JPS6374936A - Crystallized glass and production thereof - Google Patents

Crystallized glass and production thereof

Info

Publication number
JPS6374936A
JPS6374936A JP21997086A JP21997086A JPS6374936A JP S6374936 A JPS6374936 A JP S6374936A JP 21997086 A JP21997086 A JP 21997086A JP 21997086 A JP21997086 A JP 21997086A JP S6374936 A JPS6374936 A JP S6374936A
Authority
JP
Japan
Prior art keywords
glass
raw material
powder
mgo
crystallized glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21997086A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21997086A priority Critical patent/JPS6374936A/en
Publication of JPS6374936A publication Critical patent/JPS6374936A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily produce crystallized glass having high strength, by pulverizing a glass raw material containing SiO2, Al2O3, MgO, CaO, Ma2O and K2O of a specific composition, densely compression molding and heat-treating at relatively low temperature. CONSTITUTION:A glass raw material which comprises 65-75wt.% SiO2, 1-5wt.% Al2O3, 1-7wt.% MgO, 5-15wt.% CaO and 10-20wt.% Na2O+K2O as essential components and, if necessary, <=10wt.% glass colorant, is colored and contains SiO2+Al2O3+MgO+Na2O+K2O>90wt.% is pulverized into powder having >=70% particles with <=200 meshes particle size. Then the powder is compression molded into pressed powder having >=55% true density. Then the molded article is heat-treated, the glassy raw material powder is softened and mutually fused, integrated, made dense and made to crystallize. Consequent ly, devitrite crystal is mainly precipitated and high-strength crystallized glass having both characteristics of glass and those of glass ceramic is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い絶縁性、耐薬品性、表面光沢などガラスと
しての特性と、ガラスセラミックスとしての優れた強度
を合わせもつ結晶化ガラス及びその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to crystallized glass that has the characteristics of glass such as high insulation, chemical resistance, and surface gloss, and the excellent strength of glass ceramics, and the production thereof. Regarding the method.

(従来の技術) 従来の結晶化ガラスは一般に核形成剤を含むガラス原料
を溶融し、各種の成型機によって所望の形状に成型して
後、結晶化熱処理を施して結晶化ガラスとしていた。
(Prior Art) Conventional crystallized glass is generally produced by melting a glass raw material containing a nucleating agent, molding it into a desired shape using various molding machines, and then subjecting it to crystallization heat treatment to obtain crystallized glass.

一方核形成剤を含まないで結晶化ガラスを得る方法とし
て、溶融したガラスを水冷などによる急冷によって破砕
し適当な大きさのガラス小体とし、該ガラス小体を所望
形状の型枠に集積して熱処理することにより、各ガラス
小体を互いに融着一体化する一方結晶化する方法(以下
集積法と称す)が開発され「特開昭48−78217号
」に開示されている。
On the other hand, as a method for obtaining crystallized glass without containing a nucleating agent, molten glass is rapidly cooled with water or the like to crush it into glass corpuscles of an appropriate size, and the glass corpuscles are assembled in a mold of a desired shape. A method (hereinafter referred to as the integration method) in which glass bodies are fused together and crystallized by heat treatment has been developed and disclosed in ``Japanese Patent Application Laid-Open No. 78217/1983.''

(発明が解決しようとする問題点) 一般にガラスは強度的に問題のある材質で、その向上は
常に希求されているところであり、本発明は特別な成分
を必要とすることなく、従来のガラスの特性を備えなが
ら強力なガラスを、結晶化ガラスとして提供しようとす
るものであり、しかもその製造方法は、従来の結晶化ガ
ラスの製造方法の有する次のような問題点を解決してな
されているのである。
(Problems to be Solved by the Invention) Generally, glass is a material with a problem in terms of strength, and improvements in its strength are always sought after. The aim is to provide strong glass with special characteristics as crystallized glass, and its manufacturing method solves the following problems of conventional crystallized glass manufacturing methods. It is.

すなわち核形成剤を用いて結晶化を図る方法は、原料に
比し核形成剤が高価な場合のあることが問題であり、ま
た核形成剤を用いないで結晶化を可能とした集積法は、
どのような結晶化ガラスの成型にも適するといった方法
ではなく、たとえば結晶の析出する温度で集積の各ガラ
ス小体は、互いに融着一体化できるような充分低い粘性
をもつものでなければ適さない、というように原料ガラ
スに制限のあることが問題となっている。
In other words, the problem with the method of crystallization using a nucleating agent is that the nucleating agent is sometimes expensive compared to the raw material, and the integration method that allows crystallization without using a nucleating agent is ,
This method is not suitable for forming any type of crystallized glass; for example, it is not suitable unless the individual glass bodies that are assembled have a sufficiently low viscosity that they can be fused together and integrated at the temperature at which the crystals are precipitated. The problem is that there are limitations to the raw material glass.

