JPS6238309B2 - - Google Patents

Info

Publication number
JPS6238309B2
JPS6238309B2 JP15563082A JP15563082A JPS6238309B2 JP S6238309 B2 JPS6238309 B2 JP S6238309B2 JP 15563082 A JP15563082 A JP 15563082A JP 15563082 A JP15563082 A JP 15563082A JP S6238309 B2 JPS6238309 B2 JP S6238309B2
Authority
JP
Japan
Prior art keywords
glass
temperature
crystals
molded product
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15563082A
Other languages
Japanese (ja)
Other versions
JPS5945941A (en
Inventor
Toyonobu Mizutani
Masao Yoshizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15563082A priority Critical patent/JPS5945941A/en
Publication of JPS5945941A publication Critical patent/JPS5945941A/en
Publication of JPS6238309B2 publication Critical patent/JPS6238309B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は結晶化ガラス成型品及びその製造法に
関するのである。 ガラス成型品の内部に微細な結晶を生成させた
結晶化ガラス成型品は、光線の入射および反射作
用により、天然の大理石や花崗岩等と対比できる
美麗な外観をもつた造型品として有用である。 結晶化ガラス成型品を製造するに当つて重要な
問題は、所望の外観を呈する結晶が生成できる原
料配合の組成、成型を可能とする溶融体の適正な
粘度及び結晶生成のための結晶化熱処理の温度管
理である。 現在結晶化ガラス成型品の製造方法には溶融法
と結焼法の2法がある。焼結法は所定の結晶を生
成しうる組成のガラス粉末を軟化点より高く溶融
点より低い中間温度域で加熱し、ガラス粉末を融
着状の焼結により一体化し、次いで軟化点以上の
所定の温度と時間による操作で成型品内部に結晶
を析出させる結晶化熱処理を行うことにより製品
をうる方法であり、また溶融法は所定の結晶を生
成しうるガラス組成配合物を完全に溶融した後成
型し、次いで再加熱することにより、結晶化熱処
理を施して完成される方法である。 溶融法はさらに加工成型法と注型法に分けられ
る。加工成型法は連続的に製品を量産するのに適
するもので、板ガラスのようなロール加工による
もの、容器のような押型加工によるものがある。
そして結晶化ガラス成型品をこの加工成型法で製
造することは、品質の安定性および量産による経
済的効果を期待することができるので、とくに大
量に使用される建材用の板状体などの製造が、上
記した通常の板ガラスの製造条件で可能になるな
らば極めて望ましいことである。しかしながら通
常の板ガラスの製造法により結晶化ガラス成型品
を製造するためには粘度―温度に関する必須条件
がある。たとえば基準の条件として、原料配合物
が溶融され(1300〜1500℃)、炉出し後、流下移
動に101.5〜102.0ポアズ(1200℃〜1300℃)、さら
にフイダー位置では漸次連続的に粘度が低下し、
成型機による成型開始時には103〜105ポアズ
(950℃〜1200℃)であり、成型終了時107ポアズ
(750℃付近)であるような粘度―温度条件であ
り、時間的には製品の量、寸法により異るが、炉
出しより成型終了時までは25〜50分ぐらいであ
る。次いで徐冷炉に装入されるが、徐冷炉は若干
の温度―時間の可変は可能であり、上限温度は成
型品の変形を起さない粘度、つまり軟化温度
(700℃〜800℃)であり、一定温度、一定時間の
保持等の操作は可能である。 結晶化ガラス成型品と、通常のガラス成型品と
の本質的な相異は前者が厳密に管理した温度と時
間の条件の下で結晶化処理を行うことである。ま
た溶融体は、結晶が析出を開始する一定温度で徐
冷される場合には、粘度が急激に上昇し(107
アズ以上)半固体化するので、通常のガラス製造
法を結晶化ガラス成型品に適用する場合に成型工
程の終了時までにこの現象が起きないような組成
であることが必要である。したがつて過冷却によ
つて結晶が析出しないような温度条件と通常のガ
ラス製造法の温度条件を合致させて成型品を得る
ことが必要となり、そのため成型品の結晶化処理
は再加熱により行はざるを得なくなる。この場合
の従来法の共通した操作は、成型品を低い温度よ
り加熱して、一定温度に於て行はれる結晶核発生
化段階または極微晶析出段階ともいうべき第一次
結晶化熱処理工程、さらに昇温して一定温度に於
て行はれる結晶成長段階ともいうべき第2次結晶
化熱処理工程の付加により製造が行はれている。 そして結晶化熱処理工程において、第1次結晶
化熱処理および第2次結晶化熱処理の温度条件
が、成型品の変形する軟化温度より上の温度で行
われたりまた長時間を必要とする場合には、通常
のガラス製造法の成型後の工程に、特別の加熱炉
工程を付加しなければならない。 従来の加工成型法による結晶化ガラス成型品に
生成させる結晶の種類はβ―ワラストナイト、β
―スポジユウメン、β―ユークリプタイト等であ
るが、この従来方法での問題点は、前記したよう
に成型後における再加熱による結晶化熱処理工程
が必須のものとなつていることである。この付加
工程は結晶の種類によつて若干異るが、概ね700
℃以上より温度制御をしながら昇温し、最終1000
〜1200℃の温度範囲で結晶化熱処理を行つてい
る。またこの温度範囲は成型品の軟化変形温度
(800〜850℃)より上の温度領域であるので、変
形を防ぐために成型品を特定の焼台に載せて結晶
化熱処理を行はざるをえない。 溶融法の他の一つの方法である注型法は、結晶
生成の状態における溶融温度と結晶析出温度との
差が少く、また冷却速度が速くても結晶生成が容
易に開始されるような組成の結晶化ガラス成型品
の製造法である。この例として、フツ素マイカ系
に属する結晶でフロゴパイトまたは四ケイ素マイ
カの結晶を生成するマイカガラスセラミツクスの
製造法がある。マイカガラスセラミツクスをを製
造するための組成は、それぞれフロゴパイトまた
は四ケイ素マイカの結晶が成型品重量中少くとも
90%以上生成する組成のものである。またフロゴ
パイト〔KMg3(AlSi3O10)F2、溶融点(m.p)
1375℃、結晶析出温度(c.p)1375℃〕または四
ケイ素マイカ〔KMg2.5(Si4O10)F2 m.p1176
℃、c.p1173℃〕のみの結晶化状態を説明する
と、これ等の溶融体(1300〜1450℃)は毎分60〜
120℃の冷却速度でも結晶析出が始り、これより
遅い冷却速度では、結晶生成が著しく促進されて
粘度が急激に上昇し、それぞれの結晶析出温度か
ら100℃の間で半固体状の粘度域(107.0ポアズ)
になつてしまうので、本発明が目的とするような
通常の加工法によるガラス製品の粘度―温度条件
による製造方法の適用は不可能である。すなわち
粘度が高すぎて成型時の破砕や亀裂の発生、加工
機器の耐熱性不足等の問題がある。したつて現行
のマイカガラスセラミツクスは、溶融体を過冷却
条件で型に注型して成型品を得たのち、再加熱に
よる結晶化熱処理を750〜850℃で1〜6時間保持
する結晶核生成段階と、1000〜1150℃で1〜6時
間保持する結晶成長化段階の二段階に亘る操作を
不可欠の工程としている。 本発明は従来のβ―ワラストナイト、β―スポ
ジユウメン系の結晶化ガラス成型品あるいはマイ
カ―ガラス―セラミツクスにおける高温高粘度状
態での注型成型や長時間、高温度による結晶化処
理をとくに行うことなく、通常のガラス製品の製
造工程の範囲内で成型および結晶化を行うことを
可能とし、さらに又成型品の模様を表顕する上で
必要に応じてさらに結晶化量を増やしたり、結晶
径を大きくするため再加熱して結晶化処理を行う
場合でも、成型品が軟化変形しない温度以下で行
うこと等を可能としたものである。 本発明はガラスもしくはガラス組成分(以下こ
れらをガラス性物質という)に、結晶析出が溶融
法のしくみによる特定のフツ素マイカまたはその
誘導体もしくはそれらの原料組成分とを配合する
ことにより、通常のガラス製品の成型加工法およ
び温度処理条件で結晶化ガラス成型品の製造を可
能にしたものである。 フツ素マイカは化学式X0.5〜1.02.0〜3.0
(Z4O10)F2で示される。この式でXは配位数12
の陽イオンで、層状結晶であるマイカ結晶の層間
イオンを、Zは配位数4の陽イオンで通常SiO4
四面体のSiを基準としており、Yは配位数6の陽
イオンで八面体層を構成している。フツ素マイカ
の結晶構造はSiO4四面体が六角網目の板状で上
下に2枚あり、この間に八面体配位をとるイオン
が結合しており、この構造をタブレツトと呼び、
このタブレツトが層をなして積み重なつていて、
タブレツトとタブレツトの間にはアルカリまたは
アルカリ土類金属イオンが結合しており、層間イ
オンと呼ばれる。そしてこのフツ素マイカ結晶が
生成する基本形態は、結晶の組成により配合原料
を溶融し、その溶融体を一定の温度条件で処理を
することにより結晶を析出させる溶融法と、配合
原料を混合粉末の状態または成型物の状態で加熱
すると、吸着水の脱水、分解などの反応が相次い
で起り、溶融温度に達しないうちでも、固体粒子
の熱振動により、粒子表面の結晶格子点の原子が
他の粒子表面の原子の作用半径内に入り、結合が
行はれて結晶が生成する固相反応法とがあり、溶
融法が適用できないものでもこの固相反応で生成
する結晶がある。そして溶融法または固相反応法
での結晶生成の可否は、多くの組成を実験により
確認していくものである。 本発明で結晶化ガラス成型品中生成させるフツ
