JPS63144143A - Crystallized glass building material having colored pattern - Google Patents

Crystallized glass building material having colored pattern

Info

Publication number
JPS63144143A
JPS63144143A JP61291202A JP29120286A JPS63144143A JP S63144143 A JPS63144143 A JP S63144143A JP 61291202 A JP61291202 A JP 61291202A JP 29120286 A JP29120286 A JP 29120286A JP S63144143 A JPS63144143 A JP S63144143A
Authority
JP
Japan
Prior art keywords
raw material
colored
spots
crystallized glass
colorless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291202A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP61291202A priority Critical patent/JPS63144143A/en
Publication of JPS63144143A publication Critical patent/JPS63144143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a crystallized glass building material having standardized colored spot pattern and suitable as an exterior and interior materials for building, by mixing colored and colorless powdery glass raw materials, forming the mixture and heat-treating the product to effect the crystallization. CONSTITUTION:Colored glass raw material powder is mixed with colorless glass raw material powder and the mixture is formed and crystallized by heat- treatment to obtain a crystallized glass having spot pattern. The number of the spots is 2-300 per 4mm<2> excluding the spots smaller than 0.00045mm<2>, the average area of pots is 0.0015-2.00mm<2>, the diameter of the spot calculated by converting the average area of spots to a circle is 0.08-1.6mm and the areal ratio of the spot is 5-50%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建築用外装材、内装材と使用される斑点模様
を有する結晶化ガラス建材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a crystallized glass building material having a spotted pattern, which is used as an exterior material and an interior material for construction.

(従来の技術) 従来の結晶化ガラス建材は、溶融したガラスを水冷など
により急冷した後、適当な大きさに破砕してガラス小体
とし、これを平板となる型枠に集積するか、ロール法に
よって平板とした後、熱処理により各ガラス小体を互い
に融着一体化と同時に結晶化させて、結晶化ガラス平板
の建材を得ている(特公昭55−29018号公報)。
(Prior art) Conventional crystallized glass building materials are made by rapidly cooling molten glass by water cooling, etc., and then crushing it into appropriate sizes to form glass particles, which are then either accumulated in a formwork that becomes a flat plate, or made into rolls. After forming a flat plate by a heat treatment, the glass bodies are fused together and crystallized at the same time to obtain a building material of a flat crystallized glass plate (Japanese Patent Publication No. 55-29018).

一方、天然の大理石から切り出した建材用平板又は角材
は、大きい波状または層状の模様があり、独特の美観を
呈し、高級建材として用いられている。
On the other hand, flat plates or square timbers for building materials cut from natural marble have large wavy or layered patterns, exhibit a unique aesthetic appearance, and are used as high-quality building materials.

(発明が解決しようとする問題点) しかしながら前者の結晶化ガラス建材は、厚さ8〜20
sn、大きさ900 X900 w程度の純白色又はベ
ージュ、茶色等の着色剤を含有させたほぼ無地の材料で
あり、これが研摩された表面又は側面は、内部に入射し
た光が原料のガラス状小体の粒界で反射し、わずかに粒
界を認められるが平板全体としては無地の材料と見なさ
れる。但しこのガラス建材は物性的には天然大理石より
優れたものであるが、単一性、均一無地の材料であり美
観上は天然大理石には劣るものである。
(Problem to be solved by the invention) However, the former crystallized glass building material has a thickness of 8 to 20 mm.
sn, approximately 900 x 900 W in size, it is a pure white, almost plain material containing a beige, brown, etc. coloring agent, and the polished surface or side surface is made of a glass-like material made of raw material by the light incident inside. It is reflected at the grain boundaries of the body, and although a few grain boundaries can be seen, the plate as a whole is considered to be a plain material. However, although this glass building material is physically superior to natural marble, it is a single, uniform, plain material, and aesthetically inferior to natural marble.

一方、後者の天然大理石は模様が原石により異なり、大
きい壁面に採用する際、模様合せのため大量の原板から
同系統の模様の板を選び出すため、経済的でなく特に大
きい板材を大量に確保するには非常に高価なものとなる
欠点があった。
On the other hand, the latter type of natural marble has different patterns depending on the raw stone, and when used on a large wall, it is not economical to select a board with the same pattern from a large number of original boards to match the pattern, so it is not economical and it is necessary to secure a large number of particularly large boards. had the disadvantage of being very expensive.

そこで、本発明者等は前記問題点に鑑み、前記特公昭5
5−290118号公報記載の結晶化ガラス建材の製造
法を改良したものとして、先に特願昭61−16064
0号に提案したところである。この製造法に基づけば極
めて変化に富む斑点模様の優れた結晶化ガラス建材が得
られるのであるが、この建材の製造に際し、原料の粒度
を調整することを意図していなかったので、一定規格の
斑点模様を表出した建材を提供することが出来ないとい
う問題点があった。
Therefore, in view of the above-mentioned problems, the present inventors have
As an improved method for manufacturing crystallized glass building materials described in Publication No. 5-290118, Japanese Patent Application No. 61-16064 was previously published.
I just made a proposal to No. 0. Based on this manufacturing method, an excellent crystallized glass building material with a highly variable spotted pattern can be obtained, but when manufacturing this building material, it was not intended to adjust the particle size of the raw materials, so There was a problem in that it was not possible to provide building materials with a spotted pattern.

この発明は、前記特願昭61−160640号の製造法
及び該製造法の関連発明等により得られる結晶化ガラス
建材の斑点模様が、一定規格に合致した製品を提供する
ことを目的としたものである。
The purpose of this invention is to provide a product in which the speckled pattern of crystallized glass building materials obtained by the manufacturing method of the above-mentioned Japanese Patent Application No. 160640/1984 and related inventions of the manufacturing method conforms to certain standards. It is.

(問題点を解決するための手段) 本発明は、上記目的を達成するための手段として、有色
と無色のガラス化された原材料粉末を混合成形した後、
結晶化熱処理されることにより斑点模様が表出した結晶
化ガラスであって、前記斑点模様は4mm2の視野にお
いて、かつ0.00045 am”以下の斑点を除外し
て、斑点の個数= 2〜300個、斑点の平均面積70
.0015〜2.00mm” 、斑点の平均面積を円形
に換算した時の直径? 0.08〜1.6mm、斑点の
面積率が5〜50%である構成を採用した。
(Means for Solving the Problems) As a means for achieving the above object, the present invention provides, after mixing and molding colored and colorless vitrified raw material powders,
Crystallized glass with a speckled pattern exposed by crystallization heat treatment, the speckled pattern having a visual field of 4 mm2 and excluding specks of 0.00045 am'' or less, the number of specks = 2 to 300. average area of spots 70
.. 0.015 to 2.00 mm'', the diameter when the average area of the spots is converted into a circle?0.08 to 1.6 mm, and the area ratio of the spots is 5 to 50%.