つまり集積のガラス小体を加熱していった場合、軟化温
度付近で生成してくる結晶核の成長速度が速くて、小体
の融着の時期に既に結晶が盛んに成長しているような成
分組成を有する場合は、結晶の成長によって粘性が増大
し、各ガラス小体間の融着が困難になるのであり、更に
温度を上げて各ガラス小体の融着一体化を図ろうとすれ
ば、逆に結晶が破壊若しくは転移して結晶化ガラスにな
らないのである。
In other words, when the accumulated glass bodies are heated, the growth rate of the crystal nuclei that are generated near the softening temperature is fast, and the crystals are already actively growing at the time of the fusion of the bodies. If the glass particles have a certain composition, the viscosity increases due to the growth of crystals, making it difficult to fuse the glass bodies together. On the contrary, the crystals do not break or metastasize and become crystallized glass.

従ってFe30a 、TxOz、ZrO,、硫化物など
の核形成剤や、あるいは核形成作用を有する着色剤たと
えばFeO+ Fe103 、Cr Zooなどを多く
含む原料は使用できないのである。
Therefore, raw materials containing a large amount of nucleating agents such as Fe30a, TxOz, ZrO, sulfides, or coloring agents having a nucleating effect such as FeO+ Fe103, Cr Zoo, etc. cannot be used.

更に集積法にはその製品中に比較的大きな気泡(径0.
5 ts程度)が含まれ易いという欠点も有している。
Furthermore, the accumulation method produces relatively large bubbles (diameter 0.
It also has the disadvantage that it tends to contain particles (approximately 5 ts).

(問題点を解決するための手段) 以上の問題点を解決するために、本発明の第1発明であ
る結晶化ガラスにおいては、重量百分率で、SiO2:
 65〜75χ、NtOs: 1〜5%、MgO:1〜
7χ、CaO:5〜15χ、NazO+ KzO: 1
0〜20χを必須成分とし、かつ5i02+/V2O3
+MgO+NazO+KzO>90χなるように含有し
、主としてデビトライト結晶から成るようにしたのであ
り、同ガラスの製造方法の第3発明においては、重量百
分率で、Sing : 65〜75χ、N2O3:1〜
5%、MgO: 1〜7%、CaO:5〜15χ、Na
2O+KzO: 10〜20χを必須成分とし、かツS
 i Oz+/V、03 + MgO+Na、O+に、
O>90χなるように含有して成るガラス状原料を、2
00a+esh以下の粒子が70%以上を占める粉体に
粉砕し、同粉体を真密度の55%以上の圧粉体に圧縮成
形して後、該成形体を熱処理してガラス状原料粉末相互
を軟化融着させて、一体化及び緻密化する一方結晶化を
図り、主としてデビトライト結晶を析出させるようにし
ているのである。
(Means for Solving the Problems) In order to solve the above problems, in the crystallized glass which is the first invention of the present invention, SiO2:
65-75χ, NtOs: 1-5%, MgO: 1-
7χ, CaO: 5-15χ, NazO+KzO: 1
0 to 20χ as essential components, and 5i02+/V2O3
+MgO+NazO+KzO>90χ, and the glass is mainly composed of debitrite crystals, and in the third invention of the method for producing the same glass, in terms of weight percentage, Sing: 65 to 75χ, N2O3: 1 to
5%, MgO: 1-7%, CaO: 5-15χ, Na
2O+KzO: 10-20χ is an essential component, KatsuS
i Oz+/V, 03 + MgO+Na, O+,
A glassy raw material containing O>90χ, 2
The powder is pulverized into a powder in which particles of 00a+esh or less account for 70% or more, and the powder is compression-molded into a compact having a true density of 55% or more, and then the compact is heat-treated to separate the glassy raw material powders from each other. They are softened and fused, integrated and densified, and crystallized to precipitate mainly debitrite crystals.

(作 用) 本発明の製造方法は、集積法がガラス小体を型枠に単に
集積して熱処理するのに比し、ガラス状原料の微粉を圧
縮成形したものを熱処理する点に顕著な差がある。
(Function) The manufacturing method of the present invention has a remarkable difference in that, compared to the accumulation method, in which glass bodies are simply assembled in a mold and heat-treated, a fine powder of a glassy raw material is compression-molded and then heat-treated. There is.