素マイカ結晶は、溶融法で結晶が生成するしくみ
に属するものでテニオライト(Taniolite)結晶
を主要な成分とする。テニオライトは前記フツ素
マイカの一般式X0.5〜1.02.0〜3.0(Z4O10)F2
おいて、YがMg2Li(3―8面体型)であり、X
およびZの組成により次のように分類することが
できる。 (1) Xが1価陽イオンのK+であり、ZがSi4(四
ケイ素型)のもの、代表例: KMg2Li(Si4O10)F2、溶融点(m.p)1210
℃、結晶析出点(c.p)1185℃〕 (2) Xが2価陽イオンのBa2+、Sr2+、Pb2+また
はCd2+であり、ZがSiのもの、代表例: 〔Ba0.5Mg2Li(Si4O10)F2、m.p1070℃、c.
p1050℃〕 〔Sr0.5Mg2Li(Si4O10)F2、m.p1050,c.
p1050〕 〔Pb0.5Mg2Li(Si4O10)F2、m.p1120、c.
p1120〕 これら(1)、(2)のテニオライトの他の溶融法によ
り結晶が生成するものとして下記(3)のものがあ
る。 (3) YがMg2Liで、Xが2価の陽イオンのBa2+
Sr2+、Pb2+、またはcd2+であり、ZがAlSi3
たはBSi3であるテニオライトの誘導体、代表
例: 〔Ba0.5Mg2Li(AlSi3O10)F2、m.p1225℃、
c.p1225℃〕 〔Ba0.5Mg2Li(BSi3O10)F2、m.p968℃、c.
p968℃〕 上記(1)、(2)、(3)のテニオライト結晶及びテニオ
ライト誘導体結晶(以下これらをテニオライト系
結晶という)をガラスに析出させるには、原料と
してはテニオライト系結晶を用いてもよいまたそ
の原料組成分(以下これらをテニオライト系組成
物という)でもよい。 本発明は上記したテニオライト系組成物と、ガ
ラス性物質とを組合せた組成により目的を達成す
るものである。 本発明に用いる結晶化ガラス性物質は、ガラス
を形成しうる原料バツジでも、またこの原料バツ
ジを予めガラス化してから粉砕したフリツト状の
ガラスでもよい。ガラス成分としては例えば、
SiO2―Al2O3―B2O3―CaO―K2O―Na2Oまたは
これにP2O5、BaO、MgO、ZnO、PbO、TiO2
ZrO2等を適宜加えたもので、通常のガラス製品
の分類でいえば、板ガラス、びんガラス、押型ガ
ラス、照明用ガラス、封着用ガラス、クリスタル
ガラス等のガラス材質を使用することができる。
そしてガラス材質の組成選定に当つてはテニオラ
イト結晶の生成を阻害しないよう、また加工法に
よる成型が支障なく終了しうる粘度―温度条件を
保持するよう配慮しなければならない。 すなわちテニオライトの組成式X0.5〜1.0Mg2Li
(Si4O10)F2において、たとえばK―テニオライ
ト(KMg2Li(Si4O10)F2結晶の生成を目的とす
る場合、化学式中Xの位置に競合して配位しうる
他のイオンBa2+、Pb2+、Zn2+等については一定
値以内好ましくは全組成物中これらのイオンによ
る結晶生成率が約20%になるように制限する必要
があり、またBa―テニオライト〔Ba0.5Mg2Li
(Si4O10)F2〕の生成を目的とするときも上記した
ところと同様である。さらにテニオライト誘導体
の場合Zの位置に配位しうるAl3+およびB3+につ
いても全組成物中にこれらのイオンによる結晶生
成率が約20%以内になるようにこれまた制限する
必要がある。 テニオライト系組成物とガラス性物質との配合
比率は全配合物を100重量部とするときテニオラ
イト系組成物は30〜70重量部が好ましい。 本発明によるテニオライト系組成物とガラス性
物質との組合せにおいては、混合溶融体が炉出さ
れ成型が終了するまでの経過時間30〜50分におい
て温度―粘度条件は、炉出、流動移動(1200〜
1300℃、粘度101.5〜102.0ポアズ)からフイダー
等により成型機装入時まで連続的に粘度は低下
し、成型開始時(950〜1100℃、103.0〜105.0ポア
ズ)、成型終了時(950〜850℃、106.5〜107.0ポア
ズ)に至るまで通常の板ガラスの範囲に合致する
もので、この間結晶生成等による粘度上昇の現象
は発生せず、損傷のない成型品を造ることができ
る。また成型品体内部に結晶を生成させる結晶化
熱処理工程は成型終了後700〜850℃で40〜60分保
持をすることにより達成でき、成型終了後連続し
て徐冷工程の温度操作範囲で行えるので、略通常
のガラス製品の製造工程の枠内で結晶化ガラス成
型品を完成することができる。 またテニオライト系組成物の中、XがBa2+
ある系列のもの〔たとえばBa0.5Mg2Li(Si4O10
F2、BaMg2Li(AlSi3O10)F2、BaMg2Li
(BSi3O10)F2〕は溶融体の粘度を低下させる作用
があるので、溶融体から成型終了時まで急激な粘
度変化を起すことがないばかりでなく成型終了時
までの所要時間を延ばす効果がある。 本発明においてガラス性物質に混合するフツ素
マイカはテニオライト系組成物を必須原料とする
が、必要に応じ他のフツ素マイカを添加すること
ができる。たとえば前記した粘度低下作用のある
Ba―テニオライトにK―フロゴパイトやK―四
ケイ素マイカのような結晶性のあるフツ素マイカ
を共存させて、これらのフツ素マイカの高温領域
での結晶性を抑制するとか、ガラス性物質との混
合融体の粘度の上昇を抑制したり、また結晶化熱
処理をした場合成型品の結晶生成量を増大させる
ことができる。さらにまたテニオライト系組成物
と他のフツ素マイカとの組合せにおいて、前記し
た溶融法によるフツ素マイカ結晶の導入だけでな
く、一定量の固相反応のしくみにより生成するフ
ツ素マイカ組成を添加して結晶を共成させ、着色
された結晶化ガラス成型品を得ることもできる。 以下実施例により本発明の結晶化ガラス成型品
について具体的に説明する。 実施例 1 ガラス性物質の成分組成がSiO272%、
Na2O13.5%,CaO12.2%、MgO1.0%、Al2O3+
Fe2O31.3%のものを45重量部とBa―テニオライ
ト〔Ba0.5Mg2Li(Si4O10)F2〕の成分組成が
SiO254.5%,BaO17.4%、Li2O3.4%、MgO9.1
%、MgF215.6%のものを55重量部で配合した原
料バツジを1400℃で溶融し、板ガラスの製造工程
に準拠して結晶化ガラス成型品を製造した。炉出
しからフイーダーを経て成型機装入直前の1350℃
から900℃まで35分かかる冷却速度での溶融体の
粘度は1300℃−101.6ポアズ、1200℃−102.8ポア
ズ、1100℃−103.5ポアズ、1000℃−104.5ポア
ズ、900℃−105.2ポアズであつた。900℃〜800℃
間でロール成型により約20mm厚の板状体に成型し
た後、800℃で50分保つ温度条件で結晶化処理を
行い乳白色の結晶化ガラス成型品を得た。この成
型品の物理的性質は気孔率0、比重2.79、硬度
(シヨアー)85、抗折力920Kg/cm2であり、X線回
析、電顕写真およびその他の測定によれば、
Ba0.5Mg2Li(Si4O10)F2結晶を主体(95%以上)
とするマイカ結晶が成型品中に30〜40重量%生成
しており、結晶粒径は300〜700μmに分布してい
ることが観察された。 実施例 2 前記の成型品の配合でBa―テニオライト55重
量部の中16.5重量部をK―フロゴパイト〔KMg3
(AlSi3O10)F2〕組成のSiO241.8%、K2O10.9%、
Al2O311.8%、MgO18.7%、MgF216.8%からなる
もので置き換えて板状体を製造した。配合物を溶
融炉で1450℃で溶融し、次いで炉出した溶融体を
1200℃まで冷却する。1200℃の粘度は103.8ポア
ズであり、1100℃の粘度は104.2ポアズであつ
た。その一部を耐熱ステンレス板に流出し急冷し
て試料片を得た。この試料片を観察すると、10μ
m付近の微細な結晶が少量均質に分布しているこ
とが認められた。約1100℃の溶融体をフイーダー
に送り、次いでフイーダーを経てローラー成型機
に装入し、900〜800℃間で粘度106.0ポアズ台で
約20mm厚の板状体に成型して損傷ない成型体を得
た。次いで800℃で約1時間加熱して第一次結晶
化処理を行い、さらに1050℃で約1時間第二次結
晶化熱処理を行つて結晶化ガラス成型品を得た。
これを観察測定したところ成型品体中にK―フロ
ゴパイト系結晶が500μm〜2000μmに成長して
散在し、研磨した表面は美麗な大理石様外観を備
えている。 実施例 3 配 合 (1) 母材ガラスとして電球ガラスに見合う
SiO267.4%、Ai2O31.0%、B2O34.5%、CaO4.6
%、K2O12.0%、Na2O2.5%、ZnO4.0%、
BaO4%に調整された原料バツジを重量で60
部、 (2) テニオライト〔Ba Mg2Li(AlSi3O10)F2
成〕の結晶生成を目的とする配合SiO243.4%、
BaO18.5%、Li2O3.5%、MgF216.6%、
MgO9.6%、B2O38.4%に調整された原料バツ
ジを重量で35部、 (3) 共成させるフツ素マイカ〔KMg1.5Co1.5
(AlSi3O10)F2組成〕の結晶を生成するための
配合SiO236%、K2O9.5%、Co2O325%、
MgF219.3%、Al2O310.2%に調整された原料バ
ツジを重量で5部、 これらの原料バツジ(1)、(2)、(3)を均質に混合し
原料バツジを調整した。 製 造 原料バツジをSiC質坩堝に1Kg採取し、マツフ
ル式エレマ炉中で1400℃30分で溶融し、炉出して
溶融体を坩堝ごと大気中で1400℃より1100℃まで
30〜35℃/分の冷却速度で放冷し、次いで1100℃
より1000℃まで少くとも20分間ガス炎で坩堝外周
を加熱して温度降下を調節し、坩堝より溶融体を
取り出し、ステライト耐熱鋼製の実験用ミニロー
ラーにより850〜20℃で延展成型して巾10cm、長
さ約35cmの淡青色型体を得た。成型体が750℃に
なつた時、予め750℃に保持してある電気炉中に
装入し、750℃〜740℃で25分間保持し、通電を停
止して炉中で冷却した。成型体を炉出したのちそ
の上下面を常法の研磨方法により鏡面状に仕上げ
を行い製品結晶化ガラス成型品を得た。製品は淡
