JPS5945941A - Formed article of crystallized glass and its manufacture - Google Patents

Formed article of crystallized glass and its manufacture

Info

Publication number
JPS5945941A
JPS5945941A JP15563082A JP15563082A JPS5945941A JP S5945941 A JPS5945941 A JP S5945941A JP 15563082 A JP15563082 A JP 15563082A JP 15563082 A JP15563082 A JP 15563082A JP S5945941 A JPS5945941 A JP S5945941A
Authority
JP
Japan
Prior art keywords
composition
glass
crystals
temperature
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15563082A
Other languages
Japanese (ja)
Other versions
JPS6238309B2 (en
Inventor
Toyonobu Mizutani
水谷 豊信
Masao Yoshizawa
吉沢 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15563082A priority Critical patent/JPS5945941A/en
Publication of JPS5945941A publication Critical patent/JPS5945941A/en
Publication of JPS6238309B2 publication Critical patent/JPS6238309B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To enable the manufacture of a formed article of crystallized glass within the frame of the oridinally manufacture process of glass article, by mixing a vitreous substance with a taniolite composition, melting and forming the mixture, and cooling the product. CONSTITUTION:The vitreous substance is an oridinary glass, and the taniolite composition is a fluoromica represented by the formula X0.5-1.0Y2.0-3.0(Z4O10) F2 wherein Y is (3-8)-hedron Mg2Li; X is K<+> (univalent cation) and Z is Si4 (tetrasilicon-type). The amount of the taniolite composition is preferably about 30-70pts.wt. per 100pts.wt. of the whole composition. The composition is molten at 1,200-1,300 deg.C to a viscosity of about 10<1.5>-10<2.0> poise, and formed at the inital temperature and viscosity of about 950-850 deg.C and about 10<3.0>-10<5.0> poise and the final temperature and viscosity of about 950-850 deg.C and about 10<5.5>- 10<7.0> poise, respectively. The formed article is maintained at about 700-850 deg.C for about 40-60min to produce crystals in the formed article.

Description

【発明の詳細な説明】 本発明は結晶化ガラス成型品及びその製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystallized glass molded product and a method for manufacturing the same.

ガラス成型品の内部に微細な結晶を生成さぜた結晶化ガ
ラス成型品11.光線の入射および反射作用により、天
然の大理石や花崗岩等と対比できる美麗な外観4・もっ
た造型品として有用である。
Crystallized glass molded product with fine crystals formed inside the glass molded product 11. It is useful as a molded product with a beautiful appearance that can be compared with natural marble, granite, etc. due to the incidence and reflection of light rays.

結晶化ガラス成へ12品名・製造するに当って111’
 fνな問題は、所望のり5ff5Aを呈する結晶が生
成できる原料配合の組成、成型を可能とする溶融体の適
正な粘度及び結晶生成のための結晶化熱処理の温度計理
である。
12 product names and manufacturing methods for crystallized glass 111'
The major issues are the composition of the raw material mixture that can produce crystals exhibiting the desired adhesiveness of 5ff5A, the appropriate viscosity of the melt to enable molding, and the thermometry of the crystallization heat treatment to produce crystals.

現在結晶化ガラス成型品の製造方法には溶融法と焼結法
の2法がある。焼結法は所定の結晶を生成17うる組成
のガラス粉末を軟化点より置く溶融点よシ低い中間温度
域で加熱し、ガラス粉末を融着状の暁結により一体化し
9次いで軟化点以上の所定の温度と時間lI5二よる操
作で成型品内部に結晶を析出させる結晶化熱処理を行う
ことにより製品をうる方法であり、また溶融法は所定の
結晶を生成しうるガラス組成配合物を完全に溶融した後
成型し2次いで再加熱することにより、結晶化処理を施
して完成される方法である。
Currently, there are two methods for manufacturing crystallized glass molded products: a melting method and a sintering method. In the sintering method, glass powder with a composition capable of producing a specified crystal is heated at an intermediate temperature range below the melting point, which is below the softening point, and the glass powder is integrated by fusion-like crystal formation. This is a method of obtaining a product by performing a crystallization heat treatment in which crystals are precipitated inside the molded product at a predetermined temperature and time.Furthermore, the melting method completely removes the glass composition that can form a predetermined crystal. This is a method in which the material is melted, molded, and then reheated to complete the crystallization process.

#線法はさらに加工成型法と注型法に分けられる。加工
成型法は連続的に製品を量堕するのに適するもので、板
ガラスのようなロール加工によるもの、容器のような押
型加工によるものがある。そして結晶化ガラス成型品を
この加工成型法で製造することは1品質の安定性および
量産による経済的効果を期待することができるので、と
くに大ftK使用される建拐用の板状体などの製造が、
上記した通常の板ガラスの製造条件で可能になるならけ
極めて望ましいことである。しかしながら通常の板ガラ
スの製造法により結晶化ガラス成型品を製造するために
は粘度一温度に関する必須条件がある。たとえば基準の
条件として、原料配合物が溶融され(13らにフィダー
位置では漸次連続的に粘度が低下し、成型機による成捜
15;1始時にけ1o3〜105ポアズ(950℃〜1
200 ℃)であり、成型終了時107ボアズ(750
℃付近)テあるような粘度一温度条件であり2時間的に
は製品のも1゜寸法により異るが、炉出しより成し+、
!2終了時までは25〜50分ぐらいである。次いで徐
冷炉に装入されるが、徐冷炉rat若干の温度一時間の
り変は可能であり、−ト限温度d成ノQ品の変形を起さ
ない粘度、っ“止り軟化温度(700℃〜8゜0℃)で
あり、一定温度、一定時間の保持等の操作は可能である
#The wire method is further divided into processing molding method and casting method. Processing and molding methods are suitable for continuously reducing the amount of products, and include roll processing, such as sheet glass, and stamping, such as containers. By manufacturing crystallized glass molded products using this processing and molding method, one can expect stability in quality and economical effects through mass production, so it is especially suitable for plate-like materials used for construction, etc., which are used in large ftK. Manufacturing is
It would be extremely desirable if it were possible under the above-mentioned normal plate glass manufacturing conditions. However, in order to produce a crystallized glass molded product using a normal plate glass production method, there are essential conditions regarding viscosity and temperature. For example, as a standard condition, the viscosity of the raw material mixture is gradually and continuously lowered at the feeder position (13), and the viscosity is gradually and continuously lowered at the feeder position.
200 °C) and 107 bores (750 °C) at the end of molding.
It is a viscosity-temperature condition that has a certain degree of viscosity (around ℃), and the time it takes for 2 hours varies depending on the dimensions of the product, but it is formed after taking it out of the oven.
! It will take about 25 to 50 minutes until the end of 2. Next, it is charged into a lehr, but it is possible to change the temperature of the lehr for a little over an hour. 0°C), and operations such as holding at a constant temperature and for a certain time are possible.