すなわちガラス粒が粗粒で単に集積された状態のものを
加熱する集積法では、加熱温度が軟化点に達した段階で
は粒子の鋭角部分等から軟化が始まっている程度で、粒
子体の略全体が軟化しかつ融着一体化するようになるに
は、粒子間の距離の関係もあって軟化点以上の相当な高
温、たとえば1100〜1200℃の加熱を必要として
おり、若し軟化点をや\上回る程度の低温で一体緻密化
を図ると非常な長時間を要するか、実現困難である。こ
れに比し本発明における微粒子圧粉体では、各粒子が質
量に比し広い面積で互いに緻密に接触しているために、
軟化点をあまり上回らない低温で融着一体化及び緻密化
が進むのである。
In other words, in the accumulation method in which coarse glass particles are heated, when the heating temperature reaches the softening point, the softening begins only at the sharp corners of the particles, and almost the entire particle body is softened. In order for the particles to soften and become fused and integrated, it is necessary to heat them at a considerably high temperature above the softening point, e.g. 1100 to 1200°C, depending on the distance between the particles. Attempting to achieve integrated densification at such a low temperature would require a very long time or be difficult to achieve. In contrast, in the fine particle green compact according to the present invention, since each particle is in close contact with each other over a large area compared to its mass,
Fusion, integration and densification proceed at low temperatures that do not significantly exceed the softening point.

このようにガラス状原料粒子の一体緻密化を低温で可能
としたことは、一体緻密化の後に結晶の成長化が図れる
ということであり、ガラス状原料粉末の成分、組成が結
晶の成長を容易とするものであっても、或いは核形成剤
もしくは核形成作用を有する着色剤を含むものであって
も、集積法に見られるような障害はない。
The fact that integral densification of glassy raw material particles is possible at low temperatures means that crystal growth can be achieved after integral densification, and the ingredients and composition of the glassy raw material powder facilitate crystal growth. Whether it is a nucleating agent or a coloring agent that has a nucleating effect, there are no hindrances as seen in the integration method.

第1図はガラス状原料微粉の圧縮成形体を加熱したとき
の温度と核形成速度及び結晶成長速度との関係を概念的
に示したグラフであり、縦軸に核形成速度及び結晶成長
速度をとり、横軸に温度をとっている。破線グラフが「
温度−核形成速度」曲線で、実線グラフが「温度−結晶
成長速度」曲線であり、s、p、が軟化点、M、P、が
融点を示している。
Figure 1 is a graph conceptually showing the relationship between temperature, nucleation rate, and crystal growth rate when a compression molded body of fine glassy raw material powder is heated, with the nucleation rate and crystal growth rate plotted on the vertical axis. The temperature is plotted on the horizontal axis. The dashed line graph is “
In the "temperature-nucleation rate" curve, the solid line graph is the "temperature-crystal growth rate" curve, s and p indicate the softening point, and M and P indicate the melting point.

上述のように微粉の圧縮成形体では軟化点をあまり上回
らない低温で、各ガラス粒子の融着一体化及び緻密化が
行われるのであり、この時期に核が発生しその数を増し
てゆくことをグラフは示しており、その後の昇温におい
て結晶の成長が盛んになっている。
As mentioned above, in a compression molded product of fine powder, each glass particle is fused and integrated and densified at a low temperature not much above the softening point, and during this period, nuclei are generated and their number increases. The graph shows that crystal growth increases as the temperature increases.

次に微粉の圧縮成形体としたことによる今一つの作用を
挙げると、結晶の成長の遅い成分組成のガラス、すなわ
ち通常では結晶化の容易でないものであってもこれを結
晶化することができるのである。
Next, another effect of compressing fine powder is that it is possible to crystallize even glass with a component composition where crystal growth is slow, that is, glass that is normally not easy to crystallize. be.

すなわち結晶化速度は (結晶化速度)=(結晶核数)×(結晶成長速度)のよ
うに表わされ、結晶核はガラス粒子間の融着界面に発生
し易く、微粉の圧縮成形体においては融着界面が多く、
かつ広く従って発生の結晶核も多い。このため結晶の成
長速度が大きくなくとも、結果的には結晶化速度を大な
らしめるもので、ひいては結晶化処理温度の低温化を可
能とするものである。
In other words, the crystallization rate is expressed as (crystallization rate) = (crystal nucleus number) × (crystal growth rate), and crystal nuclei are likely to occur at the fused interface between glass particles, and in a compacted compact of fine powder. has many fused interfaces,
And it is widespread, so there are many crystal nuclei that occur. Therefore, even if the crystal growth rate is not high, the crystallization rate can be increased as a result, and the crystallization temperature can be lowered.

以上のようにガラス状原料の微粉の圧縮成形体化は、核
形成剤の有無にか\わらず、広い範囲の組成で結晶化ガ
ラスの製造を可能としているのである。
As described above, compression molding of fine powder of glassy raw materials makes it possible to produce crystallized glass with a wide range of compositions, regardless of the presence or absence of a nucleating agent.