青色のゴマ状結晶が均質に群生した模様の美麗な
ものであつた。また製品の物理特性は比重2.81、
抗折強度720Kg/cm2、シヨアー硬度92、シヤルピ
ー衝撃強度2.6Kg―m/cm2、熱膨張係数(30〜500
℃)75×10-7であつた。 実施例 4 配 合 (1) ガラス組成(重量%)
The present invention relates to a crystallized glass molded product and a method for manufacturing the same. BACKGROUND ART A crystallized glass molded product in which fine crystals are formed inside the glass molded product is useful as a molded product with a beautiful appearance that can be compared with natural marble, granite, etc. due to the incident and reflection effects of light rays. The important issues in manufacturing crystallized glass molded products are the composition of the raw materials that can produce crystals with the desired appearance, the appropriate viscosity of the melt to enable molding, and the crystallization heat treatment for crystal formation. temperature control. Currently, there are two methods for manufacturing crystallized glass molded products: a melting method and a sintering method. In the sintering method, glass powder with a composition capable of forming a specified crystal is heated at an intermediate temperature range higher than the softening point and lower than the melting point, and the glass powder is unified by sintering in a fused form. This is a method of obtaining a product by performing a crystallization heat treatment in which crystals are precipitated inside the molded product by operating at a temperature and time of This method is completed by performing crystallization heat treatment by molding and then reheating. Melting methods can be further divided into processing and molding methods and casting methods. Processing and molding methods are suitable for continuous mass production of products, and include roll processing, such as sheet glass, and stamping, such as containers.
By manufacturing crystallized glass molded products using this processing and molding method, it is possible to expect quality stability and economical effects due to mass production. However, it would be extremely desirable if it were possible under the above-mentioned normal manufacturing conditions for plate glass. However, in order to produce a crystallized glass molded product using a normal plate glass production method, there are essential conditions regarding viscosity and temperature. For example, as a standard condition, the raw material mixture is melted (1300 to 1500℃), and after leaving the furnace, the flow rate is 10 1.5 to 10 2.0 poise (1200℃ to 1300℃), and then gradually continuous at the feeder position . viscosity decreases,
The viscosity-temperature conditions are such that it is 10 3 to 10 5 poise (950°C to 1200°C) at the start of molding by the molding machine, and 10 7 poise (around 750°C) at the end of molding, and the time is dependent on the product. Although it varies depending on the quantity and size, it takes about 25 to 50 minutes from the time it is taken out of the oven to the end of molding. Next, it is charged into a lehr, but the temperature and time of the lehr can be varied slightly, and the upper limit temperature is the viscosity that does not cause deformation of the molded product, that is, the softening temperature (700℃ to 800℃), and it is kept constant. It is possible to control the temperature, maintain the temperature for a certain period of time, etc. The essential difference between crystallized glass molded products and ordinary glass molded products is that the former undergoes crystallization treatment under strictly controlled conditions of temperature and time. In addition, when the melt is slowly cooled at a constant temperature at which crystals begin to precipitate, the viscosity increases rapidly (over 10 7 poise) and becomes semi-solid. When applied to a product, the composition must be such that this phenomenon does not occur by the end of the molding process. Therefore, it is necessary to obtain a molded product by matching the temperature conditions for normal glass manufacturing methods with the temperature conditions that prevent crystals from precipitating due to supercooling. Therefore, the crystallization treatment of the molded product is performed by reheating. I have no choice but to. In this case, the common operation of the conventional method is the primary crystallization heat treatment step, which can be called the crystal nucleation step or ultrafine crystal precipitation step, in which the molded product is heated from a low temperature and carried out at a constant