(実施例) 本発明は色模様付結晶化ガラス建材に係るものであるが
、その製法の実施例から説明する。
(Example) The present invention relates to a colored patterned crystallized glass building material, and will be explained from an example of its manufacturing method.

先ず本発明に使用する有色原材料粉末は、重量百分率で
5i(h: 40〜60%、A7,0.: 5〜20%
、CaO: 25〜45%で、5in2+ N103 
+ CaO>85%かつ、着色材が15%以下を含有し
ている。
First, the colored raw material powder used in the present invention has a weight percentage of 5i (h: 40-60%, A7,0.: 5-20%).
, CaO: 25-45%, 5in2+ N103
+ CaO>85% and contains 15% or less of colorant.

上記有色原材料は、主として熱処理による結晶化(ウオ
ラストナイト: CaO・Singを主体)により、製
品に強さと硬さを付与することも目的としており、また
併せて、製品への模様付、色合いの変化を行なうもので
ある。
The above-mentioned colored raw materials are mainly used to impart strength and hardness to products through crystallization (mainly wollastonite: CaO・Sing) through heat treatment. It is about change.

次に本発明に使用する無色原材料粉末は、5i02:5
5〜75%、/Vz03: 0〜15%、CaO:5〜
15%、NazO+ KzO: 10〜20%で、かつ
5i02 +/Vz02 +CaQ+ NazO+ K
ZO≧90%を含有している。
Next, the colorless raw material powder used in the present invention is 5i02:5
5-75%, /Vz03: 0-15%, CaO: 5-
15%, NazO+ KzO: 10-20%, and 5i02 +/Vz02 +CaQ+ NazO+ K
Contains ZO≧90%.

上記無色原材料は、プレス成形体を熱処理する際に、結
晶化の前に、より低温で原材料の融着、緻密化を行なう
 (但し前記有色原材料もその働きはあるが)ことを主
目的とし、それと共に緻密化後、結晶を一部発生し、強
度と硬さを付与する働きもある。
The main purpose of the above-mentioned colorless raw materials is to fuse and densify the raw materials at a lower temperature before crystallization when heat-treating the press-formed body (although the colored raw materials described above also have this function), At the same time, after densification, some crystals are generated, which gives strength and hardness.

以下、前記有色、無色原材料成分の限定理由を述べる。The reasons for limiting the colored and colorless raw material components will be described below.

く有色原材料) Si02 : 40〜60% 40%未満では結晶化速度が速くなり過ぎ、プレス成形
体の熱処理時の融着緻密化が不充分となり易い。一方6
0%を越えると結晶量が減少し、強度、硬さの面で不足
となる。
Si02: 40-60% If it is less than 40%, the crystallization rate becomes too fast, and the fusion and densification during heat treatment of the press-formed product tends to be insufficient. On the other hand 6
If it exceeds 0%, the amount of crystals decreases, resulting in insufficient strength and hardness.

/Vz(h  :  5〜20% 5%未満では結晶化速度が速くなり過ぎ、製品の緻密化
が不充分となり易り、20%を越えると結晶を均一に析
出させることが困難となる。
/Vz(h: 5-20% If it is less than 5%, the crystallization rate becomes too fast and the product tends to be insufficiently densified. If it exceeds 20%, it becomes difficult to precipitate crystals uniformly.

CaO: 25〜45% 25%未満では結晶量が少なくなり、また45%を越え
ると、結晶化速度が速くなり過ぎ、製品の緻密化が不充
分となる。
CaO: 25-45% If it is less than 25%, the amount of crystals will be small, and if it exceeds 45%, the crystallization rate will be too fast and the densification of the product will be insufficient.

着色剤二0.5〜15% 着色剤としては、目的の色調に応じて、Fe。Colorant 2 0.5-15% As a coloring agent, Fe can be used depending on the desired color tone.

Mn+ Cr+ Cot Cu、 Nt、 TL V+
 Nd+  の酸化物を単独もしくは複合して用いるが
、0.5%未満では着色剤の効果がほとんど認められな
い。
Mn+ Cr+ Cot Cu, Nt, TL V+
An oxide of Nd+ is used alone or in combination, but if it is less than 0.5%, the effect of the coloring agent is hardly recognized.

一方、15%を越えると製品の強度を低下させる等の悪
影響がある。
On the other hand, if it exceeds 15%, there will be adverse effects such as a decrease in the strength of the product.

SiO2+ Ajz03 +CaO: 85%以上原材
料ガラスの物性を適正に保つ条件として85%以上とす
る。
SiO2+ Ajz03 +CaO: 85% or more Set to 85% or more as a condition for maintaining appropriate physical properties of the raw material glass.

〈無色原材料〉 5ifh : 55〜75% 55%未満では結晶化が速くなり、製品の緻密性保持の
ためには、原材料としてのSin、は55%以上とする
必要がある。75%を越えると、ガラスの粘性が高くな
り過ぎて、同じく緻密性の面から問題がある。
<Colorless raw material> 5ifh: 55-75% If it is less than 55%, crystallization will be rapid, and in order to maintain the denseness of the product, the Sin content as a raw material must be 55% or more. If it exceeds 75%, the viscosity of the glass becomes too high, which also causes problems in terms of density.

N1ps  :  0〜15% 15%を越えると、ガラスの粘性が高くなり、製品の緻
密化が不充分となり易い。
N1ps: 0 to 15% If it exceeds 15%, the viscosity of the glass increases and the densification of the product tends to be insufficient.

CaO:  5〜15% 15%を越えると、ガラスの粘性が高くなり、製品の緻
密化が不充分となり易い。5%未満では結晶化がほとん
ど行われず、強度と硬さの面で不足を生じる。
CaO: 5 to 15% If it exceeds 15%, the viscosity of the glass increases and the product tends to be insufficiently densified. If it is less than 5%, crystallization will hardly occur and the strength and hardness will be insufficient.

NazO+ KzO: 10〜20% 結晶化を制御する作用を持ち、20%を越えると結晶化
が遅くなり、強度と硬度の面で不足を生じる。10%未
満では結晶化が速くなり、製品の緻密化が不充分となる
NazO+KzO: 10-20% Has the effect of controlling crystallization, and if it exceeds 20%, crystallization slows down, resulting in a deficiency in strength and hardness. If it is less than 10%, crystallization will be rapid, resulting in insufficient densification of the product.

s+o、+Nto、 +CaO+NazO+KzO: 
90%以上原材料ガラスの物性を適正に保持するための
条件として90%以上とする。
s+o, +Nto, +CaO+NazO+KzO:
90% or more The condition for properly maintaining the physical properties of the raw material glass is 90% or more.