(実施例) まず成分の限定理由から述べると、本発明ではその結晶
化を主としてデビトライト(Devitrite)結晶
(NazO・3CaO・6SiOz)の析出に依るもの
で、従って成分バランスは同結晶の生成と、その結晶化
熱処理温度すなわち第1図における結晶の成長速度の大
となる温度、更に具体的に云えば850 ℃近傍を考慮
して限定しているのである。
(Example) First, to explain the reason for limiting the components, in the present invention, the crystallization mainly depends on the precipitation of Devitrite crystals (NazO.3CaO.6SiOz), and therefore the component balance is determined by the formation of the Devitrite crystals, The crystallization heat treatment temperature, that is, the temperature at which the crystal growth rate is high in FIG. 1, more specifically, is limited by considering the vicinity of 850°C.

必須成分 5i(h : 65〜75χ 65χ未満ではガラスの粘性が低く、前記熱処理温度で
は圧縮成形体の形状保持が難かしく、一方75χを越え
ると粘性が高くなり、圧縮成形体の緻密化が困難となる
。また析出結晶から云えば、65%以下ではNazo 
・2Ca0 ・3SiO1晶が、75χを越えるとSi
O□晶が主として析出するようになる。
Essential component 5i (h: 65-75χ If it is less than 65χ, the viscosity of the glass is low and it is difficult to maintain the shape of the compression molded product at the above heat treatment temperature. On the other hand, if it exceeds 75χ, the viscosity becomes high and it is difficult to make the compression molded product dense. Also, from the precipitated crystals, if it is less than 65%, Nazo
・2Ca0 ・3SiO1 crystal becomes Si when it exceeds 75χ
O□ crystals begin to precipitate mainly.

AIto3:l〜5χ N2O3は粘性を高める作用があり、ガラス状原料に必
要な粘性を与えるためには少なくとも1χは必要である
が、5χを越えると粘性過大となって圧縮成形体の緻密
化が困難となる。
AIto3: l~5χ N2O3 has the effect of increasing viscosity, and at least 1χ is necessary to provide the necessary viscosity to the glassy raw material, but if it exceeds 5χ, the viscosity becomes excessive and the compression molded product becomes densified. It becomes difficult.

MgO: 1〜7χ 7χを越えると粘性過大となって焼結時に圧縮成形体の
緻密化困難となる。1%以下は成分のバランス上1%以
上は必要である。
MgO: 1 to 7χ If it exceeds 7χ, the viscosity becomes excessively high, making it difficult to densify the compression molded body during sintering. 1% or less is required for component balance.

Cab:  5〜15χ ソーダ、石灰、珪酸素ガラスのバランス上5〜15χは
必要であり、15χを越えると耐酸性に弱くなる。
Cab: 5 to 15χ 5 to 15χ is necessary for the balance of soda, lime, and silica glass, and if it exceeds 15χ, acid resistance becomes weak.

Na、O+に、O: 10〜20χ 前記熱処理温度に対し、10χ未満ではガラスの粘性が
高く圧縮成形体の緻密化が遅くなる。一方20χを越え
ると粘性が低くなり過ぎ、熱処理中の圧縮成形体の形状
保持が困難となる。
Na, O+, O: 10 to 20[chi] When the heat treatment temperature is less than 10[chi], the viscosity of the glass becomes high and the densification of the compression molded product becomes slow. On the other hand, if it exceeds 20χ, the viscosity becomes too low, making it difficult to maintain the shape of the compression molded product during heat treatment.

なお上記必須成分はその合計が90%以上となるように
含有させるのであり、この限定は強度、成形性等の物性
において適性を保つためである。
The above-mentioned essential components are contained in such a way that the total amount is 90% or more, and this limitation is to maintain suitability in physical properties such as strength and moldability.

上記必須成分以外の成分として、ZnO、BaO1Pb
O、B2O2などの添加は各2χくらいまでであれば支
障はなく 、sb、o、は清澄剤として作用するもので
、原料の溶解時に1%以下で添加してもよい。
As components other than the above essential components, ZnO, BaO1Pb
There is no problem when adding O, B2O2, etc. up to about 2χ each, and sb and o act as clarifying agents and may be added in amounts of 1% or less when the raw materials are dissolved.

またFeO+FezO:+ 、CrzO* 、NiO5
CuO% Mn01、CoOなどの着色剤を10%以下
で含有した着色ガラス状原料を用いることによって、着
色の結晶化ガラスとすることも可能である。10%以下
の限定は必須成分が90%以上であることから決まって
くるが、10%以下で着色効果は十分挙げることができ
る。
Also, FeO+FezO:+, CrzO*, NiO5
It is also possible to obtain colored crystallized glass by using a colored glass-like raw material containing 10% or less of a coloring agent such as CuO% Mn01 or CoO. The limitation to 10% or less is determined by the fact that the essential component is 90% or more, but a sufficient coloring effect can be obtained at 10% or less.