temperature. The production is carried out by adding a second crystallization heat treatment step, which can be called a crystal growth step, which is further heated and carried out at a constant temperature. In the crystallization heat treatment process, if the temperature conditions of the first crystallization heat treatment and the second crystallization heat treatment are performed at a temperature higher than the softening temperature at which the molded product deforms, or if they require a long time, , a special heating furnace process must be added to the post-molding process of the normal glass manufacturing method. The types of crystals produced in crystallized glass molded products using conventional processing and molding methods are β-wollastonite and β-wollastonite.
- spodiumen, β-eucryptite, etc. However, the problem with this conventional method is that, as mentioned above, a crystallization heat treatment step by reheating after molding is essential. This addition process varies slightly depending on the type of crystal, but approximately 700
Increase the temperature from above ℃ while controlling the temperature to a final temperature of 1000℃.
Crystallization heat treatment is performed at a temperature range of ~1200℃. In addition, this temperature range is above the softening deformation temperature of the molded product (800 to 850℃), so in order to prevent deformation, the molded product must be placed on a specific baking table and subjected to crystallization heat treatment. . The casting method, which is another method of the melting method, uses a composition that has a small difference between the melting temperature and the crystal precipitation temperature in the state of crystal formation, and also allows crystal formation to start easily even if the cooling rate is fast. This is a method for manufacturing crystallized glass molded products. An example of this is a method for producing mica glass ceramics that produces crystals of phlogopite or tetrasilicon mica, which are crystals belonging to the fluorine mica family. The composition for producing mica glass ceramics is such that at least phlogopite or tetrasilicon mica crystals are present in the weight of the molded product.
It has a composition that produces 90% or more. Also, phlogopite [KMg 3 (AlSi 3 O 10 ) F 2 , melting point (mp)
1375℃, crystal precipitation temperature ( cp) 1375℃] or tetrasilicon mica [KMg 2.5 ( Si 4 O 10 ) F 2 m.p1176
℃, c.p1173℃], these melts (1300 to 1450℃) have a rate of 60 to 100℃ per minute.
Crystal precipitation begins even at a cooling rate of 120°C, and at slower cooling rates, crystal formation is significantly promoted and the viscosity rises rapidly, reaching a semi-solid viscosity range between the respective crystal precipitation temperatures and 100°C. (10 7.0 poise )
Therefore, it is impossible to apply the manufacturing method based on the viscosity-temperature conditions of glass products by ordinary processing methods as the object of the present invention. That is, the viscosity is too high, leading to problems such as fractures and cracks occurring during molding, and insufficient heat resistance of processing equipment. Current mica glass ceramics are made by pouring a molten material into a mold under supercooled conditions to obtain a molded product, followed by crystallization heat treatment by reheating and holding at 750 to 850°C for 1 to 6 hours to generate crystal nucleation. The two-stage operation is an essential process: a crystal growth stage and a crystal growth stage held at 1000 to 1150°C for 1 to 6 hours. The present invention particularly performs conventional β-wollastonite and β-spodiumene-based crystallized glass molded products or mica-glass-ceramics by casting in a high-temperature, high-viscosity state or by crystallization treatment at high temperatures for a long period of time. This makes it possible to perform molding and crystallization within the scope of normal glass product manufacturing processes without causing any problems, and it is also possible to further increase the amount of crystallization or add crystallization as necessary to express the pattern of the molded product. Even when the crystallization treatment is performed by reheating to increase the diameter, it is possible to perform the crystallization treatment at a temperature below which the molded product does not soften or deform. In the present invention, by blending glass or glass components (hereinafter referred to as glass substances) with specific fluorine mica or its derivatives or their raw material components, crystal precipitation is caused by a melting method. This makes it possible to manufacture crystallized glass molded products using the glass product molding method and temperature treatment conditions. Fluorine mica has the chemical formula: X 0.5 ~ 1.0 Y 2.0 ~ 3.0