なお、上記有色原材料の軟化点は無色原材料の軟化点よ
りも少なくとも100℃以上には高くなるように設定し
た組成とする必要がある。
Note that the composition must be set such that the softening point of the colored raw material is at least 100° C. higher than the softening point of the colorless raw material.

次に原材料粉末の粒度及び緻密成形について述べる。Next, the particle size of the raw material powder and dense molding will be described.

無色及び有色原材料は前記成分の原料をそれぞれ所定の
組成になるように調整融解し、これを水砕などの方法で
急冷破砕してガラス状の小体とする。勿論特定範囲の成
分組成を有して既にガラス状になっているものを適宜の
手段で破砕し小体としてもよい。
Colorless and colored raw materials are obtained by adjusting and melting the raw materials for each of the above-mentioned components so as to have a predetermined composition, and then rapidly cooling and crushing this by a method such as water pulverization to form glass-like particles. Of course, a material having a specific range of component composition and already in the form of glass may be crushed by an appropriate means to form small bodies.

このようにして得られたガラス状小体をたとえばボール
ミルなどにより更に粉砕するのであり、このとき無色原
材料は200mesh以下の微粒子とする。但し、20
0mesh以上のものが10%以下で含まれていても差
支えない。
The glassy particles thus obtained are further pulverized using, for example, a ball mill, and at this time the colorless raw material is made into fine particles of 200 mesh or less. However, 20
There is no problem even if 10% or less of 0 mesh or more is included.

有色原材料は10mesh以下で、10〜200mes
hの粉末が好ましくは20%以上を占める粉体とするの
である。
Colored raw materials are less than 10mesh, 10-200mesh
The powder h preferably accounts for 20% or more.

10meshより粗い粒子の存在は製品内部に気泡を生
じ易く、強度低下にもつながるものであり、10〜20
0meshの粒子を含むようにするのは既に触れたよう
に斑点模様を出現させるためで、同粒子を20%以上と
したのは、20%以下の場合、有色及び無色原材料粉末
を混合焼結した製品において斑点模様の分布が過疎とな
り実質的に斑点模様の体裁をなさないからである。
The presence of particles coarser than 10 mesh tends to cause bubbles inside the product, leading to a decrease in strength.
The reason for including 0 mesh particles is to make a spotted pattern appear as mentioned above, and the reason why the particles are 20% or more is because if the content is less than 20%, colored and colorless raw material powders are mixed and sintered. This is because the distribution of the speckled pattern in the product becomes sparse and the product does not substantially have the appearance of a speckled pattern.

かくして得られた無色及び有色原材料の粉末は混合して
後、成形枠に入れ加圧又は振動成形により成形する。こ
の場合20Qmesh以下の微粉末を多く含む緻密成形
体の方が、低温での粉末粒子の融着一体化及び緻密化を
より容易とするものであるが、斑点模様を多く出現させ
るためには10〜200meshの有色原材料粒子を多
くする必要がある。従って粒度バランスをとる必要があ
るが、本発明においては有色、無色原材料粉末の成分組
成において、両者の融着一体化後に結晶化が容易となる
ように配慮がなされていることから、200mes h
以下の微粒子が50%程度含まれておれば低温での融着
一体化及び緻密化が行なえ、結晶化はその後の昇温で行
なうことができる。
The colorless and colored raw material powders thus obtained are mixed, then placed in a molding frame and molded by pressure or vibration molding. In this case, a dense molded body containing a large amount of fine powder of 20Qmesh or less makes it easier to fuse and integrate the powder particles at low temperatures and make it denser, but in order to make many spot patterns appear, It is necessary to increase the number of colored raw material particles of ~200 mesh. Therefore, it is necessary to balance the particle size, but in the present invention, care has been taken in the composition of the colored and colorless raw material powders so that crystallization will be easy after the two are fused and integrated.
If about 50% of the following fine particles are contained, fusion and integration and densification can be performed at low temperatures, and crystallization can be performed by raising the temperature thereafter.

成形体密度を真密度の50%以上とすることは低温での
粒子の一体緻密化の確実化と、焼結時の成形体の収縮量
の抑制のためである。
The purpose of setting the compact density to 50% or more of the true density is to ensure integral densification of particles at low temperatures and to suppress the amount of shrinkage of the compact during sintering.

真密度の50%以上の緻密成形体の成形は、加圧による
場合は混合粉末を圧縮成形枠に入れ加圧する。圧力は2
0kgf/cd以上が適当である。
When molding a dense molded body having a true density of 50% or more, the mixed powder is placed in a compression molding frame and pressurized. The pressure is 2
0 kgf/cd or more is appropriate.

振動成形による場合は振動成形枠に入れ30〜180H
zの振動を与えて緻密充填を行なう。これは3011 
z以下では繊密充填効果が少なく 、180 Hz以上
では細粒、粗粒の分離効果がでるためである。又状に述
べるように粘結剤を用いる場合、混練のために添加した
水分が、上記振動数で適度に成形体上に浮かび分離され
る効果がある。
When using vibration molding, place it in a vibration molding frame for 30 to 180 hours.
Dense packing is performed by applying z vibration. This is 3011
This is because, below 180 Hz, the effect of dense packing is small, and above 180 Hz, there is an effect of separating fine particles and coarse particles. As described above, when a binder is used, there is an effect that water added for kneading is appropriately floated on the molded body at the above-mentioned vibration frequency and separated.

なお振動成形は成形枠が大型になっても、即ち、成形体
が大型になっても特に振動装置を大型とする必要の点で
有利な成形方法である。
Note that vibration molding is an advantageous molding method even when the molding frame becomes large, that is, even when the molded product becomes large, especially in that it is necessary to use a large vibrating device.

ガラス原材料粉末の混合に際してはポリビニルアルコー
ル(P、V、A、)溶液などの粘結剤の少量添加は成形
を容易にする上で有効である。
When mixing glass raw material powders, it is effective to add a small amount of a binder such as a polyvinyl alcohol (P, V, A,) solution to facilitate molding.

粘結剤を適切に選ぶことによって成形を容易にするのみ
ならず、緻密成形体(しら地)の運搬時の損傷防止や、
焼結時における収縮に耐え得る強さをしら地に付与する
ことができる。
Appropriate selection of the binder not only makes molding easier, but also prevents damage during transportation of dense molded products (Siraji).
It is possible to impart strength to the plain ground that can withstand shrinkage during sintering.