次に製造方法について説明する。Next, the manufacturing method will be explained.

まず前記成分の原料を所定の組成になるように調合融解
し、これを水砕などの方法で破砕してガラス状の小体を
得てこれを原料とする。
First, the raw materials for the above components are mixed and melted to have a predetermined composition, and this is crushed by a method such as water pulverization to obtain glassy particles, which are used as raw materials.

勿論限定範囲の成分組成を有して既にガラス状となって
いるものを適宜の手段で破砕し小体としてもよい。
Of course, a glass-like material having a component composition within a limited range may be crushed by an appropriate means to form small bodies.

このようにして得られたガラス状小体を、たとえばボー
ルミルなどで更に微粉に粉砕する。このときの粒度は2
00mesh以下の微粒子が70%以上含まれるように
するのである。これは成形体の必要とする密度の確保の
ため、ひいてはガラス状原料粒子間の融着一体化及び緻
密化を、軟化点をや\上回る程度の温度で進行させるた
めである。
The glassy bodies thus obtained are further ground into fine powder using, for example, a ball mill. The particle size at this time is 2
The content of fine particles of 00 mesh or less is 70% or more. This is to ensure the required density of the molded product, and to allow the fusion and integration and densification of the glassy raw material particles to proceed at a temperature slightly above the softening point.

また粗粒が多いと製品に大きな気泡が含まれやすいが、
上記のような微粉とすることによってこれを防止するこ
とができるのである。
Also, if there are many coarse particles, the product will tend to contain large air bubbles.
This can be prevented by using fine powder as described above.

かくして得たガラス状原料微粉末を所望形状の圧縮成形
枠に入れ、真密度の55%以上の緻密圧粉体に成形する
。55%以上の限定は粒子の融着一体化及び緻密化が低
温で行われることを確実とするためと、同処理における
成形体の大巾な収縮変形を抑制するためであり、成形圧
力は20kgf/cd以上が適当である。
The glassy raw material fine powder thus obtained is placed in a compression molding frame of a desired shape and molded into a dense green compact having a true density of 55% or more. The limitation of 55% or more is to ensure that the particles are fused and integrated and densified at a low temperature, and to suppress the large shrinkage deformation of the molded product during the same process, and the molding pressure is 20 kgf. /cd or more is appropriate.

なお圧縮成形に際しては予めガラス状原料粉末に、粘結
剤としてポリビニルアルコール(P、V、A)の2〜3
χ溶液を5〜15χ (粉体重量比)で添加すれば圧縮
成形体の成形をより容易とすると共にその強度を増し、
運搬や熱処理時の撰傷防止に有効である。加えて同粘結
剤は有機粘結剤であるため200〜400℃間で脱バイ
ンダーされ素材の組成、色調に影響を及ぼさないという
利点も有している。
In addition, during compression molding, 2 to 3 of polyvinyl alcohol (P, V, A) is added to the glassy raw material powder as a binder in advance.
Adding a χ solution at 5 to 15χ (powder weight ratio) makes it easier to mold a compression molded product and increases its strength.
Effective for preventing damage during transportation and heat treatment. In addition, since the binder is an organic binder, it has the advantage that it is debinding at 200 to 400°C and does not affect the composition or color tone of the material.

なお、粘結剤として前記P、V、Aの他に、ベントナイ
ト、アルミナセメント、ポルトランドセメントの1種も
しくは2種以上を混合させるその添加量比が7%以下、
あわせて添加水量が20%以下としたものを用いること
が出来る。
In addition, as a binder, in addition to the above-mentioned P, V, and A, one or more of bentonite, alumina cement, and Portland cement is mixed, and the addition amount ratio is 7% or less,
In addition, one in which the amount of added water is 20% or less can be used.

このようにして得られた圧縮成形体は既に触れた通り、
ガラス状原料粒子の軟化点をあまり上回らない低温、す
なわち軟化点と結晶の成長速度の速(なる温度以下の温
度で、融着一体化及び緻密化の熱処理を行なう。この時
点では粒子間の融着界面では核形成が進行している。
As already mentioned, the compression molded product obtained in this way has
Heat treatment for fusion, integration and densification is performed at a low temperature that does not significantly exceed the softening point of the glassy raw material particles, that is, at a temperature below the softening point and the crystal growth rate. Nucleation is progressing at the contact interface.

一体緻密化を了へた成形体は更に温度を上げて結晶の成
長を助長し結晶化を図る。
Once the compact has been densified, the temperature is further increased to promote crystal growth and crystallization.