(Z 4 O 10 )F 2 . In this formula, X has a coordination number of 12
Z is a cation with a coordination number of 4, which is usually SiO 4
It is based on tetrahedral Si, and Y is a cation with a coordination number of 6 and forms an octahedral layer. The crystal structure of fluorine mica is a hexagonal network of SiO 4 tetrahedra, with two plates on the top and bottom, between which ions with octahedral coordination are bonded, and this structure is called a tablet.
These tablets are stacked on top of each other,
Alkali or alkaline earth metal ions are bound between the tablets and are called interlayer ions. The basic forms in which this fluorine mica crystal is produced are two methods: melting the raw materials according to the crystal composition and precipitating the crystals by treating the melt under certain temperature conditions, and the other method using the mixed raw materials as a powder. When heated in the state of solid particles or in the state of a molded product, reactions such as dehydration and decomposition of adsorbed water occur one after another, and even before the melting temperature is reached, atoms at crystal lattice points on the surface of the particles are There is a solid phase reaction method in which crystals are formed by entering the radius of action of the atoms on the surface of the particle and breaking bonds, and there are crystals that can be formed by this solid phase reaction even if the melting method cannot be applied. Whether or not crystals can be formed using the melting method or the solid phase reaction method is determined by experimenting with various compositions. The fluorine mica crystals produced in the crystallized glass molded product according to the present invention belong to a mechanism in which crystals are produced by a melting method, and contain Taniolite crystals as a main component. Taeniolite has the general formula of the fluorine mica : X
According to the composition of Z and Z, it can be classified as follows. (1) X is a monovalent cation K + and Z is Si 4 (tetrasilicon type), typical example: KMg 2 Li (Si 4 O 10 ) F 2 , melting point (mp) 1210
℃, crystal precipitation point (cp) 1185℃] (2) X is a divalent cation Ba 2+ , Sr 2+ , Pb 2+ or Cd 2+ and Z is Si, typical example: [Ba 0.5 Mg2Li ( Si4O10 ) F2 , m.p1070 ℃, c .
p1050℃] [Sr 0 . 5 Mg 2 Li (Si 4 O 10 ) F 2 , m.p1050, c.
p1050] [Pb 0 . 5 Mg 2 Li (Si 4 O 10 ) F 2 , m.p1120, c.
p1120] Crystals are produced by other melting methods of these (1) and (2) taeniolites, including the following (3). (3) Y is Mg 2 Li, X is a divalent cation Ba 2+ ,
Derivatives of taeniolite which are Sr 2+ , Pb 2+ or cd 2+ and Z is AlSi 3 or BSi 3 , typical examples: [Ba 0 . 5 Mg 2 Li (AlSi 3 O 10 ) F 2 , m. p1225℃,
c.p1225℃] [Ba 0 . 5 Mg 2 Li (BSi 3 O 10 ) F 2 , m.p968℃, c.
p968℃] In order to precipitate the teniolite crystals and teniolite derivative crystals (hereinafter referred to as the teniolite crystals) described in (1), (2), and (3) above on glass, the teniolite crystals may be used as the raw material. It may also be a raw material composition thereof (hereinafter referred to as a taeniolite composition). The object of the present invention is achieved by a composition that combines the above-described taeniolite composition and a glassy substance. The crystallized glass material used in the present invention may be a raw material batch capable of forming glass, or a frit-like glass obtained by vitrifying this raw material batch in advance and then crushing it. Examples of glass components include:
SiO 2 ―Al 2 O 3 ―B 2 O 3 ―CaO―K 2 O―Na 2 O or this with P 2 O 5 , BaO, MgO, ZnO, PbO, TiO 2 ,
ZrO 2 or the like is added as appropriate, and glass materials such as plate glass, bottle glass, pressed glass, lighting glass, sealing glass, crystal glass, etc. can be used in the usual classification of glass products.
When selecting the composition of the glass material, care must be taken not to inhibit the formation of taeniolite crystals, and to maintain viscosity-temperature conditions that allow the forming process to be completed without any problems. That is, the composition formula of taeniolite is X 0.5 ~ 1.0 Mg 2 Li