たとえばモンモリロナイト系粘結剤(モンモリロナイト
を主成分とし、SiO□:60〜80%、N20゜:5
〜20%含有)やアルミナセメント系粘結剤(#z(h
:45〜80%、CaO:18〜40%、5iOz:1
〜5%含有)がその好例であり、添加量はしら地の必要
とする強さ、即ち運搬時の損傷を防止並びに焼結時の収
縮に耐え得るこめに、具備すべき強さとして設定してい
るところの7 kg f / ca1以上の曲げ強さが
得られ、かつガラスの成分系に実質的影響を与えない量
が適切である。
For example, montmorillonite binder (mainly composed of montmorillonite, SiO□: 60-80%, N20°: 5
~20% content) and alumina cement binder (#z (h
: 45-80%, CaO: 18-40%, 5iOz: 1
A good example of this is 5% (containing ~5%), and the amount added is set to the strength that Shiraji needs, that is, to prevent damage during transportation and to withstand shrinkage during sintering. An appropriate amount is such that a bending strength of 7 kgf/ca1 or more can be obtained, and which does not substantially affect the composition of the glass.

以上は、粘結剤を用いる場合の実施例を説明したが、粘
結剤を用いない場合の実施例を下記に列記する。
Above, examples in which a binder is used have been described, but examples in which a binder is not used are listed below.

i、前記有色、無色原材料粉末を混合し、それを500
〜700℃に加熱した後、金型内に投入し、5〜300
 kgf/adの圧力でプレス成形して緻密成形体を得
る。
i. Mix the colored and colorless raw material powders and mix it with 500%
After heating to ~700℃, put it into the mold and heat it to 5~300℃.
A dense molded body is obtained by press molding at a pressure of kgf/ad.

ii 、有色、無色原材料粉末を混合し、500℃以下
の温度で500℃以下の金型中に投入し、その後、金型
と原材料をともに500〜700℃の温度に加熱後、5
〜300 kgf/cfflの圧力でプレス成形して緻
密成形体を得る。
ii. Mix colored and colorless raw material powders and put them into a mold at a temperature of 500°C or less, then heat both the mold and raw materials to a temperature of 500 to 700°C,
Press molding is performed at a pressure of ~300 kgf/cffl to obtain a dense molded body.

iii 、有色、無色原材料粉末を混合し、500℃以
下の温度で金型中に投入し、その後、原材料表面のみを
加熱し、500〜700℃の温度にした後、5〜300
 kgf/cI11の圧力でプレス成形して緻密成形体
を得る。
iii. Colored and colorless raw material powders are mixed and put into a mold at a temperature of 500°C or less, then only the surface of the raw materials is heated to a temperature of 500 to 700°C, and then heated to a temperature of 5 to 300°C.
Press molding is performed at a pressure of 11 kgf/cI to obtain a dense molded body.

iv、有色、無色原材料粉末を混合し、500℃以下の
温度で、500〜700℃に加熱した金型中に投入し、
5〜300 kgf/calの圧力でプレス成形して緻
密成形体を得る。
iv. Colored and colorless raw material powders are mixed and put into a mold heated to 500 to 700 °C at a temperature of 500 °C or less,
Press molding is performed at a pressure of 5 to 300 kgf/cal to obtain a dense molded body.

なお、成形体の成形温度は400〜800℃であり、好
ましくは500〜700℃である。
In addition, the molding temperature of the molded body is 400 to 800°C, preferably 500 to 700°C.

上述のようにして得られた緻密成形体の熱処理は第1図
の熱処理曲線に示すように、粒子の一体緻密化のための
低温処理(第1段処理a−a区間)と、それに続いて結
晶化のための高温処理(第2段処理b−b区間)を行な
うのである。
As shown in the heat treatment curve of FIG. 1, the heat treatment of the dense compact obtained as described above includes low temperature treatment (first stage treatment section a-a) for integral densification of particles, followed by A high-temperature treatment (second stage treatment section bb) for crystallization is performed.

第2図は緻密成形体加熱における「結晶成長速度一温度
」曲線で、s、p、が軟化点、M、P、が融点であり、
前記低温処理は軟化点以上で結晶の成長速度が速くなる
温度以下で行なうのである。
Figure 2 is a "crystal growth rate vs. temperature" curve in heating a dense compact, where s and p are softening points, M and P are melting points,
The low-temperature treatment is performed at a temperature above the softening point and below the temperature at which the crystal growth rate increases.

この低温処理においては主として無色原材料粉末の軟化
融着による粒子の一体化及び緻密化が起っており、処理
温度が低温であること、加えて各単独原材料粉末組成は
結晶化抑制型としていることなどから成分に核形成剤を
含んでいても、集積法におけるような弊害は起らず、む
しろ後の熱処理において結晶化を容易にする。
In this low-temperature treatment, the unification and densification of particles mainly occur due to softening and fusion of the colorless raw material powder, and the treatment temperature is low, and in addition, the composition of each individual raw material powder is of a type that suppresses crystallization. Even if a nucleating agent is included as a component, it does not cause the same adverse effects as in the accumulation method, but rather facilitates crystallization in the subsequent heat treatment.

第1段の低温処理後引き続いて、第2図における結晶の
成長速度の速くなる温度域に昇温しで第2段の高温処理
を行なう。この時点では無色及び有色原材料粒子の一体
緻密化、有色原材料粒子同士の一体緻密化も既に進み、
結晶化も行われるのであるが、特に無色及び有色原材料
粒子の融着界面では、両者の一体化に伴って結晶化の容
易な組成となることから結晶の析出、成長が盛んである
After the first stage low temperature treatment, the second stage high temperature treatment is performed by raising the temperature to a temperature range in which the crystal growth rate increases as shown in FIG. At this point, the integrated densification of colorless and colored raw material particles and the integrated densification of colored raw material particles have already progressed.
Crystallization also occurs, and crystal precipitation and growth are particularly active at the fused interface between colorless and colored raw material particles, since the integration of the two creates a composition that facilitates crystallization.

なお熱処理温度(結晶化温度)は800〜1000℃で
ある。
Note that the heat treatment temperature (crystallization temperature) is 800 to 1000°C.

以上のようにして得られる色模様付結晶化ガラスは、着
色の斑点模様を分布したものであり、斑点模様も有色原
材料粒子の粒度、量、混合比等によって綱かい斑点模様
、塊状斑点模様等の模様の形態、分布の疎密、斑点模様
の濃淡等の種々変化させることができるが、特に本発明
では一定規格の「斑点模様」の表出した結晶化ガラス(
建材)を提供するために、次の各項目を規定し、この規
定に合致する略同−模様の結晶化ガラス(建材)を大量
に供給することを可能にしたものである。
The colored patterned crystallized glass obtained in the above manner has a distributed pattern of colored spots, and the spotted pattern may vary depending on the particle size, amount, mixing ratio, etc. of the colored raw material particles, such as a tight spot pattern, a lumpy spot pattern, etc. The shape of the pattern, the density of the distribution, the density of the spotted pattern, etc. can be changed in various ways, but in particular, in the present invention, crystallized glass (
In order to provide building materials), the following items are stipulated, and it is possible to supply a large amount of crystallized glass (building materials) with approximately the same pattern that meets these rules.