但し上記処理温度が高温となり過ぎると圧粉体の形状保
持ができなくなる。従って場合によってはある程度の温
度で長時間保持するような処理方法に依らなければなら
ないこともある。
However, if the processing temperature is too high, the shape of the green compact cannot be maintained. Therefore, depending on the case, it may be necessary to rely on a processing method that involves holding the material at a certain temperature for a long period of time.

また上記熱処理において、熱処理条件を選択することに
より結晶化の種々の段階の結晶化ガラスを製造すること
も可能であり、既述のようにガラス着色剤を含んだ色付
ガラス状原料を用いることによって、着色の結晶化ガラ
スとすることも可能である。
In addition, in the above heat treatment, it is also possible to produce crystallized glass at various stages of crystallization by selecting heat treatment conditions, and as mentioned above, it is possible to use colored glass-like raw materials containing a glass colorant. It is also possible to make colored crystallized glass depending on the method.

なおここで微粉を圧縮成形し、それを焼結する工程をも
つ陶磁器やファインセラミックスの製造方法と本発明に
おける製造方法との差異について触れておくと、前者は
結晶状態の原料を用い、固相焼結によって緻密化するの
に対し、本発明ではガラス状態の原料を用い、一部分を
結晶化させているのであって根本的に異なるのである。
Here, I would like to mention the difference between the manufacturing method of ceramics and fine ceramics, which involves the process of compressing fine powder and sintering it, and the manufacturing method of the present invention. While densification is achieved through sintering, the present invention uses raw materials in a glass state and partially crystallizes them, which is fundamentally different.

次に本発明の具体的実施例を示す。Next, specific examples of the present invention will be shown.

重量百分率で、5t(h : 73.2χ、/Vz03
:1.5X、 CaO:6.8χ、Na、0 : 13
.1χ、KzO:0.9%、MgO:4.0χを含むよ
うにした原料を1500℃で融解し、次にこれを水中に
投入しガラス状原料の小体を得、これを更にアルミナ製
のボールミルによって、200 mesh(0,074
mn+)以下の微粉に粉砕し、同粉体に粘結剤としてP
、 V、 Aの3χ溶液を重量比で1oz添加し、よく
混合して後圧縮成形枠を用いて、300 X300 X
25(mn+)の板状圧縮成形体を成形した。圧縮圧力
は100、200.250 kgf/cal  の3種
で、各圧力による成形体密度はそれぞれ1.62g/d
、 1.66g/cffl、1.7g/C艷であった。
In weight percentage, 5t (h: 73.2χ, /Vz03
: 1.5X, CaO: 6.8χ, Na, 0: 13
.. A raw material containing 1χ, KzO: 0.9%, and MgO: 4.0χ was melted at 1500°C, and then poured into water to obtain glassy raw material particles. 200 mesh (0,074
mn+) or less, and P is added to the same powder as a binder.
, V, A 3χ solution was added in a weight ratio of 1 oz, mixed well, and then molded using a compression molding frame of 300 x 300 x
A plate-shaped compression molded product having a size of 25 (mn+) was molded. There are three compression pressures: 100 and 200.250 kgf/cal, and the density of the compact at each pressure is 1.62 g/d.
, 1.66g/cffl, 1.7g/Cffl.

上記の圧縮成形体の熱処理は、昇温速度50℃/hで4
00℃まで上げ、同温度を4時間保持してガラス状原料
粉末の融着一体化及び緻密化を図った後、再び50℃/
hの昇温速度で850℃に上げ、同温度を4時間保持し
て結晶化を図ったところ、デビトライト晶が析出した。
The above compression molded body was heat treated at a heating rate of 50°C/h for 4 hours.
After raising the temperature to 00°C and maintaining the same temperature for 4 hours to fuse and integrate the glassy raw material powder and make it dense, the temperature was raised again to 50°C/
The temperature was raised to 850° C. at a rate of 1 h, and the same temperature was maintained for 4 hours to achieve crystallization, and debitrite crystals were precipitated.

得られた製品について物性値を測定した結果は、吸水率
0.2〜0.01χ、曲げ強度550〜650 kgf
/cdであった。
The results of measuring the physical properties of the obtained product were a water absorption rate of 0.2 to 0.01χ and a bending strength of 550 to 650 kgf.
/cd.

なお第2図に上記熱処理の熱処理曲線を示す。Note that FIG. 2 shows the heat treatment curve of the above heat treatment.