(Si 4 O 10 ) F 2 , for example, when the purpose is to produce K-teniolite (KMg 2 Li(Si 4 O 10 ) F 2 crystal, other The ions Ba 2+ , Pb 2+ , Zn 2+ , etc. must be limited to within a certain value, preferably so that the crystal formation rate due to these ions in the entire composition is about 20%, and Ba-theniolite [ Ba0.5Mg2Li _ _
(Si 4 O 10 )F 2 ] is also the same as described above. Furthermore, in the case of taeniolite derivatives, it is also necessary to limit Al 3+ and B 3+ , which can coordinate to the Z position, so that the crystal formation rate due to these ions in the entire composition is within about 20%. . The blending ratio of the teniolite composition and the glassy substance is preferably 30 to 70 parts by weight when the total composition is 100 parts by weight. In the combination of the taeniolite-based composition and the glassy substance according to the present invention, the temperature-viscosity conditions are different from the time when the mixed melt is taken out of the furnace to the time when the molding is completed. ~
The viscosity decreases continuously from 1300℃, viscosity 10 1.5 to 10 2.0 poise ) until it is loaded into the molding machine using a feeder, and then at the start of molding (950 to 1100℃, 10 3.0 to 10 5 poise ). 0 poise) to the end of molding (950 to 850°C, 10 6.5 to 10 7.0 poise), and the phenomenon of viscosity increase due to crystal formation does not occur during this time . It is possible to produce molded products without damage. In addition, the crystallization heat treatment process that generates crystals inside the molded product can be achieved by holding it at 700 to 850°C for 40 to 60 minutes after the molding is completed, and can be carried out continuously after the molding is completed within the temperature operating range of the slow cooling process. Therefore, a crystallized glass molded product can be completed within the framework of a substantially normal glass product manufacturing process. Furthermore, among the taeniolite compositions, those in which X is Ba 2+ [for example, Ba 0 . 5 Mg 2 Li (Si 4 O 10 )
F 2 , BaMg 2 Li (AlSi 3 O 10 ) F 2 , BaMg 2 Li
(BSi 3 O 10 )F 2 ] has the effect of lowering the viscosity of the melt, so it not only prevents the viscosity from changing suddenly from the melt to the end of molding, but also prolongs the time required until the end of molding. effective. In the present invention, the fluorine mica to be mixed with the glassy substance uses a teniolite composition as an essential raw material, but other fluorine mica can be added as necessary. For example, the above-mentioned viscosity reducing effect
By making Ba-teniolite coexist with crystalline fluorine mica such as K-phlogopite and K-tetrasilicon mica, the crystallinity of these fluorine mica at high temperatures can be suppressed, or by combining it with glassy substances. It is possible to suppress an increase in the viscosity of the mixed melt, and to increase the amount of crystals produced in a molded product when subjected to crystallization heat treatment. Furthermore, in the combination of a taeniolite composition and other fluorine mica, in addition to introducing fluorine mica crystals by the above-mentioned melting method, a certain amount of fluorine mica composition produced by a solid phase reaction mechanism is added. It is also possible to co-form crystals and obtain colored crystallized glass molded products. Hereinafter, the crystallized glass molded product of the present invention will be specifically explained with reference to Examples. Example 1 The component composition of the glassy substance is SiO 2 72%,
Na 2 O 13.5%, CaO 12.2%, MgO 1.0%, Al 2 O 3+ ,
The composition of 45 parts by weight of 1.3% Fe 2 O 3 and Ba-teniolite [Ba 0 . 5 Mg 2 Li (Si 4 O 10 ) F 2 ] is
SiO 2 54.5%, BaO 17.4%, Li 2 O 3.4%, MgO 9.1
A batch of raw materials containing 55 parts by weight of 15.6% MgF 2 was melted at 1400° C., and a crystallized glass molded product was produced in accordance with the manufacturing process of plate glass. 1350℃ from the furnace, through the feeder, and just before charging into the molding machine
The viscosity of the melt at a cooling rate of 35 minutes from to 900°C is 1300°C - 10 1.6 poise , 1200°C - 10 2.8 poise, 1100°C - 10 3.5 poise , 1000 °C - 10 4.5 The temperature was 900°C - 10 5.2 poise. 900℃~800℃