即ち、上記の規定項目は、斑点の個数(N)、斑点の平
均面積(SUM  ABG) 、斑点の平均面積を円形
に換算した時の直径(DIA  AVG) 、斑点の面
積率(八)、計数しない小斑点面積(MIN A)の5
項目に決めて行なうのであり、第3図を参照しつ\更に
その数値範囲を説明する。
That is, the above specified items are the number of spots (N), the average area of spots (SUM ABG), the diameter when the average area of spots is converted into a circle (DIA AVG), the area ratio of spots (8), and the count. Small spot area (MIN A) of 5
The numerical ranges are explained below with reference to Fig. 3.

■ 計数しない小斑点面積(MIN A)≦0.000
45鶴2数値外のもは斑点模様として判別できない。
■ Area of small spots not counted (MIN A) ≦0.000
45 Crane 2 Values outside the range cannot be identified as speckled patterns.

■ 斑点の個数(N) =2〜300個(4+u”視野
内)Nが2以下でも300以上でも斑点模様にならない
■ Number of spots (N) = 2 to 300 (within 4+u'' visual field) Even if N is less than 2 or more than 300, no speckled pattern will be obtained.

■ 斑点の平均面積(SUM  AVG) =O,0O
15〜2.00mm2この範囲以外では斑点模様になら
ない。
■ Average area of spots (SUM AVG) =O, 0O
15 to 2.00 mm2 Outside this range, no speckled pattern will be formed.

■ 斑点の平均面積を円形に換算した時の直径(DIA
    AVG)   −0,08〜1.6  1璽■
項より決定される。
■ Diameter when the average area of spots is converted into a circle (DIA
AVG) -0.08~1.6 1 seal■
Determined from the term.

■ 斑点の面積率(A) =5〜15%この範囲以外で
は斑点模様にならない。
■ Area ratio of spots (A) = 5 to 15% Outside this range, spots will not appear.

なお、第3図において、符号の1は基地であり、2は平
均面積に計数される大きさの斑点、3は計数されない小
斑点を示したものであり、上記面積率Aは次式によって
求められる。
In Figure 3, the code 1 is the base, 2 is the spot that is counted in the average area, and 3 is the small spot that is not counted.The above area ratio A is calculated by the following formula. It will be done.

次に本発明に具体的実施例を示す。Next, specific examples of the present invention will be shown.

〈粘結剤を用いる場合〉 実施例に供した有色及び無色原材料は第1表のような組
成を有するものであり、それぞれの成分を配合した配合
原材料を1500℃で融解し、次いでこれを水中に投入
してそれぞれ有色及び無色ガラス状小体を得た。なお有
色原材料は上記のように1500℃で融解し水砕してい
るためFeO/FezO+比が高く従って水砕原料は緑
黒色を呈している。
<When using a binder> The colored and colorless raw materials used in the examples had the compositions shown in Table 1. The raw materials containing each component were melted at 1500°C, and then soaked in water. colored and colorless glassy bodies were obtained, respectively. Since the colored raw material is melted at 1500° C. and pulverized as described above, the FeO/FezO+ ratio is high, and therefore the granulated raw material has a green-black color.

(FeO+ Fe2O,は着色剤で核形成剤としても作
用する)。
(FeO+ Fe2O, is a coloring agent and also acts as a nucleating agent).

第1表  有色及び無色原材料組成 (w、tX)前記
ガラス状小体をボールミルによって粉砕し、篩い分けに
より次のような粒度の粉体とした。
Table 1 Composition of colored and colorless raw materials (w, tX) The glassy bodies were ground by a ball mill and sieved to obtain powder having the following particle size.

有色原材料粉末−・−・−・−・・−10〜200 m
esh無色原材料粉末・−−−−−−−−200mes
h上記の有色原材料を粒度別に分類したものを所3tJ
I「斑点模様」の種類によって決められた量を無色原材
料に配合し、各種の緻密成形体とした。
Colored raw material powder -・-・-・-・・-10~200 m
esh colorless raw material powder・----200mes
h The above colored raw materials classified by particle size are 3tJ.
The amount determined depending on the type of I "spotted pattern" was blended into colorless raw materials to make various dense molded products.

緻密成形体の寸法はいずれも100xlOOx25(1
m)である。
The dimensions of the dense molded bodies are 100xlOOx25 (1
m).

■ 上記原材料粉末に粘結剤として少量のP、V、A溶
液を加えよく混練して後、30 kg f / cnf
の圧力による加圧成形を行い緻密成形体を得た。
■ Add a small amount of P, V, A solution as a binder to the above raw material powder and mix well, then 30 kg f / cnf
A dense molded body was obtained by pressure molding using a pressure of .

■ 上記原材料粉末に粘結剤として3%のモンモリロナ
イト系粘結剤を、15%の水と共に添加してよく混練し
て後、30kgf/cn!の圧力による加圧成形を行い
緻密成形体を得た。その曲げ強さは10kgf/cfl
lであった。
■ Add 3% of montmorillonite type binder as a binder to the above raw material powder together with 15% of water and mix well. A dense molded body was obtained by pressure molding using a pressure of . Its bending strength is 10kgf/cfl
It was l.

■ 上記原材料粉末に粘結剤として3%のアルミナセメ
ント系粘結剤を、15%の水と共に添加してよく混練し
て後、30kgf/ciの圧力による加圧成形を行い緻
密成形体を得た。その曲げ強さは11 kg f / 
cnfであった。
■ Add 3% alumina cement binder as a binder to the above raw material powder together with 15% water, mix well, and then press-form at a pressure of 30 kgf/ci to obtain a dense compact. Ta. Its bending strength is 11 kg f/
It was cnf.

■ 上記原材料粉末に粘結剤として3%のモンモリロナ
イト系粘結剤を、15%の水と共に添加してよく混練し
て後、6082の振動を与えて振動成形を行い、緻密成
形体を得た。その曲げ強さは11kgf/catであっ
た。
■ 3% montmorillonite binder as a binder was added to the above raw material powder along with 15% water, and after kneading well, vibration molding was performed by applying 6082 vibrations to obtain a dense compact. . Its bending strength was 11 kgf/cat.

上記の緻密成形体の熱処理はいずれも、150 ℃/h
 の昇温温度で750 ”Cに昇温し、同温度で30分
間保持し、次いで900 ’Cで3時間保持して行った
ところ、ウオラストナイト結晶が析出した。
The heat treatment of the dense molded bodies mentioned above was performed at 150 °C/h.
When the temperature was raised to 750''C, held at the same temperature for 30 minutes, and then held at 900'C for 3 hours, wollastonite crystals were precipitated.

製品の曲げ強さはいずれも630kgf/calであっ
た。
The bending strength of all products was 630 kgf/cal.