結晶化ガラス成型品と2通常のガラス成型品との本質的
な相異は前者が厳密に管理した温度と時間の条件の下で
結晶化処理を行うことである。また溶融体は、結晶が析
出を開始する一定温度で徐冷される場合には、粘度が急
激に上昇しく107ボアズ以上)半固体化するので2通
常のガラス製造法を結晶化ガラス成型品に適用する場合
に成型エイー呈の、II<工時−までにこの現象が起き
ないような4J1成であることが8巽である。し7たが
って過冷却によって結晶が析出しないような温度条件と
通常のガラス製造法の温度条件を合致させて成型品を得
ることが必要となり、そのため成型品の結晶化処理は再
加熱により行はざるを得なくなる。この場合の従来法の
共通した操作は、成型品を低い温度より加熱して、一定
温度に於て行はれる結晶核発生化段階または極微晶析用
段階ともいうべき第一次結晶化熱処理工程、さらに昇温
して一定温度に於て行はれる結晶成長段階ともいうべき
第2次結晶化熱処理工程の付加により製造が行はれてい
る。
The essential difference between crystallized glass molded products and ordinary glass molded products is that the former undergoes crystallization treatment under strictly controlled conditions of temperature and time. In addition, if the melt is slowly cooled at a constant temperature at which crystals begin to precipitate, the viscosity will rapidly increase and it will become semi-solid (more than 107 Boas). When applied, it is important that the 4J1 structure is such that this phenomenon does not occur until II < construction time of the molding effect. Therefore, it is necessary to obtain a molded product by matching the temperature conditions that prevent crystals from precipitating due to supercooling with the temperature conditions of normal glass manufacturing methods. I have no choice but to do it. In this case, the common operation of the conventional method is the primary crystallization heat treatment, which can be called the crystal nucleation stage or ultrafine crystallization stage, in which the molded product is heated from a low temperature and carried out at a constant temperature. Manufacturing is carried out by adding a second crystallization heat treatment step, which can also be called a crystal growth step, in which the temperature is raised and the temperature is maintained at a constant temperature.

そして結晶化熱処理工程において、第1次結晶化熱処理
および第2次結晶化熱処理の温度条件が、成型品の変形
する軟化温度より上の温度で行われたりまた長時間を必
要とする場合には。
In the crystallization heat treatment process, if the temperature conditions of the first crystallization heat treatment and the second crystallization heat treatment are performed at a temperature higher than the softening temperature at which the molded product deforms, or if they require a long time, .

通常のガラス製造法の成型後の工程に、特別の加熱炉工
程を付加しなければならない。
A special heating furnace process must be added to the post-molding process of normal glass manufacturing methods.

従来の加工成型tよる結晶化ガラス成型品に生成させる
結晶の種類はβ−ワジストナイト。
The type of crystals produced in crystallized glass molded products by conventional processing and molding is β-wadistonite.

β−スポジュウメン、β−ユークリプタイト等であるが
、この従来方法での問題点は、前記したように成型後に
おける再加熱による結晶化熱処理工程が必須のものと左
っていることである。
β-spodumene, β-eucryptite, etc., but the problem with this conventional method is that, as described above, a crystallization heat treatment step by reheating after molding is essential.

この付加工程は結晶の4′1ハ類によって若干異るが。This addition process differs slightly depending on the 4'1 group of the crystal.

概ね700℃以−ヒより温度側(iLIIを(7々がら
昇温し、最終1.000〜1.200℃の温度範囲で結
晶化熱処理を行っている。またとの温度範囲は成型品の
軟化変形温rrr (s o o〜850℃)より上の
温度領域であるので、変形を防ぐために成型品を特定の
焼台に載せて結晶化熱処理を行はざるをえない4、 溶融法の他の一つの方法である注型法は、結晶生成の状
態における溶融渦電と結晶析出温度との差が少く、−ま
lと冷却速度が速くても結晶生成が容易に開始さIする
よつな組成の結晶化ガラス成型品の42造法である。こ
の1+11として、フッ素マイカ系にj、・+5 ’1
−る結晶でフロゴバイlたr[四ケイ素マイカの結晶を
生成するマイカガラスセラミックスの製造法がある。マ
イカガラスセラミックスを製造するための1.+1成は
、それぞれフロゴバイトまたは四ケイ素マイカの結晶が
成!49品重縫中少くとも90%以上生成する組成のも
のである。゛またフロゴバイト(K Mg 3(A I
Sl 3’Io ) p2.溶融点(m、p)1375
℃、結晶析出温度(C,I) ) 1375℃〕または
四ケイ素マイカ(KMg2,5(8i 40.。)P2
 rn、p 1176℃。
The temperature of iLII is raised in steps of approximately 700°C or higher, and the final crystallization heat treatment is performed in the temperature range of 1.000 to 1.200°C. Since the temperature is above the softening deformation temperature rrr (s o ~ 850°C), the molded product must be placed on a specific baking table and subjected to crystallization heat treatment to prevent deformation. 4. Melting method Another method, the casting method, has a small difference between the melt eddy current in the state of crystal formation and the crystal precipitation temperature, so that crystal formation can be easily started even at a high cooling rate. This is a 42-manufacturing method for crystallized glass molded products with a composition of
There is a method for producing mica glass ceramics that produces tetrasilicon mica crystals. 1. For producing mica glass ceramics. +1 formation is a crystal of phlogobite or tetrasilicon mica, respectively! 49 products have a composition that produces at least 90% or more during heavy stitching.゛Also, phlogobite (K Mg 3 (A I
Sl 3'Io ) p2. Melting point (m, p) 1375
℃, crystal precipitation temperature (C, I) ) 1375℃] or tetrasilicon mica (KMg2,5 (8i 40..) P2
rn, p 1176°C.

c、p l 173℃〕のみの結晶化状態を説明すると
、これ等om融体(1300〜1450℃)は毎分60
〜120℃の冷却速度でも結晶析出が始り、これより遅
い冷却速度では、結晶生成が著しく促進されて枯=度が
急激に一ヒ昇し、それぞれの結晶析出温度から100℃
の間で半固体状の粘度域(107°0 ポアズ)になっ
てしまうので1本発明が目的とするような通常の加工法
によるガラス製品の粘度一温度条件による製造方法の適
用は不可Hしである。すなわち粘度が高すぎて成型時の
破砕や亀裂の発生、加工機器の耐熱性不足等の問題があ
る。したがって現行のマイラlガラスセラミックスは、
溶融体を過冷却条件で型に注型して成型品を得たのち、
再加熱による結晶化熱処理を750〜850℃で1〜6
時間保持する結晶咳生成段階と、1000〜1150℃
で1〜6時間保持する結晶成艮化段階の二段階に亘る操
作を不可欠の工程としている。
To explain the crystallization state of only 173°C], these om melts (1300-1450°C)
Even at a cooling rate of ~120°C, crystal precipitation begins, and at a cooling rate slower than this, crystal formation is significantly promoted and the degree of dryness rises rapidly, resulting in a drop of 100°C from the respective crystal precipitation temperature.
Since the viscosity becomes a semi-solid viscosity range (107°0 poise) between It is. That is, the viscosity is too high, leading to problems such as fractures and cracks occurring during molding, and insufficient heat resistance of processing equipment. Therefore, the current Mylar glass ceramics are
After obtaining a molded product by pouring the molten material into a mold under supercooled conditions,
Crystallization heat treatment by reheating at 750-850℃ for 1-6
Crystal cough generation stage with time holding and 1000~1150℃
The two-stage operation is an essential step: the crystallization stage, which is held for 1 to 6 hours.