(発明の効果) 以上のように本発明における製造方法はガラス状原料を
微粉末とし、これを緻密な圧縮成形体とすることによっ
て、該成形体構成のガラス状原料粉末を比較的低温で融
着一体化及び緻密化することを可能としたものであり、
従って結晶の成長に伴う粘性の増大によるところの、粒
子の一体化、緻密化に対する障害もなく、また核形成剤
含有の有無にか\わらず結晶化ができ、その結晶化処理
温度も従来方法に比して相当な低温で行うことができる
のである。従って同処理も容易であり処理条件を変える
ことによって種々の段階の結晶化状態のものが得られる
(Effects of the Invention) As described above, the manufacturing method of the present invention turns a glassy raw material into a fine powder and forms a dense compression molded body, thereby melting the glassy raw material powder constituting the molded body at a relatively low temperature. This makes it possible to integrate and make it more dense.
Therefore, there is no obstacle to particle integration and densification due to increase in viscosity accompanying crystal growth, and crystallization can be performed regardless of the presence or absence of a nucleating agent. It can be carried out at considerably lower temperatures compared to Therefore, the treatment is easy, and by changing the treatment conditions, various stages of crystallization can be obtained.

また微粉末の圧縮成形であるから種々の形状の結晶化ガ
ラスとすることも容易であり、たとえば表面に凹凸をつ
けるなども容易にできる。
Furthermore, since it is compression molded from fine powder, it is easy to make crystallized glass of various shapes, and for example, it is easy to create irregularities on the surface.

更には集積法におけるような大きな気泡(径0.5n程
度)を製品内部に含まないのである。
Furthermore, the product does not contain large bubbles (about 0.5 nm in diameter) unlike in the case of the integrated method.

このように多くの利点を有する製造方法によって提供さ
れる本発明の結晶化ガラスは、その製造方法からも明ら
かなように、通常のガラスとしての特性、たとえば高い
絶縁性、耐薬品性、或いは表面光沢等を有すると共に、
ガラスセラミックスとしての大きい強度を有するのであ
り、しかもその強度は前述の通り大きい気泡を含まない
ことにより確実性の高い強度である。
As is clear from the manufacturing method, the crystallized glass of the present invention, which is provided by a manufacturing method that has many advantages, has the characteristics of ordinary glass, such as high insulation, chemical resistance, and surface In addition to having gloss etc.
It has high strength as a glass ceramic, and as mentioned above, the strength is highly reliable because it does not contain large bubbles.

このように種々の優れた特性を有する本発明の結晶化ガ
ラスは絶縁材、耐薬品材、建築の内外装材、機械部品等
に適用でき、本発明の工業的価値は著大である。
As described above, the crystallized glass of the present invention having various excellent properties can be applied to insulating materials, chemical-resistant materials, interior and exterior materials of buildings, mechanical parts, etc., and the industrial value of the present invention is enormous.

【図面の簡単な説明】 第1図はガラス状原料微粉の圧縮成形体を加熱したとき
の「温度−核形成速度」曲線(破線グラフ)と「温度−
結晶成長速度」曲線(実線グラフ)であり、第2図は本
発明実施例における熱処理曲線である。 特 許 出 願人  久保田鉄工株式会社゛゛ミ゛二 第2図
[Brief explanation of the drawings] Figure 1 shows the "temperature - nucleation rate" curve (dashed line graph) and the "temperature - nucleation rate" curve (dashed line graph) when a compression molded body of glassy raw material fine powder is heated.
FIG. 2 is a heat treatment curve in an example of the present invention. Patent Applicant: Kubota Iron Works Co., Ltd. Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)重量百分率で、SiO_2:65〜75%、Al
_2O_3:1〜5%、MgO:1〜7%、CaO:5
〜15%、Na_2O+K_2O:10〜20%を必須
成分とし、かつSiO_2+Al_2O_3+MgO+
Na_2O+K_2O>90%なるように含有し、主と
してデビトライト結晶から成ることを特徴とする結晶化
ガラス。
(1) In weight percentage, SiO_2: 65-75%, Al
_2O_3: 1-5%, MgO: 1-7%, CaO: 5
~15%, Na_2O+K_2O: 10-20% as essential components, and SiO_2+Al_2O_3+MgO+
A crystallized glass characterized by containing Na_2O+K_2O>90% and mainly consisting of debitrite crystals.
(2)成分に重量百分率で10%以下のガラス着色剤を
含有し、着色されて成ることを特徴とする特許請求の範
囲第1項記載の結晶化ガラス。
The crystallized glass according to claim 1, which is colored by containing 10% by weight or less of a glass colorant in component (2).
(3)重量百分率で、SiO_2:65〜75%、Al
_2O_3:1〜5%、MgO:1〜7%、CaO:5
〜15%、Na_2O+K_2O:10〜20%を必須
成分とし、かつSiO_2+Al_2O_3+MgO+
Na_2O+K_2O>90%なるように含有して成る
ガラス状原料を、200mesh以下の粒子が70%以
上を占める粉体に粉砕し、同粉体を真密度の55%以上
の圧粉体に圧縮成形して後、該成形体を熱処理してガラ
ス状原料粉末相互を軟化融着させて、一体化及び緻密化
する一方結晶化を図り、主としてデビトライト結晶を析
出させたことを特徴とする結晶化ガラスの製造方法。
(3) In weight percentage, SiO_2: 65-75%, Al
_2O_3: 1-5%, MgO: 1-7%, CaO: 5
~15%, Na_2O+K_2O: 10-20% as essential components, and SiO_2+Al_2O_3+MgO+
A glassy raw material containing Na_2O+K_2O>90% is pulverized into a powder in which particles of 200 mesh or less account for 70% or more, and the powder is compression-molded into a green compact with a true density of 55% or more. After that, the molded body is heat-treated to soften and fuse the glassy raw material powders to each other, thereby crystallizing them while integrating and densifying them, so that mainly debitrite crystals are precipitated. Production method.
(4)ガラス状原料が10%以下のガラス着色剤を含有
し着色されて成ることを特徴とする特許請求の範囲第3
項記載の結晶化ガラスの製造方法。
(4) Claim 3, characterized in that the glassy raw material is colored by containing 10% or less of a glass colorant.
A method for producing crystallized glass as described in Section 1.
(5)ガラス状原料粉末の圧縮成形において、粘結剤と
してポリビニルアルコール、ベントナイト、アルミナセ
メント、ポルトランドセメントの1種もしくは2種以上
を混合させて使用することを特徴とする特許請求の範囲
第3項又は第4項記載の結晶化ガラスの製造方法。
(5) Claim 3, characterized in that in compression molding of glassy raw material powder, one or more of polyvinyl alcohol, bentonite, alumina cement, and portland cement are used as a binder in combination. 4. A method for producing crystallized glass according to item 4.
JP21997086A 1986-09-17 1986-09-17 Crystallized glass and production thereof Pending JPS6374936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21997086A JPS6374936A (en) 1986-09-17 1986-09-17 Crystallized glass and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21997086A JPS6374936A (en) 1986-09-17 1986-09-17 Crystallized glass and production thereof