After forming into a plate with a thickness of about 20 mm by roll forming, a milky white crystallized glass molded product was obtained by crystallization treatment at a temperature of 800°C for 50 minutes. The physical properties of this molded product are porosity 0, specific gravity 2.79, hardness (shoer) 85, transverse rupture strength 920 Kg/cm 2 , and according to X-ray diffraction, electron micrograph and other measurements,
Mainly Ba 0 . 5 Mg 2 Li (Si 4 O 10 ) F 2 crystal (more than 95%)
It was observed that 30 to 40% by weight of mica crystals were formed in the molded product, and the crystal grain size was distributed in the range of 300 to 700 μm. Example 2 In the above molded product formulation, 16.5 parts by weight of 55 parts by weight of Ba-teniolite was added to K-phlogopite [KMg 3
(AlSi 3 O 10 )F 2 ] Composition of SiO 2 41.8%, K 2 O 10.9%,
A plate-like body was produced by replacing the material with one consisting of 11.8% Al 2 O 3 , 18.7% MgO, and 16.8% MgF 2 . The compound was melted at 1450℃ in a melting furnace, and then the molten material discharged from the furnace was
Cool to 1200℃. The viscosity at 1200°C was 10 3.8 poise, and the viscosity at 1100°C was 10 4.2 poise . A portion of it was poured onto a heat-resistant stainless steel plate and rapidly cooled to obtain a sample piece. When observing this sample piece, it was found that 10μ
It was observed that a small amount of fine crystals around m were homogeneously distributed. The molten material at about 1100℃ is sent to a feeder, then charged into a roller molding machine through the feeder, and molded into a plate-like material about 20mm thick at a viscosity of 106.0 poise at a temperature between 900 and 800℃ without damage. A molded body was obtained. Next, a primary crystallization treatment was carried out by heating at 800°C for about 1 hour, and a secondary crystallization heat treatment was further carried out at 1050°C for about 1 hour to obtain a crystallized glass molded product.
When observed and measured, K-phlogopite crystals had grown to a size of 500 μm to 2000 μm and were scattered throughout the molded product, and the polished surface had a beautiful marble-like appearance. Example 3 Mixture (1) Suitable for light bulb glass as base material glass
SiO2 67.4%, Ai2O3 1.0 %, B2O3 4.5 %, CaO4.6
%, K 2 O 12.0%, Na 2 O 2.5%, ZnO 4.0%,
60 by weight raw material batches adjusted to BaO4%
(2) SiO 2 43.4%, a compound for the purpose of crystal formation of taeniolite [Ba Mg 2 Li (AlSi 3 O 10 ) F 2 composition];
BaO18.5%, Li 2 O 3.5%, MgF 2 16.6%,
35 parts by weight of a raw material batch adjusted to MgO 9.6% and B 2 O 3 8.4%, (3) Co - synthesized fluorine mica [KMg 1.5 Co 1.5
(AlSi 3 O 10 ) F 2 composition] SiO 2 36%, K 2 O 9.5%, Co 2 O 3 25%,
5 parts by weight of a raw material batch adjusted to 19.3% MgF 2 and 10.2% Al 2 O 3 were homogeneously mixed with these raw material batches (1), (2), and (3) to prepare a raw material batch. Manufacturing 1 kg of raw material batches are placed in a SiC crucible, melted in a Matsufuru Elema furnace at 1400°C for 30 minutes, taken out of the furnace, and the molten material is heated together with the crucible in the atmosphere from 1400°C to 1100°C.
Allow to cool at a cooling rate of 30-35℃/min, then cool to 1100℃
Adjust the temperature drop by heating the outer periphery of the crucible to 1000℃ for at least 20 minutes with a gas flame, take out the molten material from the crucible, and spread and shape it at 850 to 20℃ using an experimental mini roller made of Stellite heat-resistant steel. A pale blue body measuring 10 cm and approximately 35 cm in length was obtained. When the temperature of the molded body reached 750°C, it was placed in an electric furnace that had been previously maintained at 750°C, held at 750°C to 740°C for 25 minutes, and then cooled in the furnace with the electricity turned off. After the molded body was taken out of the furnace, its upper and lower surfaces were polished to a mirror finish using a conventional polishing method to obtain a crystallized glass molded product. The product had a beautiful pattern of homogeneous clusters of pale blue sesame-like crystals. In addition, the physical properties of the product are a specific gravity of 2.81,
Transverse bending strength 720Kg/cm 2 , Shore hardness 92, Shorey impact strength 2.6Kg-m/cm 2 , Coefficient of thermal expansion (30-500
℃) 75×10 -7 . Example 4 Formulation (1) Glass composition (wt%)