本発明は従来のβ−[7ラストナイト、β−スボジュウ
メン系の結晶化ガラス成、g品あるいはマイカ−ガラス
−セラミックスにおける高温高粘度状(1f4での注2
4V成型や長時間、尚温度による結晶化処理をとくに行
うことなく1通常のガラス製品の製造工程のイ(α曲内
で成型りよび結晶化を行うことを可f11(と[7,さ
らに又成ハ(1品の模様を表題する上で必要に応じてさ
らに結晶化7dヲ増やしたり、結晶イ* f:太きぐす
るためF’l::Jn熱1゜て結晶化処理を行う1ト1
合でも、成型品が軟(V、変形しない温度以下で行うこ
と等を+11 fi14と【7だものである。
The present invention is based on the conventional β-[7lastonite, β-subodumene-based crystallized glass formation, g-products, or mica-glass-ceramics in a high-temperature, high-viscosity state (Note 2 in 1f4).
It is possible to perform molding and crystallization within the normal glass product manufacturing process (1) without performing 4V molding or crystallization treatment due to long time or temperature. Crystallization process (to increase the crystallization rate by 7d as necessary to title the pattern of one item, or to make the crystallization thicker) 1
Even if the molded product is soft (V), it must be done at a temperature below the temperature at which it will not deform.

本発明はガラスもしくはガラス、t11成分(以下これ
ら金ガラス性物i+tという)に、結晶析出が浴融法の
しくみによる特定のフッ素マイカまたはその誘導体もシ
、<はそれらの原料組成分とを配合することにより2通
常のガラス製品の成型加工法および温度処理条件で結晶
化ガラス成型品の製造を可能にしたものである。
The present invention blends glass or glass, the t11 component (hereinafter referred to as gold glass material i + t) with a specific fluorine mica or its derivative, whose crystal precipitation is caused by the mechanism of the bath melting method. By doing so, it has become possible to manufacture crystallized glass molded products using two conventional glass product molding methods and temperature treatment conditions.

フッ素マイノJは化学式X0.5〜1.OY2.0〜a
、o (Z4010 ) F’2で7J\される。この
式でXは配位d12の陽イオンで1層状結晶であるマイ
カ結晶の層間イオンを、Zは配位数4の陽イオンで通常
8iU1 1!!、1匍体のSi  を基準としており
、Yは配(+’C数6の陽イオンで八面体1−を構成し
ている。
Fluorine Mino J has the chemical formula X0.5-1. OY2.0~a
, o (Z4010) 7J\ at F'2. In this formula, X is a cation with coordination d12, which is an interlayer ion of mica crystal, which is a one-layered crystal, and Z is a cation with coordination number 4, which is usually 8iU1 1! ! , is based on 1-silicon Si, and Y is a positive ion with a carbon number of 6 (+') forming an octahedron 1-.

フッ素マイカの結晶(44造は8404  四面体が六
角網目の板状で上下に2枚あり、この間に八面体配位を
とるイオンが結合しており、この構造をタブレットと呼
び、このタブレットが層をなして積み重なっていて、タ
ブレットとタブレットの間にはアルカリ1またはアルカ
リ土類金鵡イオンが結合しており2層間イオンと呼ばれ
る。そしてこのフッ索マイカ結晶が生成する基本形態は
、結晶の組成により配合原料を溶融し、その溶融体を一
定の温度条件で処理をすることにより結晶を析出させる
溶融法と、配合原料を混合粉末の状態または成型物の状
態で加熱すると。
Fluorine mica crystal (44 structure is 8404) Tetrahedrons are in the form of a hexagonal mesh plate, with two sheets above and below, between which ions with octahedral coordination are bonded. This structure is called a tablet, and this tablet is a layered structure. The two tablets are stacked together, and alkali 1 or alkaline earth metal ions are bonded between the tablets, which is called an interlayer ion.The basic form of this fluorocarbon mica crystal is determined by the composition of the crystal. The melting method involves melting the blended raw materials and precipitating the crystals by treating the melt under constant temperature conditions, and the melting method in which the blended raw materials are heated in the form of a mixed powder or molded product.

吸着水の脱水1分解などの反応が相次いで起り。Reactions such as dehydration and decomposition of adsorbed water occur one after another.

溶融温度に達しないうちでも、固体粒子の熱振動により
2粒子表面の結晶格子点の原子が他の粒子表面の原子の
作用半径内に入り、結合が行はれて結晶が生成する固相
反応法とがあり、溶融法が適用でき表いものでもこの固
相反応で生成する結晶がある。そして溶融法または同相
反応法での結晶生成の可否は、多くの組成を実験により
確認していくものである。
A solid-state reaction in which atoms at crystal lattice points on the surface of two particles enter the radius of action of atoms on the surface of another particle due to thermal vibration of the solid particles even before the melting temperature is reached, and bonds are broken to form a crystal. There are crystals produced by this solid phase reaction, even though the melting method can be applied. Whether or not crystals can be formed by the melting method or the in-phase reaction method is determined by experimenting with various compositions.

本発明で結晶化ガラス成型品中に生成させるフッ素マイ
カ結晶は、溶融法で結晶が生成するしくみに属するもの
でテニオライト(Tan1olite )結晶を主要な
成分とする。デュオライトは前記77素マイカの一般式
Xo、s−t、o  Y2.O−3,o (Z401G
 )i’2において、YがMg2Li (3−8面体型
)であり、XおよびZの組成により次のように分類する
ことができる。
The fluorine mica crystals produced in the crystallized glass molded product in the present invention belong to a mechanism in which crystals are produced by a melting method, and contain taeniolite crystals as a main component. Duolite has the general formula of the 77-element mica: Xo, s-t, o Y2. O-3,o (Z401G
) i'2, Y is Mg2Li (3-octahedral type) and can be classified as follows depending on the composition of X and Z.

(1)Xがll1IIi陽−(オフ(DK+テl) F
)、 ZカSi。
(1) X is ll1IIi positive - (off (DK + Tel) F
), Z Ka Si.

