. 2 is a heat treatment curve of a press-formed body according to the present invention and a press-formed body according to a conventional method. 1... Upper mold of the mold, 2... Same horizontal mold, 3... Same lower mold, 4... Mixture of heated glassy raw material powder. Patent applicant Kubota Iron Works Co., Ltd. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)軟化点の異なるガラス状原料粉末の混合物を、低
軟化点ガラス状原料粉末の軟化点以上でかつ高軟化点ガ
ラス状原料粉末の軟化点以下の成形温度に加熱して、前
者の原料粉末が軟化し、後者の粉末が未軟化の状態にお
いて該混合物を加圧成形して成形体を得、次いで該成形
体を熱処理することにより成形体構成のガラス状原料粉
末相互を軟化融着させ緻密化する一方、結晶を析出させ
るようにしたことを特徴とするガラスセラミックス製品
の製造方法。
(1) A mixture of glassy raw material powders with different softening points is heated to a molding temperature that is above the softening point of the low softening point glassy raw material powder and below the softening point of the high softening point glassy raw material powder, and When the powder is softened and the latter powder is not softened, the mixture is pressure-molded to obtain a molded body, and the molded body is then heat-treated to soften and fuse the glassy raw material powders constituting the molded body. A method for manufacturing a glass-ceramic product, characterized in that it is densified and crystals are precipitated.
(2)成形温度に加熱したガラス状原料粉末の混合物を
金型に投入し、加圧成形することを特徴とする特許請求
の範囲第1項に記載のガラスセラミックス製品の製造方
法。
(2) A method for manufacturing a glass-ceramic product according to claim 1, characterized in that a mixture of glassy raw material powder heated to a molding temperature is charged into a mold and pressure-molded.
JP29120386A 1986-08-08 1986-12-06 Production of glass ceramic article Granted JPS63156024A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-187613 1986-08-08
JP18761386 1986-08-08

Publications (2)

Publication Number Publication Date
JPS63156024A true JPS63156024A (en) 1988-06-29
JPH0444622B2 JPH0444622B2 (en) 1992-07-22

Family

ID=16209171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29120386A Granted JPS63156024A (en) 1986-08-08 1986-12-06 Production of glass ceramic article

Country Status (1)

Country Link
JP (1) JPS63156024A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288925A (en) * 1987-05-19 1988-11-25 Nippon Sheet Glass Co Ltd Production of glass body
WO2003011776A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Method of making articles from glass and glass ceramic articles so produced
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
JP2008053545A (en) * 2006-08-25 2008-03-06 Nichia Chem Ind Ltd Light emitting device, and its manufacturing method
JP2008060428A (en) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd Light emitting device and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291200A (en) * 1985-06-19 1986-12-20 サンコ−マ−ク工業株式会社 Heat transfer method
JPS63129025A (en) * 1986-11-17 1988-06-01 Kubota Ltd Production of glass ceramic article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291200A (en) * 1985-06-19 1986-12-20 サンコ−マ−ク工業株式会社 Heat transfer method
JPS63129025A (en) * 1986-11-17 1988-06-01 Kubota Ltd Production of glass ceramic article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288925A (en) * 1987-05-19 1988-11-25 Nippon Sheet Glass Co Ltd Production of glass body
JP2501211B2 (en) * 1987-05-19 1996-05-29 日本板硝子株式会社 Glass body manufacturing method
WO2003011776A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Method of making articles from glass and glass ceramic articles so produced
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
JP2008053545A (en) * 2006-08-25 2008-03-06 Nichia Chem Ind Ltd Light emitting device, and its manufacturing method
JP2008060428A (en) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP4650378B2 (en) * 2006-08-31 2011-03-16 日亜化学工業株式会社 Method for manufacturing light emitting device

Also Published As

Publication number Publication date
JPH0444622B2 (en) 1992-07-22

Similar Documents

Publication Publication Date Title
US3450546A (en) Transparent glass-ceramic articles and method for producing
EP0008218A2 (en) A process for making a cellulated vitreous material
JPS63156024A (en) Production of glass ceramic article
JPH04228437A (en) Manufacture of glass product without lost of transparency
US3825468A (en) Sintered ceramic
JPS63144134A (en) Production of glass ceramic article
JPS63129025A (en) Production of glass ceramic article
US3486872A (en) Method for producing a crystallized sintered glass article with a nonporous surface
JPS63144142A (en) Crystallized glass and production thereof
JPS62162631A (en) Production of crystallized glass having colored pattern
JPS6224365B2 (en)
JPS63170230A (en) Production of plate crystal glass
JPH02120254A (en) Crystallized glass material and production thereof
JPS6317238A (en) Production of crystallized glass
JPS6374936A (en) Crystallized glass and production thereof
JPH0575702B2 (en)
JPS63144143A (en) Crystallized glass building material having colored pattern
JPH0416421B2 (en)
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPS63291826A (en) Production of color-patterned crystallized glass as construction material
JPS6340737A (en) Production of high-strength crystallized glass
JPH068190B2 (en) Crystallized glass material and manufacturing method thereof
JPH01138155A (en) Production of crystallized glass product
JPH0218338A (en) Crystallized glass material and its production
JPS63170231A (en) Production of plate crystal glass