Publications (1)

Publication Number Publication Date
JPS6374936A true JPS6374936A (en) 1988-04-05

Family

ID=16743879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21997086A Pending JPS6374936A (en) 1986-09-17 1986-09-17 Crystallized glass and production thereof

Country Status (1)

Country Link
JP (1) JPS6374936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222145A (en) * 1988-07-12 1990-01-25 Central Glass Co Ltd Crystalline foam glass and production thereof
JPH0264039A (en) * 1988-08-30 1990-03-05 Central Glass Co Ltd Crystalline glass and production thereof
JPH02145456A (en) * 1988-11-28 1990-06-04 Central Glass Co Ltd Crystalline glass and production thereof
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222145A (en) * 1988-07-12 1990-01-25 Central Glass Co Ltd Crystalline foam glass and production thereof
JPH0264039A (en) * 1988-08-30 1990-03-05 Central Glass Co Ltd Crystalline glass and production thereof
JPH02145456A (en) * 1988-11-28 1990-06-04 Central Glass Co Ltd Crystalline glass and production thereof
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape

Similar Documents

Publication Publication Date Title
Romero et al. Preparation and properties of high iron oxide content glasses obtained from industrial wastes
US6130178A (en) Strong miserite glass-ceramics
EP2749544A1 (en) A glaze composition, method for manufacturing the glaze composition and methods of glazing
EP2752394B1 (en) Method for manufacturing glass-ceramic composite
JPS6374936A (en) Crystallized glass and production thereof
Karamanov et al. Sintering Behavior and Properties of Iron‐Rich Glass‐Ceramics
JPS6317238A (en) Production of crystallized glass
JP3094375B2 (en) Natural marble-like crystallized glass and glass body for producing natural marble-like crystallized glass
JPS6224365B2 (en)
JPH0624768A (en) Natural marble-like crystallized glass article and its production
DE287394C (en)
JPH0444622B2 (en)
JPS62143842A (en) Crystallized glass and production thereof
JPS62162631A (en) Production of crystallized glass having colored pattern
KR100579189B1 (en) Method for preparing the crystallized glass tile using cullet
JPH0623059B2 (en) Method for manufacturing glass ceramic products
JPH0575702B2 (en)
JPH0436098B2 (en)
JP2002226224A (en) Decorative glass and its manufacturing method
JPS6117442A (en) Crystallized glass and its production
JPS5924100B2 (en) Method for manufacturing crystallized glass using aluminum red mud as the main raw material
JPS6317239A (en) Production of crystallized glass with color pattern
JPH05163042A (en) Pattern-containing crystallized glass
JPH05279082A (en) Production of crystallized glass
JPH0155205B2 (en)