(四ケイ素!σ)のもの2代表例: 1(M[2Li   (Si、  0.o )F”2.
     iil、ylH点 (nl、l)   )1
210°C9結晶析出点(C,+3 ) 1185”C
)(2) Xが21111 l”isイオンのLla2
″t、 Sr2+ 、  1)b2+−またはCd”+
 であり、Zが81のもの2代表けり : CI3a 85 Mg2Li  (Si、01o)  
t”□ 、   m、p  1070°qc、p 10
50℃〕 (5ro5+v1g21ii (5i40.o) F□
、 In、p l 050゜c、p 10503 (PI)04 1〜1gz  Li  (si 401
o)  F2 、   ■1.1)  1. 1 2 
 (Lc、pH201 これら(11,(2)のテニオライトの仙に浴1fii
lθミにより結晶が生成するものとして下記(3)のも
の力(ある0 (3) YがMg 2Liで、Xが2 ’l1lfiの
陽イ;4−7 (7)Ila”b r 2+F  Pl
)” ” l i *はCd2→゛テアリT Z カA
 I S + 3または138 i 、  であろテニ
オライトの誘寺体9代表例: (laO,6MN<2Li (Al5i301゜) l
i’、 、 m−pl 225℃、C,I)1225℃
〕 (f3ao4 Mg2I、+  (1−3S+3o、o
) 1.’2 、  rn、p968℃、C,r)96
8℃〕 上記(1)、 (2)、(3)のデュオライト結晶及び
デュオライ)M導体結晶(以下これらをデュオライト系
結晶という)をガラスに析出させるには。
(Tetrasilicon!σ) 2 representative examples: 1(M[2Li (Si, 0.o)F”2.
iil, ylH point (nl, l) )1
210°C9 crystal precipitation point (C, +3) 1185”C
)(2) Lla2 where X is 21111 l”is ion
"t, Sr2+, 1) b2+- or Cd"+
2 representative cases where Z is 81: CI3a 85 Mg2Li (Si, 01o)
t”□, m, p 1070°qc, p 10
50℃] (5ro5+v1g21ii (5i40.o) F□
, In, pl 050°c, p 10503 (PI) 04 1~1gz Li (si 401
o) F2, ■1.1) 1. 1 2
(Lc, pH 201 These (11, (2) Taeniolite 1fii
Assuming that crystals are formed by lθmi, the force in (3) below (0 (3) Y is Mg 2Li and
)” ” l i * is Cd2 → ゛teariT Z KaA
I S + 3 or 138 i, 9 typical examples of taeniolite crystals: (laO, 6MN<2Li (Al5i301°) l
i', , m-pl 225℃, C, I) 1225℃
] (f3ao4 Mg2I, + (1-3S+3o,o
) 1. '2, rn, p968℃, C, r)96
8° C.] To precipitate the Duolite crystals and Duolite M conductor crystals (hereinafter referred to as Duolite crystals) of (1), (2), and (3) above on glass.

原料としてはテニオライト系結晶を用いてもよいしまた
その原料組成分(以下これらをデュオライト系組成物と
いう)でもよい。
As the raw material, a taeniolite crystal may be used, or its raw material composition (hereinafter referred to as a duolite composition) may be used.

本発明は上記したテニオライト系組成物と。The present invention relates to the above-mentioned taeniolite composition.

ガラス性物質とを組合せた組成により目的を達成するも
のである。
The purpose is achieved by a composition that combines a glassy substance.

本発明に用いるガラス性物質は、ガラスを形成しうる原
料バッジでも、またとの原料バッジを予めガラス化して
から粉砕したフリット状のガラスでもよい。ガラス成分
としては例えば。
The glassy substance used in the present invention may be a raw material badge capable of forming glass, or a frit-like glass obtained by vitrifying a raw material badge in advance and then pulverizing it. Examples of glass components include:

8102     Al20B  −B2O3Ca0 
  1ぐ20 −  Na2Oまiはこれlc P2O
5,11aO、八4gO、ZnO、PbO。
8102 Al20B-B2O3Ca0
1g20 - Na2O is this lc P2O
5,11aO, 84gO, ZnO, PbO.

’rib2. ZrO2等を適宜加えたもので2通常の
ガラス製品の分類でいえば、仮ガラス、びんガラス、押
型ガラス、照明用ガラス、封着用ガラス。
'rib2. It is made by adding ZrO2, etc. as appropriate.2 In terms of the usual classification of glass products, it is temporary glass, bottle glass, pressed glass, lighting glass, and sealing glass.

クリスタルガラス等のガラス材質を使用することができ
る。そしてガラス材質の組成選定に当ってはテニオライ
ト結晶の生成を阻害しない工う、iた加工法による成型
が支障なく終了しうる粘度一温度条件を保持するよう配
慮しなければならない。
Glass materials such as crystal glass can be used. When selecting the composition of the glass material, care must be taken to maintain a viscosity-temperature condition that does not inhibit the formation of taeniolite crystals and allows molding by other processing methods to be completed without any problems.

すなわちテニオライトの組成式X。5〜to Mg2L
1(5i40.。) F2  において、たとえばI(
−テニオライト(KMg2Li (5r4C1,o) 
Ii”2結晶の生成を目的とする堝什、化学式中Xの位
14に競合して配位1〜つる他のイオンBa 2+ 、
  Pb 2+ 、  Zn 2 + 等について←1
.一定値以内好ましくは全組成物中これらのイオンによ
る結晶生成率が約20%になるように制限する必要があ
り、またL3a−テニオライト(11a64 Mg2 
Lt (S+40to) F2 )の生1.7を目的と
するときも上記したところと同様である。さらにテニオ
ライトa導体の場合Zの位醒tに配位し7うるA13+
 および133+についても全組成物中にこれらのイオ
ンによる結晶生成率が約20%以内になるようにこれま
た制限する必要がある。
That is, the composition formula X of taeniolite. 5~to Mg2L
1(5i40..) In F2, for example I(
- Taeniolite (KMg2Li (5r4C1,o)
For the purpose of producing Ii"2 crystals, other ions Ba 2+ that compete with the coordination 1 to position 14 of X in the chemical formula,
Regarding Pb 2+ , Zn 2 + etc.←1
.. It is necessary to limit the crystal formation rate by these ions to within a certain value, preferably about 20% in the entire composition, and also to limit the crystal formation rate by these ions to about 20%.
The same as above is also applied when the purpose is to obtain the raw 1.7 of Lt (S+40to) F2). Furthermore, in the case of a taeniolite a conductor, A13+ coordinates to the phase t of Z and becomes 7
Regarding 133+, it is also necessary to limit the crystal formation rate due to these ions to within about 20% in the entire composition.

デュオライト系組成物とガラス4〆]・物質との配合比
率は全配合物をlOO屯量部とするときデュオライト系
組成物は30〜70 f4) +q部が好°ましい。
The blending ratio of the Duolite composition and the glass material is preferably 30 to 70 f4) + q parts when the entire composition is expressed as 100 parts by weight.