第4図は上記実施例の熱処理曲線である。FIG. 4 is a heat treatment curve for the above example.

く粘結剤を用いない場合・・・既述(i)〜(iv)>
(i) 1)原材料化学組成: (重量%表示)SiO2/V!
03 CaOMnOMgOFeONatOK20有色A
  55.2 7.7 29.8 2.0 0.8 3
.7 − −無色B  72.1 1.8 8.8 −
 4.5 − 11.51.02)原材料粒度: A  20mesh 〜50mesh : 30〜40
χ200mesh以下:50〜60X B 200mesh以下:98%以上 3)原材料比率:  A:B −tit4)成形寸法:
  300X300 X25 (龍)5)原材料加熱温
度=570℃ 6) 金型予熱温度:400〜500℃7) プレス圧
カニ15kg/c+J 8)雰囲気:常温大気中 9)金型塗型:黒鉛系塗型0.2mm  厚さ本条件に
プレス成形した後、室温まで徐冷し、見掛密度、抗折強
さを測定した。
If no binder is used...already mentioned (i) to (iv)>
(i) 1) Raw material chemical composition: (weight% display) SiO2/V!
03 CaOMnOMgOFeONatOK20 Colored A
55.2 7.7 29.8 2.0 0.8 3
.. 7 - -Colorless B 72.1 1.8 8.8 -
4.5 - 11.51.02) Raw material particle size: A 20mesh ~ 50mesh: 30 ~ 40
χ200mesh or less: 50-60X B 200mesh or less: 98% or more 3) Raw material ratio: A:B -tit4) Molding dimensions:
300X300 0.2 mm thickness After press molding under these conditions, it was slowly cooled to room temperature, and the apparent density and bending strength were measured.

r見掛密度: 1.68 g/ am’f抗折強抗折1
3.8  kg/ad この強度は、熱処理まで成形形状を保つに充分(10k
g/co1以上の抗折強さでOK)である。
rApparent density: 1.68 g/am'f transverse bending strength 1
3.8 kg/ad This strength is sufficient to maintain the molded shape until heat treatment (10 kg/ad)
It is OK if the bending strength is 1 g/co1 or more.

本成形品を900℃X 4Hrで熱処理すると、ウオラ
ストナイトを主体とする結晶が析出し、材質特性値とし
て、 を見掛密度: 2.34 g/ ctm2r抗折強さ:
525kg/c11! r吸水率 70.28  % が得られた。
When this molded product is heat-treated at 900°C for 4 hours, crystals mainly composed of wollastonite precipitate, and the material properties are as follows: Apparent density: 2.34 g/ctm2r Breaking strength:
525kg/c11! A water absorption rate of 70.28% was obtained.

この値は、建材品として満足される値である。This value is a value that is satisfied as a building material.

(ii) 1)原材料化学組成: (重量%表示)Sing Al
tos CaOMnOMgOFeONazOKtO有色
A  53.0 8.7 31.2 3.0 0.5 
2.7 − −無色B  70’、8 1.6 9.1
 − 4.3 − 10.81.22)原材料粒度: A; 20mesh 〜50meshが30〜40χ2
00mesh以下が50〜60χ B;200mesh以下=98%以上 3)原材料比率:  Al −1:1 4)成形寸法: 300X300 X25 (lj)7
) プレス圧カニ50kg/ad 8)雰囲気:常温大気中 9) 金型塗型:黒鉛系塗型0.2m厚さ10)金型に
原材料投入後加熱温度:580t’本条件でプレス成形
した後、室温まで徐冷し、見掛密度と抗折強さを測定し
、次の値を得た。
(ii) 1) Raw material chemical composition: (weight% display) Sing Al
tos CaOMnOMgOFeONazOKtO Colored A 53.0 8.7 31.2 3.0 0.5
2.7 - -Colorless B 70', 8 1.6 9.1
- 4.3 - 10.81.22) Raw material particle size: A; 20mesh to 50mesh is 30 to 40χ2
00mesh or less is 50-60χ B; 200mesh or less = 98% or more 3) Raw material ratio: Al -1:1 4) Molding dimensions: 300X300X25 (lj)7
) Press pressure crab 50kg/ad 8) Atmosphere: normal temperature air 9) Mold coating: Graphite coating 0.2m thickness 10) Heating temperature after putting raw materials into the mold: 580t' After press forming under these conditions The sample was slowly cooled to room temperature, and its apparent density and bending strength were measured, and the following values were obtained.

r見掛密度: 1.71 g/cm’ を抗折強さ=53.0  kg/cj この強度は、熱処理まで成形形状を保持するに充分(1
0kg/ad以上の抗折強さがあればOK)である。
r apparent density: 1.71 g/cm' and bending strength = 53.0 kg/cj This strength is sufficient to maintain the molded shape until heat treatment (1
It is OK if the bending strength is 0 kg/ad or more.

本成形品を900℃X 4Hrで熱処理すると、ウオラ
ストナイトを主体とする結晶が析出し、材質特性値とし
て、 を見掛密度: 2.33 g/c+a”r抗折強さ? 
519 kg / c+dt吸水率 : 0.32% が得られた。この値は、建材品として満足される値であ
る。
When this molded product is heat-treated at 900°C for 4 hours, crystals mainly composed of wollastonite precipitate, and the material property values are: Apparent density: 2.33 g/c+a"r Breaking strength?
A water absorption rate of 519 kg/c+dt: 0.32% was obtained. This value is a value that is satisfied as a building material.

(iii) 1)原材料化学組成(ffi量%量水表示iOl A7
gOI CaOMnOMgOFeONatOKo。
(iii) 1) Raw material chemical composition (ffi amount % amount water display iOl A7
gOI CaOMnOMgOFeONatOKo.

有色A  49.810.8 33.1 1.2 0.
8 3.9 − −無色B  71.2 2.3 9.
1 − 3.8 − 9.92.22)原材料粒度: A; 20o+esh 〜50meshが30〜40χ
200mesh以下が50〜60χ B; 200n+esh以下=98%以上3)原材料比
率: A:B = 1:14)成形寸法:  300X
300 X25 (l1)7) プレス圧カニ30kg
/cd 8)雰囲気:常温大気中 9)金型塗型:黒鉛系塗型0.2酊厚さ10)金型に原
材料投入後加熱表面温度:650℃11)原材料表面加
熱方式:電熱輻射 本条件でプレス成形した後、室温まで徐冷し、見掛密度
と抗折強さを測定し、次の値を得た。
Colored A 49.810.8 33.1 1.2 0.
8 3.9 - -Colorless B 71.2 2.3 9.
1-3.8-9.92.22) Raw material particle size: A; 20o+esh ~50mesh is 30~40χ
200mesh or less is 50-60χ B; 200n+esh or less = 98% or more 3) Raw material ratio: A:B = 1:14) Molding size: 300X
300 X25 (l1)7) Press pressure crab 30kg
/cd 8) Atmosphere: Normal temperature air 9) Mold coating: Graphite coating 0.2mm thickness 10) Heating surface temperature after feeding raw materials into the mold: 650℃ 11) Raw material surface heating method: Electric heat radiation book After press-molding under the following conditions, it was slowly cooled to room temperature, and the apparent density and bending strength were measured, and the following values were obtained.