【表】 (2) フツ素マイカ組成【table】 (2) Fluorine mica composition

【表】 結晶化ガラス成型品の製造【table】 Manufacture of crystallized glass molded products

【表】 外 観 研磨工程を経た製品は結晶の生成によつて美麗
なものとなつた。 製品の性能
[Table] Appearance The product that underwent the polishing process became beautiful due to the formation of crystals. Product performance

【表】【table】

Claims (1)

【特許請求の範囲】 1 ガラス性物質の溶融固化物とテニオライト系
結晶とからなる結晶化ガラス成型品。 2 ガラス性物質とテニオライト系組成物とを混
合し、溶融すると共にこれを加工成型し、次いで
冷却することを特徴とす結晶化ガラス成型品の製
造法。
[Scope of Claims] 1. A crystallized glass molded product comprising a molten solidified glass substance and taeniolite crystals. 2. A method for producing a crystallized glass molded product, which comprises mixing a glassy substance and a taeniolite composition, melting it, processing and molding it, and then cooling it.
JP15563082A 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture Granted JPS5945941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15563082A JPS5945941A (en) 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15563082A JPS5945941A (en) 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture

Publications (2)

Publication Number Publication Date
JPS5945941A JPS5945941A (en) 1984-03-15
JPS6238309B2 true JPS6238309B2 (en) 1987-08-17

Family

ID=15610186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15563082A Granted JPS5945941A (en) 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture

Country Status (1)

Country Link
JP (1) JPS5945941A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468109U (en) * 1990-10-25 1992-06-17

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158840A (en) * 1984-12-31 1986-07-18 Masao Yoshizawa Crystallized glass molded article and production thereof
FR2655264A1 (en) * 1989-12-04 1991-06-07 Centre Nat Rech Scient Machinable glass-ceramics for dental prostheses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468109U (en) * 1990-10-25 1992-06-17

Also Published As

Publication number Publication date
JPS5945941A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
TWI271389B (en) Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
JPH05208846A (en) Colored glass-ceramic article with surface pattern and its production
TWI408114B (en) Refractory glass ceramics
CZ2003197A3 (en) Glass-ceramics, process for their preparation and use
CN111592224A (en) Magnesium aluminum silicate nanocrystalline transparent ceramic, preparation method and product thereof
JPS581056B2 (en) Glass ceramics
US3775164A (en) Method of controlling crystallization of glass
JPH02116643A (en) Alkali zinc aluminophosphate glass ceramic
JPH04338132A (en) Glass-ceramic bonded ceramic composite material
JPH0269335A (en) Alkaline earth metal aluminoborate glass ceramic and production thereof
JPS6238309B2 (en)
US4004935A (en) Glazing compositions for ceramic articles
JP5041324B2 (en) Natural marble-like crystallized glass and method for producing the same
CN114853342B (en) Hot-bending bright ceramic rock plate and preparation method thereof
JP2000095541A (en) Low melting temperature composite solder glass, additive for the same and use of the same
US3834911A (en) Glass composition and method of making
JPH05238774A (en) Glass composition for low temperature sintered base plate and base plate obtained therefrom
US3007804A (en) Ceramic material
Barbieri et al. Nucleation and Crystal Growth of a MgO–CaO–Al2O3–SiO2Glass with Added Steel Fly Ash
JPS6319457B2 (en)
CN113354288A (en) Microcrystalline glass plate and preparation method thereof
JPS6213292B2 (en)
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
US3338692A (en) Method of making synthetic mica and ceramoplastic materials
JPH0776110B2 (en) Natural stone-like crystallized glass article