本発明によるデュオライト系用成%とガラス性物質との
組合せにおいては、(1L合溶融体が炉出され成型が終
了するまでの#后、iM時間30〜50分において温度
−粘塵条)’Fは、炉出、流動移動(12(10〜13
00℃、粘度101.5〜1020ポアズ)からフィダ
ー等により成型磯艮入時まで連続的に粘度は低下1〜.
成型開始時(950〜1100℃ l (I L O〜
1050  ポアズ)、成型終了時(50〜850℃、
10”5〜1(1”’  ポアズ)に至るまで通常の板
ガラスの範囲に合致するもので、この間結晶生成等によ
る粘り11′上昇の現壕は発生せず、損傷のない成型品
を造ることができる。才た成型品体内i11’=に結晶
を生成さぜる結晶化熱lル、畦工程は1戊型仔了後70
0〜850℃で40〜60分保持をすることにより達成
でき、成型終了後連続して徐冷工程の温度操作範囲で行
えるので、略通常のガラス製品の製造工程の枠内で結晶
化ガラス成型品を完成することができる。
In the combination of the Duolite composition and the glassy substance according to the present invention, (after the 1L melt is discharged from the furnace and the molding is completed, the temperature - viscous temperature at iM time of 30 to 50 minutes) 'F is furnace exit, fluid movement (12 (10 to 13
00°C, viscosity 101.5 to 1020 poise) to the time of molding with a feeder etc.
At the start of molding (950-1100℃ l (ILO~
1050 poise), at the end of molding (50-850℃,
10"5 to 1 (1"' poise), which corresponds to the range of normal plate glass, and during this period, the current 11' increase in viscosity due to crystal formation etc. does not occur, and molded products without damage can be produced. I can do it. Crystallization heat is applied to generate crystals within the molded product.
This can be achieved by holding the temperature at 0 to 850°C for 40 to 60 minutes, and it can be carried out continuously within the temperature range of the slow cooling process after the completion of molding, so crystallized glass molding can be performed almost within the framework of the normal glass product manufacturing process. can complete the product.

またデュオライト系組成物の中、XがBa2+である系
列のもの〔たとえばBa05Mg、 Li(5i401
o) F2.  BaMg2Li (A18i30to
) F、 。
Furthermore, among the duolite compositions, those in which X is Ba2+ [for example, Ba05Mg, Li(5i401
o) F2. BaMg2Li (A18i30to
) F.

BaMg2Lx (BS:B 016) F2 )  
は溶融体の粘度を低下させる作用があるので、溶融体か
ら成型終了時まで急激な粘度変化を起すことがないばか
りでなく成型終了時筐での所要時間を延ばす効果がある
BaMg2Lx (BS:B 016) F2)
Since this has the effect of lowering the viscosity of the molten material, it not only prevents the viscosity from rapidly changing from the time of the molten material until the end of molding, but also has the effect of prolonging the time required in the housing at the end of molding.

本発明においてガラス性物質に混合するフッ素マイカは
テニオライト系組成物を主成分とするが、これに他のフ
ッ素マイカを添加することができる。例えば上記したよ
うにBa−テニオライトは粘度低下作用があるので、こ
れにに−フロゴバイト(KMg3(A18i30so)
 li’、 )十に一部ケイ素マイカ[KMgLi (
8j4010 ) Fz)のような結晶性のよいフッ素
マイカと共存させると、これらのフッ素マイカの高温領
域(1400〜1200℃)での結晶生成を抑制する。
In the present invention, the fluorine mica to be mixed with the glassy substance has a teniolite composition as its main component, but other fluorine mica can be added thereto. For example, as mentioned above, Ba-teniolite has a viscosity-lowering effect, so it can be used as phlogobite (KMg3 (A18i30so)).
li', ) ten to some silicon mica [KMgLi (
When coexisting with fluorine mica having good crystallinity such as 8j4010) Fz), crystal formation of these fluorine mica in the high temperature range (1400 to 1200°C) is suppressed.

添加するフッ素マイカは13a−テニオライト100重
量部に対し80市量部以下である。この結晶の抑制現象
を少なくとも毎分約100℃以上の速度で冷却した場合
について電子顕微鏡写真で観察すると、極めて微晶(、
I+−j品径10〜30μm)の析出が、トイめられる
が、11tt+と(7ては少駄である。
The amount of fluorine mica added is 80 parts by weight or less per 100 parts by weight of 13a-teniolite. When this crystal suppression phenomenon is observed using electron micrographs when cooling at a rate of at least about 100°C or more per minute, it is found that very fine crystals (
Precipitation of I+-j (10 to 30 μm in diameter) is observed, but 11tt+ and (7) are insignificant.

このようにに−フロゴバイト等にテニオライト系組成物
を混合することにより、ガラス性物質との混合溶融体の
粘度上昇は抑制され、成型加工の可能な条件(基準例1
04°0ポアズー1000℃〜107°0ポアズ−75
0℃)に合致する。
In this way, by mixing a taeniolite composition with phlogovite, etc., the increase in viscosity of the mixed melt with a glassy substance is suppressed, and the conditions that allow molding (Standard Example 1) are suppressed.
04°0 poise-1000℃~107°0 poise-75
0°C).

さらにこうしたに−フロゴパイトやI(−四ケイ素マイ
カとBa−テニオライト系組成物との組合せによるもの
を結晶化熱処理すると、成型終了時700〜850℃に
約1時間保持した場合Ba−テニオライト系マイカの結
晶は、先行して成型品中に生成しているに一フロゴバイ
トまたはに一部ケイ素マイカの微晶を結晶核として生成
および成燻が促進され、結晶化量を増大させることがで
きる。この組合せにおいては、当然Ha−テニオライト
とに一フロゴノ(イトまたはに一部ケイ素マイカのそれ
ぞれの結晶だけでなく両者間の固溶体結晶も生成する。
Furthermore, when a combination of phlogopite, I(-tetrasilicon mica, and Ba-teniolite composition) is heat-treated for crystallization, Ba-teniolite-based mica is formed when kept at 700 to 850°C for about 1 hour at the end of molding. Crystals are generated and smoked using microcrystals of phlogobite or silicon mica that have previously been generated in the molded product as crystal nuclei, and the amount of crystallization can be increased.This combination Naturally, not only individual crystals of Ha-teniolite and partially phrogonite or partially silicon mica but also solid solution crystals between the two are formed.

たとえばLSa(1,6rνIg 2 L I(b i
 40B。) F2とK −Mga (Al5i301
o ) ”2の他にK Ba Mg、Lt (AI 2
St 601g ) F4のような固溶体結晶も一部に
生成する。この方法で結晶化熱処理を終了した製品をさ
らに1000〜l 100 T、で1〜2時間加熱する
と、f(−70ゴバイト、1″マたはに一部ケイ累マイ
カ系の結晶の成長は著しく、結晶径1〜3にの大きさの
ものが析出し、成峨品に美麗な斑模様を付与することが
できる、。
For example, LSa(1,6rνIg 2 L I(b i
40B. ) F2 and K-Mga (Al5i301
o) “In addition to 2, K Ba Mg, Lt (AI 2
St 601g) Solid solution crystals such as F4 are also formed in some parts. When the product that has undergone crystallization heat treatment in this way is further heated at 1000 to 100 T for 1 to 2 hours, the growth of f(-70 gobite, 1" or some silicate mica crystals is remarkable. , crystals with a diameter of 1 to 3 are precipitated, and a beautiful mottled pattern can be imparted to the grown product.