(上表面近傍) を見掛密度: 1.81 g/ctm3を抗折強さ: 
62.5  kg/ cdこの強度は、熱処理まで成形
形状を保持するに充分(10に+r/cd以上の抗折強
さがあればOK)である。
(Near the top surface) Apparent density: 1.81 g/ctm3 Breaking strength:
62.5 kg/cd This strength is sufficient to maintain the molded shape until heat treatment (it is OK if the bending strength is +r/cd or more in 10).

本成形品を900℃X 4Hrで熱処理すると、ウオラ
ストナイトを主体とする結晶が析出し、材質特性値とし
て、 を見掛密度: 2.32 g/crm3を抗折強さ: 
530 kg/ci t吸水率 :0.18% が得られた。この値は、建材品として満足される値であ
る。
When this molded product is heat-treated at 900°C for 4 hours, crystals mainly composed of wollastonite precipitate, and the material properties are as follows: Apparent density: 2.32 g/crm3 Breaking strength:
A water absorption rate of 530 kg/cit and 0.18% was obtained. This value is a value that is satisfied as a building material.

(iv ) 1)原材料化学組成(重量%表示) Sing Ajz03 CaOMnOMgOFeONa
zOKzO有色A  52.8 8.2 30.3 2
.5 1.2 2.9 − −無色B  71.8 1
.8 9.2 − 4.0 − 11.80.92)原
材料粒度: A; 20mesh〜50+weshが30〜40χ2
00+++esh以下が50〜60χB; 200me
sh以下が98%以上3)原材料比率: A:B = 
1:14)成形寸法:  300X300 X25 (
酎)5)原材料加熱温度:40  ℃ 6)金型予熱温度 :650℃ (ただし、上型は40℃) 7) プレス圧カニ30kg/cd 8)雰囲気:常温大気中 9)金型塗型:黒鉛系塗型0.2酊厚さ10)原材料投
入後プレス成形開始までの経過時間:25sec 本条件でプレス成形した後、室温まで徐冷し、見掛密度
と抗折強さを測定し、次の値を得た。
(iv) 1) Raw material chemical composition (weight% display) Sing Ajz03 CaOMnOMgOFeONa
zOKzO Colored A 52.8 8.2 30.3 2
.. 5 1.2 2.9 - -Colorless B 71.8 1
.. 8 9.2 - 4.0 - 11.80.92) Raw material particle size: A; 20mesh - 50+wesh is 30 - 40χ2
00+++esh or less is 50~60χB; 200me
98% or more below sh 3) Raw material ratio: A:B =
1:14) Molding dimensions: 300X300X25 (
5) Raw material heating temperature: 40 ℃ 6) Mold preheating temperature: 650 ℃ (However, the upper mold is 40 ℃) 7) Press pressure crab 30 kg/cd 8) Atmosphere: normal temperature air 9) Mold coating: Graphite coating mold 0.2 thickness 10) Elapsed time from input of raw materials to start of press molding: 25 seconds After press molding under these conditions, slowly cool to room temperature, measure apparent density and bending strength, I got the following values.

(下面近傍) r見掛密度: 1.62 g/口3 r抗折強す: 14.5  kg/ triこの強度は
、熱処理まで成形形状を保持するに充分(10kg/c
rA以上の抗折強さがあればOK)である。
(Near the bottom surface) r Apparent density: 1.62 g/tri 3 R bending strength: 14.5 kg/tri This strength is sufficient to maintain the molded shape until heat treatment (10 kg/c
It is OK if it has a bending strength of rA or higher).

本成形品を900℃X 4Hrで熱処理すると、ウオラ
ストナイトを主体とする結晶が析出し、材質特性値とし
て、 を見掛密度: 2.36 g/cps″′を抗折強さ:
605kg/aJ t吸水率 :O,IS% が得られた。この値は、建材品として満足される値であ
る。
When this molded product is heat-treated at 900°C for 4 hours, crystals mainly composed of wollastonite precipitate, and the material properties are as follows: Apparent density: 2.36 g/cps"' Breaking strength:
A water absorption rate of 605 kg/aJt: O, IS% was obtained. This value is a value that is satisfied as a building material.

本発明に係る結晶化ガラス建材の製法の具体的実施例は
以上の通りであるが、特に本発明は、その製法に当り原
材料の粒度を調整することにより、斑点模様を規格化し
たものであり、そのためには、既述の旧N A、 N、
  SUM、AVG、  DIA、AVG、 A (7
)5項目を管理し、略同−模様の表出した結晶化ガラス
建材を提供を可能にした。
Specific examples of the method for manufacturing crystallized glass building materials according to the present invention are as described above, but in particular, the present invention standardizes the spotted pattern by adjusting the particle size of the raw materials in the manufacturing method. , in order to do so, the previously mentioned old NA, N,
SUM, AVG, DIA, AVG, A (7
)5 items were managed, making it possible to provide crystallized glass building materials with approximately the same pattern.

次の第2表は、前記具体的実施例中、粘結剤を使用した
製法から得られた製品!’&L1〜磁4についての斑点
模様の状態を示したもので、第5図〜第8図は模様状態
を示す図である(50倍)。
The following Table 2 shows the products obtained from the manufacturing method using a binder in the above specific examples! 5 to 8 are diagrams showing the pattern states (50 times magnification).