本発明でitさらに、」1記したデュオライト系組成物
と他のフッ素マイカ同志の組合せにおいて、溶融法によ
るフッ索マイカh4i品の導入だけでなく、一定樋の同
相反応のし7くみにより生成するフッ素マイカに11成
を添加し−C結晶を共生させることができる。固相反応
による組成のものは、フッ素マイカの一般式のY、  
Zの位fffKpe2+、  1.+o3+、  co
3+、  cr3+、  NIZ+、  Ni”。
In addition, in the present invention, in the combination of the duolite composition described in 1 and other fluorine mica, not only the fluorine mica h4i product is introduced by the melting method, but also the product is produced by the in-phase reaction of a certain gutter. By adding element 11 to fluorine mica, -C crystals can coexist. Those with a composition based on solid phase reaction have the general formula Y of fluorine mica,
Z digit fffKpe2+, 1. +o3+, co
3+, cr3+, NIZ+, Ni”.

Cu2→、 八1n2+、  Tia+、  +pH4
+、  l5c4+、oようなイオンが配位するものが
多く、このものはそれぞれ華麗なZlj色性フッ素マイ
カ結晶である。したがって2着色性ツノ糸マイノJ A
1’i品の組成を選択することにLす、結晶化カラス成
型品にバラエティにとんだ色、llAlを・i□J’ 
fjすることができる。
Cu2→, 81n2+, Tia+, +pH4
There are many cases in which ions such as +, l5c4+, and o are coordinated, and each of these is a brilliant Zlj colored fluorine mica crystal. Therefore, the two-colored horn yarn Mino J A
1'i Selecting the composition of the product, a variety of colors for the crystallized glass molded product, llAl, i□J'
fj can be done.

この柚の例をあげると(1(Iv1g15Col、5 
(A18i。
To give an example of this yuzu (1(Iv1g15Col, 5
(A18i.

010 ) l!’2 t  c、t  l  1 0
0 ”(:、  イ:’ 14p 又i’:l: ヒ7
り色1 +〔1(八4g2.s  Ni o2 (Al
Si 301o )  l+’2 、   c、t  
l  0 0 0℃、緑黄色] +  〔i(Mg2.
−2.+10 Coo、as−0,2(Al8i301
0) F2#  C−1L 000’C茶褐色]、[K
Fe3(lI’e8i301(、) li”2.  c
、t 6500に、黒灰色〕。
010) l! '2 t c, t l 1 0
0 ”(:, i:' 14p also i':l: h7
Bright color 1 + [1 (84g2.s Ni o2 (Al
Si 301o) l+'2, c, t
l 0 0 0°C, green yellow] + [i(Mg2.
-2. +10 Coo, as-0,2 (Al8i301
0) F2# C-1L 000'C brown], [K
Fe3(lI'e8i301(,) li"2.c
, t 6500, black-gray].

〔1(I〜4gto  Mn2.0   (AIS+、
0.、、  )  l”2  、   c、1   1
  0 0 0℃、 褐色 )  、   [K  A
lTi”  (Al5i30□。 )  ”’z  *
c、t 800℃、ベージ−色〕等かある。
[1(I~4gto Mn2.0 (AIS+,
0. ,, ) l”2 , c, 1 1
000℃, brown), [KA
lTi" (Al5i30□.) "'z *
c, t 800℃, beige color] etc.

本発明で主体とするデュオライト系マイカと共成させる
上記した固相反応のしくみによるフッ素マイカとの紹合
せは、結晶化ガラス成型品の結晶の大きさ、模様や色調
などの外観、およびロール成型などの成型時における溶
融体より徐冷にいたる製造条件えの適合性を考慮して決
定する。そして共成させるフッ素マイカの配合量はテニ
オライト系組成物、テニオライト系組成物とに一フロゴ
バイトまたはテニオライト系組成物とに一部ケイ素マイ
カの合計を100重量部とするとき30重吋部以下であ
る。これら共成させるフッ素マイカは、その結晶のみで
なく結晶生成用の原料組成分(これらを他のフッ素マイ
カ系組成物と呼ぶ)でもよい。従って本発明においてテ
ニオライト系組成物に添加することのできる他のフッ素
マイカ系組成物として 、は、前記したl(−フロゴバ
イト等とこの着色性フッ素マイカがある。
The introduction of fluorine mica through the above-mentioned solid phase reaction mechanism, which is co-formed with the duolite mica that is the main subject of the present invention, depends on the appearance of the crystallized glass molded product, such as the size of the crystals, the pattern and color tone, and the roll. It is determined by considering the suitability of manufacturing conditions such as slow cooling of the molten material during molding. The amount of fluorine mica to be co-formed is 30 parts by weight or less when the sum of the teniolite composition, one phlogovite in the teniolite composition, or one part silicon mica in the teniolite composition is 100 parts by weight. . The fluorine mica to be co-formed may be not only its crystals but also raw material compositions for crystal formation (these are referred to as other fluorine mica compositions). Therefore, in the present invention, other fluorine mica compositions that can be added to the taeniolite composition include the above-mentioned l(-phlogovite) and the colored fluorine mica.

以下実施例により本発明の結晶化ガラス成型品について
具体的に説明する。
Hereinafter, the crystallized glass molded product of the present invention will be specifically explained with reference to Examples.

実捲例1 ガラス性物質の成分組成が810272%。Actual example 1 The component composition of the glassy substance is 810272%.

Na2O13,5%、Ca012.2%、 Mg01.
0%。
Na2O13.5%, Ca012.2%, Mg01.
0%.

A1203 + 、  ’l”e 2o3 1.3%の
もの145−tin部とBa−デュオライト(13ao
5Mg2T、i (5i40.g )F2 )  の成
分組成が5I0254.5%、  l1a017.4%
、  Li2O3,4%、 Mg09.1%、 Mgl
1’215.6%のものを55重量部で配合した原料バ
ッジを1400℃で溶融し、板ガラスの製造工程に準拠
して結晶化ガラス成型品を製造した。炉出しからフィー
ダーを経て成型機装入直前の1350℃から900℃ま
で35分かかる冷却速度でノ溶融体ノ粘度ハl 300
’C−10”ポアズ。
A1203 +, 'l''e 2o3 1.3% 145-tin part and Ba-duolite (13ao
The component composition of 5Mg2T, i (5i40.g)F2) is 5I0254.5%, l1a017.4%
, Li2O3, 4%, Mg09.1%, Mgl
A raw material badge containing 55 parts by weight of 1'215.6% was melted at 1400° C., and a crystallized glass molded product was manufactured in accordance with the manufacturing process of plate glass. The viscosity of the molten material was 300 l at a cooling rate of 35 minutes from 1350°C to 900°C from the time it was taken out of the furnace, through the feeder, and just before it was charged into the molding machine.
'C-10'' Poise.

1200℃−1028ホ7ス、  1100 ’C−1
0”ホ7ス、  l 000 ”C−1045;f!7
ス、  900℃10 ボ7ス−?l’ありfc。90
0℃〜8oo℃間でロール成型により約2 Oram厚
の板状体に成型したI’&、800℃で50分保つ温度
条件で結晶化処理を行い乳白色の結晶化ガラス成型品を
得た。この成型品の物理的性質は気孔率0.比−fj2
.79.硬度(ショアー)85.抗折力920 kg/
 cr/lであり、X線回析、電顕写真およびその他の
測定によれば、 Bao、I、MgzLj (8!40
to )F2  結晶を主体(95%以上)とするマイ
カ結晶が成型品中に30〜40重it%生成しており。
1200℃-1028 H7, 1100'C-1
0”Ho7s, l 000”C-1045;f! 7
900℃10 Boss 7-? l' with fc. 90
I'& was molded into a plate-like body with a thickness of about 2 Oram by roll molding at 0°C to 80°C, and crystallized at a temperature of 800°C for 50 minutes to obtain a milky white crystallized glass molded product. The physical properties of this molded product include a porosity of 0. Ratio - fj2
.. 79. Hardness (Shore) 85. Transverse rupture strength 920 kg/
cr/l, and according to X-ray diffraction, electron microscopy and other measurements, Bao, I, MgzLj (8!40
30 to 40% by weight of mica crystals, which are mainly (95% or more) F2 crystals, are generated in the molded product.

結晶粒径は300〜700μmに分布していることが観
察された。
It was observed that the crystal grain size was distributed between 300 and 700 μm.

実施例2 前記の成型品の配合でBa−テニオライト55重量部の
中16.5重量部をに一フロゴノ(イ) [KMg3 
(Al5s30、。)F2〕組成の8i0241゜8%
、に2010.9%、 Al20311.8%、 Mg
O18,7%= MgFz 16.8%からなるもので
置き換えて板状体を製造した。配合物を溶融炉で145
0°Cで溶融し2次いで炉出した溶融体を ′1200
℃まで−0−−冷却する。
Example 2 In the formulation of the above-mentioned molded product, 16.5 parts by weight of 55 parts by weight of Ba-taeniolite was added to phlogono(a) [KMg3
(Al5s30,.)F2] composition of 8i0241°8%
, 2010.9%, Al20311.8%, Mg
A plate-like body was produced by replacing O18.7% with one consisting of MgFz 16.8%. The blend was melted in a melting furnace for 145 minutes.
The molten material melted at 0°C and then taken out from the furnace was
Cool to -0°C.

1200℃の粘度は10 ポアズであり、  1i00
℃の粘度は104.2ポアズであった。その一部を耐熱
ステンレス板に流出し急冷して試料片を得た。この試料
片を観察すると、10μm付近の微細な結晶が少曾均質
に分布していることが認められた。約1100℃の溶融
体をフィーダーに送り2次いでフィーダーを経てローラ
ー成型機に装入し、90(1〜80 f’l 0間で粘
度1060ポアズ台で約20ynm厚の板状体に成型し
て損傷ない成型品を得た。次いで800℃で約1時間加
熱して第一次結晶化熱処理を行い、さらに1050℃で
約1時間第二次結晶化熱処理を行って結晶化ガラス成型
品を得た。これを政務測定したところ成型品体中に1ぐ
一70ゴバイト系結晶が500μm〜2000μmに成
畏して散在し、研磨した表面は美Ifへな大理石様外観
を備えている。
The viscosity at 1200℃ is 10 poise, 1i00
The viscosity at °C was 104.2 poise. A portion of it was poured onto a heat-resistant stainless steel plate and rapidly cooled to obtain a sample piece. When this sample piece was observed, it was found that fine crystals around 10 μm were distributed fairly homogeneously. The molten material at about 1100°C is sent to a feeder, then charged into a roller molding machine via the feeder, and molded into a plate-like material with a thickness of about 20 yn with a viscosity of 1060 poise between 90 (1 and 80 f'10). A molded product with no damage was obtained. Next, a primary crystallization heat treatment was performed by heating at 800°C for about 1 hour, and a secondary crystallization heat treatment was further performed at 1050°C for about 1 hour to obtain a crystallized glass molded product. When this was measured, it was found that 1 to 70 govite crystals were scattered in the molded product in a size of 500 μm to 2000 μm, and the polished surface had a beautiful marble-like appearance.

実施例3 11己合 (1)  母材ガラスとして電球ガラスに見合う5in
267.4%、 Al2031.0%、  13203
4.5%、  Ca04.6%、  K2O12,0%
、  Na2O2,5%、  Zn04.0%、Ba0
4%に調整された原料バッジを重量で60部。
Example 3 11 pieces (1) 5 inches suitable for light bulb glass as base material glass
267.4%, Al2031.0%, 13203
4.5%, Ca04.6%, K2O12.0%
, Na2O2, 5%, Zn04.0%, Ba0
60 parts by weight of raw material badge adjusted to 4%.

(2)7ツ素ツイ力(Ba Mg2L1(A18i10
1g))−2組成〕の結晶生成を目的とするS iO□
434 %、   Ba0 1 8. 5  %、  
 IJi20 3. 5  %。
(2) Seven element strength (Ba Mg2L1 (A18i10
1g))-2 composition] for the purpose of crystal formation
434%, Ba0 1 8. 5%,
IJi20 3. 5%.

MgF216.6%、 Mg0 9.6%、  B20
.8.4%に?J@整された原料バッジを重量で35部
MgF216.6%, Mg0 9.6%, B20
.. To 8.4%? J@ 35 parts by weight of prepared raw material badges.

(3)共成させるフッ素マイカ(K Mgts COt
、s(A18i、01o) F2  組成〕の結晶生成
を目的とする配合5i0236%、に209,5%、 
Co20325%、  MgF’219.3%、 Al
20310.2%に調整された原料バッジを重量で5部
(3) Co-synthesized fluorine mica (K Mgts COt
, s(A18i, 01o) F2 composition] 5i0236%, 209.5%,
Co20325%, MgF'219.3%, Al
5 parts by weight of raw material badge adjusted to 20310.2%.

これらの原料バッジ(1)、 (2)、 (3)を均質
に混合し原料バッジを調整した。
These raw material badges (1), (2), and (3) were homogeneously mixed to prepare a raw material badge.

製造 原料バッジを8iC質坩堝に11(g採取し、マツフル
式エレマ炉中で1400℃30分で溶融し。
11 (g) of manufacturing raw material badges were collected in an 8iC crucible and melted in a Matsufuru-type Elema furnace at 1400°C for 30 minutes.