第2表 (発明の効果) 本発明に係る色模様付結晶化ガラス建材は、強度が高く
、製品内部に気泡を含まず、極めて変化に冨む斑点模様
を呈するものであり、この際本発明では、該斑点模様を
4龍2において、0.00045龍2以下の斑点を除外
して、斑点の個数を2〜300個、斑点の平均面積を0
.0015〜2.0(h■2、斑点の平均面積を円形に
換算した時の直径を0.008〜1.6鰭、斑点の面積
率が5〜50%と規定したものであり、この規定により
、規格化された略同−模様の建材を大量に供給すること
が出来、例えば大理石の如く模様合せのための不経済さ
もなく、優れた建築用外装材、内装材を提供することが
可能となった。
Table 2 (Effects of the Invention) The colored patterned crystallized glass building material according to the present invention has high strength, does not contain air bubbles inside the product, and exhibits a highly variable spotted pattern. Now, set the spot pattern to 4 dragons 2, exclude spots of 0.00045 dragon 2 or less, set the number of spots to 2 to 300, and set the average area of spots to 0.
.. 0015 to 2.0 (h 2, the diameter when the average area of spots is converted into a circle is defined as 0.008 to 1.6 fins, and the area ratio of spots is 5 to 50%, and this regulation This makes it possible to supply large quantities of standardized building materials with approximately the same pattern, making it possible to provide superior architectural exterior and interior materials without the uneconomical costs of matching patterns, such as with marble. It became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る結晶化ガラス建材の製造時におけ
る緻密成形体の熱処理曲線、第2図は同緻密成形体加熱
における結晶成長速度一温度曲線、第3図は本発明建材
の斑点模様の規定説明図、第4図は粘結剤を用いた製法
における実施例熱処理曲線、第5図、第6図、第7図及
び第8図は夫々粘結剤を用いた製法によって得られた本
発明建材の模様状態を示したものである。 特 許 出 願人  久保田鉄工株式会社第 7 図 第2図 →   囁友 第3図 第4図 一→      酵 第5図 第6図 第7図 x5) 第8図 XづU
Figure 1 is a heat treatment curve of a dense molded body during the production of the crystallized glass building material according to the present invention, Figure 2 is a crystal growth rate vs. temperature curve during heating of the same dense molded body, and Figure 3 is a spotted pattern of the building material of the present invention. Figure 4 is an example heat treatment curve for the manufacturing method using a binder, and Figures 5, 6, 7, and 8 are respectively obtained by the manufacturing method using a binder. This figure shows the pattern of the building material of the present invention. Patent Applicant: Kubota Iron Works Co., Ltd. Figure 7 Figure 2 → Saiyu Figure 3 Figure 4 Figure 1 → Fermentation Figure 5 Figure 6 Figure 7 x5) Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)有色と無色のガラス化された原材料粉末を混合成
形した後、結晶化熱処理されることにより斑点模様が表
出された結晶化ガラスであって、前記斑点模様は4mm
^2の視野において、かつ0.00045mm^2以下
の斑点を除外して、斑点の個数:2〜300個 斑点の平均面積:0.0015〜2.00mm^2斑点
の平均面積を円形に換算した時の直径 :0.08〜1.6mm 斑点の面積率:5〜50% であることを特徴とする色模様付結晶化ガラス建材。
(1) Crystallized glass in which colored and colorless vitrified raw material powders are mixed and molded and then subjected to crystallization heat treatment to reveal a spotted pattern, and the spotted pattern is 4 mm in diameter.
In the visual field of ^2 and excluding spots of 0.00045 mm^2 or less, number of spots: 2 to 300 Average area of spots: 0.0015 to 2.00 mm^2 Convert the average area of the spots into a circle A colored patterned crystallized glass building material characterized by having a diameter when flattened: 0.08 to 1.6 mm and a spot area ratio of 5 to 50%.
(2)有色原材料粉末は、重量百分率でSiO_2:4
0〜60%、Al_2O_3:5〜20%、CaO:2
5〜45%で、SiO_2+Al_2O_3、+CaO
>85%でかつ、着色剤が15%以下を含有し、無色原
材料粉末はSiO_2:55〜75%、Al_2O_3
:0〜15%、CaO:5〜15%、Na_2O+K_
2O:10〜20%でかつ、SiO_2+Al_2O_
3+CaO+Na_2O+K_2O≧90%であり、 前記有色原材料粉末の軟化点が無色原材料粉末の軟化点
よりも少なくとも100℃以上は高くなるように設定し
た組成よりなることを特徴とする特許請求の範囲第1項
記載の色模様付結晶化ガラス建材。
(2) Colored raw material powder is SiO_2:4 in weight percentage
0-60%, Al_2O_3:5-20%, CaO:2
5-45%, SiO_2+Al_2O_3, +CaO
>85% and contains 15% or less of colorant, colorless raw material powder is SiO_2: 55-75%, Al_2O_3
:0~15%, CaO:5~15%, Na_2O+K_
2O: 10-20% and SiO_2+Al_2O_
3+CaO+Na_2O+K_2O≧90%, and the composition is set such that the softening point of the colored raw material powder is at least 100°C higher than the softening point of the colorless raw material powder, according to claim 1. A crystallized glass building material with colored patterns.
(3)結晶化ガラスは主としてウォラストナイト結晶が
析出したものであることを特徴とする特許請求の範囲第
1項、第2項記載の色模様付結晶化ガラス建材。
(3) The colored patterned crystallized glass building material according to claims 1 and 2, wherein the crystallized glass is mainly precipitated wollastonite crystals.
JP61291202A 1986-12-06 1986-12-06 Crystallized glass building material having colored pattern Pending JPS63144143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291202A JPS63144143A (en) 1986-12-06 1986-12-06 Crystallized glass building material having colored pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291202A JPS63144143A (en) 1986-12-06 1986-12-06 Crystallized glass building material having colored pattern

Publications (1)

Publication Number Publication Date
JPS63144143A true JPS63144143A (en) 1988-06-16

Family

ID=17765779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291202A Pending JPS63144143A (en) 1986-12-06 1986-12-06 Crystallized glass building material having colored pattern

Country Status (1)

Country Link
JP (1) JPS63144143A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375241A (en) * 1989-08-11 1991-03-29 Tokyo Metropolis Production of crystallized glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375241A (en) * 1989-08-11 1991-03-29 Tokyo Metropolis Production of crystallized glass
JPH0641380B2 (en) * 1989-08-11 1994-06-01 東京都 Method for producing β-wollastonite crystallized glass

Similar Documents

Publication Publication Date Title
US5649987A (en) Process for producing tabular building and decorative materials similar to natural stone
US6130178A (en) Strong miserite glass-ceramics
US20160264446A1 (en) Foam glassy materials and processes for production
JP5335430B2 (en) Pellets for Se encapsulation
JPH0449500B2 (en)
JPS63144143A (en) Crystallized glass building material having colored pattern
JPH0444622B2 (en)
JPS6224365B2 (en)
JPH0436098B2 (en)
JP2527402B2 (en) Crystallized glass and manufacturing method thereof
JPS62162631A (en) Production of crystallized glass having colored pattern
JPH0623059B2 (en) Method for manufacturing glass ceramic products
KR950006206B1 (en) Process for the preparation of multiple foamed glass
JPS6317238A (en) Production of crystallized glass
JPS6238309B2 (en)
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPS6374936A (en) Crystallized glass and production thereof
JPH0565452B2 (en)
JPS6340736A (en) Production of crystallized glass with color pattern
JPS6340737A (en) Production of high-strength crystallized glass
JPS6319457B2 (en)
JPH02120254A (en) Crystallized glass material and production thereof
JPS62143842A (en) Crystallized glass and production thereof
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
JPS6317239A (en) Production of crystallized glass with color pattern