炉出して溶融体を坩堝ごと大気中で1400°Gより1
100°C1で30〜359C/分の冷却速度で放冷し
9次いで1100℃より1000℃まで少くとも20分
間ガス炎で坩堝外周を加熱して温度降下を調節し、坩堝
より溶融体を取シ出し、ステライト耐熱鋼製の実験用ミ
ニローラーにより850〜20℃で延展成型して巾10
α、長さ約35crrLの淡青色成型体を得た。成型体
が750°Cになった時、予め750℃に保持しである
′1E気炉中に突入し、750°C〜740℃で25分
間保持し2通電全停止して炉中で冷却した。成型体を炉
出したのちその上下面を常法の研磨方法により、?f!
面状に仕−ヒげを行い製品結晶化ガラス成型品を得ブヒ
。製品は淡青色のゴマ状結晶が均質に群生した模様の美
麗なものであった。また製品の物理特性を土比重281
.抗折強度7201、g/ crl 、ショアー硬度9
2.シャルピー衝撃強咲2.61Kgm / C11,
熱膨張係数(30〜500°G)75X10”であった
Take out the furnace and heat the melt together with the crucible in the atmosphere at 1400°G.
Cool the crucible at a cooling rate of 30 to 359 C/min at 100°C1, then heat the outer periphery of the crucible from 1100°C to 1000°C for at least 20 minutes to adjust the temperature drop, and remove the melt from the crucible. Then, it was rolled and molded at 850 to 20℃ using an experimental mini roller made of Stellite heat-resistant steel to a width of 10 mm.
α, a pale blue molded body with a length of about 35 crrL was obtained. When the temperature of the molded body reached 750°C, it was put into a '1E air furnace which had been kept at 750°C in advance, held at 750°C to 740°C for 25 minutes, and then completely stopped for two energizations and cooled in the furnace. . After the molded body is taken out of the furnace, its top and bottom surfaces are polished using a conventional method. f!
By cutting the surface, we obtain a crystallized glass molded product. The product had a beautiful pattern of homogeneous clusters of pale blue sesame-like crystals. In addition, the physical properties of the product are soil specific gravity 281
.. Bending strength: 7201, g/crl, Shore hardness: 9
2. Charpy impact strong bloom 2.61Kgm / C11,
The coefficient of thermal expansion (30-500°G) was 75×10”.

実施例4 配合 (1)  ガラスx11成(市叶%) 表1 (2)  フッ累マイカ組成 表2 結晶化ガラス成型品の戸す造 表3 外11見 何時工程を経た〕良品は結晶の生成によって美麗なもの
となった。
Example 4 Formulation (1) Glass x 11 formation (Ichiha %) Table 1 (2) Fluorine mica composition Table 2 Door structure table of crystallized glass molded product It became beautiful.

製品の性能 表4Product performance Table 4

Claims (1)

【特許請求の範囲】 0)ガラス性物質の溶融固化物とテニオライト系結晶と
からなる結晶化ガラス成型品。 (2)  ガラス性物質の溶融固化物とテニオライト系
結晶及びその他のフッ素マイカ系組成物結晶とからなる
結晶化ガラス成型品。 (3)  ガラス性物質とテニオライト系組成物とを混
合し、溶融すると共にこれを加工成型し。 次いで冷却することを特徴とする結晶化ガラス成型品の
製造法。 (4)  ガラス性物質とテニオライト系組成物及び他
のフッ素マイカ系組成物とを混合し、溶融すると共にこ
れを加工成型し2次いで冷却することを特徴とする結晶
化ガラス成型品の製造法。
[Claims] 0) A crystallized glass molded product comprising a molten and solidified glass substance and taeniolite crystals. (2) A crystallized glass molded product consisting of a molten solidified glass substance, taeniolite crystals, and other fluorine mica composition crystals. (3) A glassy substance and a taeniolite composition are mixed, melted, and processed and molded. A method for producing a crystallized glass molded product, which comprises then cooling. (4) A method for producing a crystallized glass molded product, which comprises mixing a glassy substance with a taeniolite composition and another fluorine mica composition, melting the mixture, processing and molding the mixture, and then cooling it.
JP15563082A 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture Granted JPS5945941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15563082A JPS5945941A (en) 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15563082A JPS5945941A (en) 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture

Publications (2)

Publication Number Publication Date
JPS5945941A true JPS5945941A (en) 1984-03-15
JPS6238309B2 JPS6238309B2 (en) 1987-08-17

Family

ID=15610186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15563082A Granted JPS5945941A (en) 1982-09-06 1982-09-06 Formed article of crystallized glass and its manufacture

Country Status (1)

Country Link
JP (1) JPS5945941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767725A (en) * 1984-12-31 1988-08-30 Masao Yoshizawa Crystallized glass-ceramic molded product and method of manufacturing
FR2655264A1 (en) * 1989-12-04 1991-06-07 Centre Nat Rech Scient Machinable glass-ceramics for dental prostheses

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468109U (en) * 1990-10-25 1992-06-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767725A (en) * 1984-12-31 1988-08-30 Masao Yoshizawa Crystallized glass-ceramic molded product and method of manufacturing
FR2655264A1 (en) * 1989-12-04 1991-06-07 Centre Nat Rech Scient Machinable glass-ceramics for dental prostheses

Also Published As

Publication number Publication date
JPS6238309B2 (en) 1987-08-17

Similar Documents

Publication Publication Date Title
US5352638A (en) Nickel aluminosilicate glass-ceramics
EP0536572B1 (en) Colored, textured glass-ceramic articles
US3732087A (en) Tetrasilicic mica glass-ceramic method
US6130178A (en) Strong miserite glass-ceramics
EP0222478B1 (en) Glass-ceramics containing cristobalite and potassium fluorrichterite
US4414281A (en) Glass-ceramic articles having metallic surfaces
JPH08198639A (en) Colored glass ceramic and its preparation
US5061307A (en) Crystallized glass having natural-marble-like surface patterns and method of producing the same
US3761235A (en) Marble like glass material and method of producing the same
US4784976A (en) Glass-ceramics containing NZP-type crystals
US5066524A (en) Crystallized glass article with colored small masses dispersed in a surface thereof
JPS5945941A (en) Formed article of crystallized glass and its manufacture
US4861734A (en) Alkaline earth aluminoborate glass-ceramics
Yaowakulpattana et al. Effect of alkaline and alkaline-earth metal oxides addition on the glass formation and crystallization of ZnO-Al 2 O 3-SiO 2 glasses
US3834911A (en) Glass composition and method of making
CN117466535A (en) Microcrystalline glass with excellent acid and alkali resistance as well as preparation method and application thereof
JPS58199742A (en) Calcium fluoride phlogopite glass-ceramic
JPS605039A (en) Molded article of crystallized glass and its manufacture
JPH0692257B2 (en) Method for producing pyroxene-based crystallized glass
KR900003139B1 (en) Ceramic glass having natural marble figure
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
JPS58194756A (en) Formed article of crystallized glass and its manufacture
KR910009979B1 (en) Crystallized glass having the color of natural marble
JPS61201631A (en) Production of crystallized glass article
JPH05279082A (en) Production of crystallized glass